Vocabulary of radioanalytical methods

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Pure and Applied Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>PAC-REC-19-03-02.R3</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Recommendation</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>06-Oct-2019</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Chai, Zhifang; Institute of High Energy Physics Chinese Academy of Sciences, Lab. Nuclear Analytical Techniques; Chatt, Amares; Dalhousie University, Department of Chemistry; Bode, Peter; Delft University of Technology Faculty Applied Sciences, Department Radiation Science and Technology; Kucera, Jan; Nuclear Physics Institute Czech Academy of Sciences; Greenberg, Robert; NIST; Hibbert, David; University of New South Wales, School of Chemistry</td>
</tr>
<tr>
<td>Keywords:</td>
<td>radioanalytical chemistry, terminology, nuclides, nuclear processes, nuclear effects, radiochemistry</td>
</tr>
<tr>
<td>Author-Supplied Keywords:</td>
<td></td>
</tr>
</tbody>
</table>
Vocabulary of radioanalytical methods (IUPAC Recommendations 201x)

Zhifang Chai¹, Amares Chatt², Peter Bode³, Jan Kucera⁴, Robert Greenberg⁵, D. Brynn Hibbert⁶‡

¹Lab. Nuclear Analytical Techniques Institute of High Energy Physics Chinese Academy of Sciences, P.O.Box 918, Beijing 100049,

²Trace Analysis Research Centre, Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4J3 Canada

³Delft University of Technology, Reactor Institute Delft, Mekelweg 15, NL-2629 JB Delft, The Netherlands

⁴Nuclear Physics Institute CZ-25068, Rez near Prague, Czech Republic

⁵National Institute of Standards and Technology, 100 Bureau Drive, 8395 Building 235, Rm B176, Gaithersburg,

⁶School of Chemistry, UNSW Sydney, NSW 2052, Australia

‡ Corresponding author: School of Chemistry, UNSW Sydney, NSW 2052, Australia. b.hibbert@unsw.edu.au

Abstract:

These recommendations are a vocabulary of basic radioanalytical terms which are relevant to radioanalysis, nuclear analysis and related techniques. Radioanalytical methods consider all nuclear-related techniques for the characterization of materials where ‘characterization’ refers to compositional (in terms of the identity and quantity of specified elements, nuclides, and their chemical species) and structural (in terms of location, dislocation, etc. of specified elements, nuclides, and their species) analyses, involving nuclear processes (nuclear reactions, nuclear radiations, etc.), nuclear techniques (reactors, accelerators, radiation detectors, etc), and nuclear effects (hyperfine interactions, etc.). In the present compilation, basic radioanalytical terms are included which are relevant to radioanalysis, nuclear analysis and related techniques.

Keywords: radioanalytical chemistry; terminology; nuclides; nuclear processes; nuclear effects.

This work was started under the project 2010-030-1-500: Radioanalytical Chemistry – Revision of the Orange Book Chapter 8 with membership of Zhifang Chai (task group chair), Peter Bode, Amares Chatt, Robert Greenberg, D. Brynn Hibbert and Jan Kucera. (https://iupac.org/projects/project-details/?project_nr=2010-030-1-500).
INTRODUCTION

These Recommendations contain terms found in the corresponding chapter of the IUPAC Orange Book, third edition of the Compendium of Analytical Nomenclature (definitive rules 1997) [1], which was based on the Glossary of Terms used in Nuclear Analytical Chemistry published in 1982 [2] and the Nomenclature for Radioanalytical Chemistry, published in 1994 [3]. In addition to terms of analytical interest, terms are included from nuclear technology, nuclear physics and radioactivity measurements. The IUPAC Technical Report on the use of X-ray based techniques for analysis of trace elements in environmental samples provided a useful overview [4] of techniques using high-energy photons. This Recommendation will furnish terms on radioanalytical chemistry for the new chapter 8 in the next edition of the Orange Book [5].

The available terms in the field of radioanalytical methods were first compiled twenty to thirty years ago. With the development of modern science and technology, some of the terms are outdated. In the meantime, more and more new terms in the field of radioanalytical methods have appeared or are emerging. Particularly, sophisticated nuclear facilities and detectors, like advanced nuclear reactors, dedicated particle accelerators, and various new types of radiation detectors with excellent performances are changing the outlook of radioanalytical methods. For example, many advanced nuclear analytical laboratories in the world have access to synchrotron radiation devices and spallation neutron sources. Related new nuclear analytical methods have been established or are being developed for scientific and applied purposes. Various new radioanalytical methods, like neutron scattering, accelerator mass spectrometry, X-ray absorption and fluorescence methods based on synchrotron radiation have become more and more popular analytical tools.

