Polymers for Future Electronics

School of Materials Science and Engineering Gwangju Institute of Science and Engineering (GIST) Gwangju, Republic of Korea

Myung-Han Yoon (mhyoon@gist.ac.kr)

Materials for Current Electronics and Displays

https://en.wikipedia.org/wiki/Electronics

https://siliconsemiconductor.net/

Conductor (e.g., metals, metal oxides) Semiconductor (e.g., silicon)

Insulator (e.g., metal oxide, polymers)

Circuit board (e.g., polymers; PCB)

Packaging (e.g., polymers)

Photoresist (e.g., **polymers**)

Display (e.g., glass, LCD, OLED)

Cases (e.g., polymers)

Copyright (C) 2021 by Myung-Han Yoon

Materials for Current Electronics and Displays

https://news.samsung.com/us/galaxy-z-flip-unpacked2020-future-changes-shape/

Conductor (e.g., metals, metal oxides)

Semiconductor (e.g., silicon)

Insulator (e.g., metal oxide, **polymers**)

Circuit board (e.g., polymers; PCB)

Packaging (e.g., polymers)

Photoresist (e.g., **polymers**)

Display (e.g., glass, LCD, OLED)

Cases (e.g., polymers)

Copyright (C) 2021 by Myung-Han Yoon

Contents: Polymers for Future Electronics

Part I. Human-friendly electronics

https://spectrum.ieee.org/biomedical/devices/

Part II: Green electronics

M. Irimia-Vladu, Chem. Soc. Rev., 2014

Conclusing remarks

Conducting Polymers

Plastic: light, flexible, etc.

www.captainpao.com

But, electrically conductive!

www.unpluggedliving.com

Conducting Polymers

Decent electrical conductivity after doping
Mechanical flexibilty
Solution processibility

Why Electrically Conductive?

Traditional plastic: polyethylene

$$+CH_2-CH_2$$

Ethylene

Conducting polymer: trans-polyacetylene

$$\left(\mathsf{CH} = \mathsf{CH} \right)_{\mathsf{n}}$$

Why Electrically Conductive?

$$CH_2 = CH_2$$
 $-\left\{CH = CH\right\}_r$

 π^*

Conduction band

- 1. Conjugated π -system
- Alternating single and multiple bonds
- Enabling band-like electronic structures

$$\begin{array}{c|c}
 & H & H \\
 & C & C & C \\
 & H & H & D
\end{array}$$

$$\begin{array}{c|c}
 & 3 I_2 & C & C & C \\
 & C & C & C & C \\
 & H & H & D
\end{array}$$

$$\begin{array}{c|c}
 & 2 I_3
\end{array}$$

π Valence band

- 2. Doping (chemically or electrochemically)
- Extra energy bands
- Charge carrier introduction

Organic Mixed Ionic-Electronic Conductors (OMIECs)

Ionic and electronic conductivities

Organic Mixed Ionic-Electronic Conductors

Paulsen et al. Nature Mater. 19:13-26 (2020)

- 1 Dopant ion injection and migration
- **②** Charge carrier (hole) stabilization by dopant ion
- 3 Charge carrier (hole) hopping
- 4 Charge transfer between active layer and electrode

*All processes take place simultaneously.

Organic mixed conductors can transport not only electrical but also ionic charge carriers, so they can be useful in *interfacing ion-based bioelectric signals*.

Organic Mixed Ionic-Electronic Conductors for Bioelectronics

Nernst equation

$$V = \frac{RT}{zF} \ln \frac{[K^+]_o}{[K^+]_i}$$

"Resting membrane potential"

Organic Mixed Ionic-Electronic Conductors for Bioelectronics

Many different types of bioelectronic devices have been developed for biological signal recording, information processing, and stimulation.

OMIEC Fibers for EMG and Sweat Sensing

Polymers for Future Electronics

Part I. Human-friendly electronics

https://spectrum.ieee.org/biomedical/devices/

Part II: Green electronics

M. Irimia-Vladu, Chem. Soc. Rev., 2014

Conclusing remarks

Pollution By Petroleum-based Non-degradable Plastic

https://egyptindependent.com/ocean-plastic-predicted-to-triple-within-a-decade/

https://www.independent.co.uk/climate-change/

https://www.scientificamerican.com/

E-waste

https://www.governancenow.com/news/regular-story/can-we-handle-our-ewaste

Conductor (e.g., metals, metal oxides)
Semiconductor (e.g., silicon)
Insulator (e.g., metal oxide, polymers)
Circuit board (e.g., polymers; PCB)
Packaging (e.g., polymers)
Photoresist (e.g., polymers)
Display (e.g., polymers)
Cases (e.g., polymers)

Green Electronic Materials

Polyvinyl alcohol (PVA)

Youfan Hu et. al Adv. Funct. Mater. 2019

Polylactic acid (PLA)

Zhou Li et al Adv. Sci. 2019

Silk fibroin

Guo Wenxi et al Small 2019

Polyethylene glycol (PEG)

Copyright (C) 2021 by Myung-Han Yoon

Nanocellulose

DOI: 10.5772/intechopen.77025

Nanocellulose from Natural Waste?

Bacterial cellulose

https://doi.org/10.1016/j.foodhyd.2013.07.012

Rice straw

Sea pineapple

Other Natural Waste Materials from Ocean

Copyright (C) 2021 by Myung-Han Yoon

Polymers for Future Electronics

Part I. Human-friendly electronics

https://spectrum.ieee.org/biomedical/devices/

Part II: Green electronics

M. Irimia-Vladu, Chem. Soc. Rev., 2014

Conclusing remarks

Rankings of Industrial Raw Materials

World Oil and Gas Uses

Oil and gas uses

Chart: The Conversation, CC-BY-ND • Source: British Plastics Federation

https://plastics.com/polymer-news-technology-today-world-production-of-plastics/polymer-news-technology-today-oil-gasuses-700x525/

Fossil Fuel Dependence: Climate Change and Air Pollution

Commercial Plastic Production

Plastic around the globe

The term "plastic" covers many different types of polymers, each produced in many millions of tons in 2015.

Renewable Energy and Materials

Thanks for Your Attention