Following the International Vocabulary of Metrology (VIM) [6] and present IUPAC format, the concept entries of these Recommendations provide term, definition and explanations by examples and notes. Additionally, the main document the information is taken from (not necessarily verbatim) is stated as "Source" using the respective reference number (e.g. [1] for the third edition of the Orange Book). Changes to wording are referenced as “Source: Adapted from …”, and for Recommendations this change will replace the existing entry. Where a completely rewritten entry is to replace an existing Recommendation this is noted as “Replaces:”.

Within a given entry, terms referring to other concepts termed and defined in these Recommendations appear in italics on first use. The same holds for VIM terms, however these are marked with the VIM entry number, e.g. measurement principle [VIM 2.4], because the definition is not reproduced here.

TERMS IN RADIOANALYTICAL CHEMISTRY

1. absolute activation analysis

 Measurement method [VIM 2.5] of activation analysis in which the amounts of elements in a material are measured using a measurement model with known nuclear constants, irradiation and radiation measurement parameters without the use of a calibrator with known property values.

2. **absolute activity**

See: *activity of a radioactive substance*.

3. **absolute counting**

Measurement method [VIM 2.5] in which the observed *counting rate* under well-defined conditions is used to measure the *activity* of a *radionuclide* without the use of a *calibrator* with known property values.

4. **absolute counting efficiency**

Number of particles or photons counted by a *radiation detector* divided by the number emitted by a *radiation source*.

5. **absorption cross section**

See: *capture cross section*.

6. **absorption edge**

See: *X-ray absorption edge*.

7. **accelerator mass spectrometry, (AMS)**

Mass spectrometry technique in which atoms and molecules from a sample are ionized, accelerated to mega-electron volt (1 MeV = 1.602 176 634 ×10^{-13} J) energies and separated according to their momentum, charge, and energy, allowing high discrimination for measurement of *nuclide* abundances.

Note: AMS is typically used for (but not limited to) measurement of radionuclides with long half-lives such as ^{10}\text{Be}, ^{14}\text{C}, ^{26}\text{Al}, ^{36}\text{Cl}, ^{57}\text{Mn}, ^{129}\text{I}.

Source: [9]. See also: [10].

8. **activation (in radiation chemistry)**

Induction of *radioactivity* by *irradiation*.

Note: In general, a specification is added of the type of incident *radiation* (e.g. nuclei, neutron, photon, charged particles) and/or the *energy* of this radiation (e.g. cold neutron, *thermal neutron*, epithermal neutron, fast neutron. See: *neutron energy*).

9. activation analysis

Measurement principle [VIM 2.4] for measuring elemental or isotopic contents in a specified amount of a material, in which the *activity* of radionuclides formed directly or indirectly by nuclear reactions of elementary particles, or absorption of electromagnetic radiation by stable *nuclides*, is measured.

Note: A specification is added of the type of the incident particle/radiation (e.g. *neutron activation analysis*, *photon activation analysis*, charged particle activation analysis) and its energy (e.g. cold neutron activation analysis, (epi)thermal neutron activation analysis, fast neutron activation analysis. (See: *neutron energy*).

10. activation cross section

Microscopic cross section for a nuclear reaction resulting in the formation of a radionuclide under specified conditions.

11. activity growth curve

Graph of *activity* of a radioactive nuclide as a function of time and showing the increase of activity through the decay of the precursor or as a result of *activation*.

Source: Adapted from [3] p 2515.

12. activity of a radioactive material, A

activity
absolute activity
decay rate

Number of nuclear decays occurring in a given quantity of material in a small time interval, divided by that time interval.

Note 1: For a specified substance B, $A = -dN_B/dt$ where N_B is the number of decaying entities B. (Source: [12] p 24).

Note 2: The SI unit of activity is the *becquerel* (Bq) which is equal to one decay per second (s⁻¹). Curie (Ci) is a former unit of activity equal to exactly 3.7×10^{10} Bq.

Note 3: The synonym ‘disintegration rate’ is no longer recommended.

13. analytical radiochemistry

See: radioanalytical chemistry.
14. autoradiograph

Radiograph of an object containing a *radioactive* substance, produced by placing the object adjacent to a photographic plate or film or a fluorescent screen.

Source: [13].

15. autoradiolysis

Radiolysis of a *radioactive* material resulting directly or indirectly from its *radioactive decay*.

16. background radiation

Radiation from any *radioactive source* other than the one it is desired to measure.

17. backscattering analysis

Measurement principle [VIM 2.4] in which the backscattering of *nuclear radiation* impinging on a sample is applied for measurement of the structure and composition of materials.

18. barn, b

Non-SI unit of area used in expressing nuclear *cross section*. 1 b = 1 × 10^{-28} m^2 = 100 fm^2.

Note: One barn is approximately the area of a nucleus of radius 5.6 × 10^{-15} m.

19. branching ratio

decay fraction
decay probability

Number of nuclei of a given *radionuclide* divided by the total number of nuclei of that radionuclide that, in *nuclear decay* by two or more different transitions, decays by a specified transition.

Source: [14].

20. calibration, k_0 method

Calibration [VIM 2.39] method of *neutron activation analysis* in which the k_0 proportionality factors together with a value of the *neutron flux* (as a function of the neutron energy) and with a value of the *radiation detector’s response* for gamma radiation as a function of the gamma-ray energy are used for establishing a relation between the number of *counts* measured and the corresponding amounts of elements in a material.
Note: The k_0 proportionality factor is a ratio of experimentally measured nuclear parameters of the (radio)nuclides and those parameters of the respective (radio)isotopes of a calibrator (often based on Au).

Source: [15].

21. calibrator (in activation analysis)
obsolete: comparator

Measured amount of an element with stated measurement uncertainty [VIM 2.26] that is simultaneously irradiated with the sample during activation analysis.

Note 1: The term ‘calibrator’ is preferred over ‘comparator’.

Note 2: If one calibrator is used (single calibrator method, which is preferred over “single comparator method”), it is essentially identical to a flux monitor (except that this term is not necessarily linked to activation analysis).

22. capture

See: nuclear capture.

23. capture cross section
absorption cross section

Cross section for nuclear capture.

Note: Absorption cross section is not recommended because it implies absorption of electromagnetic radiation.

Source: Adapted from [3] p 2516.

24. carrier (in radiation chemistry)

Substance in appreciable concentration which, when associated with an isotopic tracer of a specified substance, will carry the tracer with it through a chemical or physical process, or prevent the tracer from undergoing nonspecific processes due to its low mass fraction or concentration.

Source: [16].

25. carrier-free

See: no carrier added.

26. channeling effect

Range (traveling distance) increasing effect caused by the decrease in interaction cross sections of the incident particles with atoms in a single crystal when a highly...
collimated particle beam impinges on a crystal along its principal axis or principal plane.

Source: [17].

27. **channels ratio method**

Measurement method [VIM 2.5] to obtain a *quenching correction* by counting the spectrum in two separate channels, the ratio of which gives the degree of quenching.

Source: [18].

28. **characteristic X-radiation**

X-radiation consisting of discrete energies which are characteristic for the emitting element.

Note: X-rays are electromagnetic radiation with wavelength between 10^{-11} and 10^{-8} m, corresponding to energies between 100 keV and 100 eV.

Source: Adapted from [3] p 2526.

29. **Compton scattering analysis**

Measurement principle [VIM 2.4] in which wavelengths and angular distribution of Compton scattered electrons is applied for reconstruction of X-ray and gamma-ray spectra.

Note: Compton scattering analysis is applied e.g. in mammography.

30. **count**

Single event recorded by a *radiation counter*.

31. **count rate**

See: *counting rate*.

32. **counting efficiency**

intrinsic counting efficiency

Number of particles or photons counted divided by the number that has struck the envelope.

Note: This ratio limits the sensitive volume of a *radiation detector*.

33. **counting geometry**

Arrangement in space of the various components of an experiment, particularly the source and the radiation detector in radiation measurements.

34. **counting loss**

Reduction of the *counting rate* resulting from phenomena such as the *dead time of a radiation counter*.

Source: Adapted from [3] p 2517.

Note: Counting loss is corrected for by a *dead time correction* or a *resolving time correction*.

35. **counting rate**

count rate

Number of *counts* occurring in unit time.

36. **cross reactivity**

Ability of substances other than the analyte to bind to the binding reagent and ability of substances other than the binding reagent to bind the analyte in competitive binding assays.

Note: Binding described here is known as cross reaction.

37. **cross section (in radiation chemistry), σ**

microscopic cross section

Characteristic area related to the probability of a specified interaction or reaction between an incident nuclear radiation and a target particle or system of particles.

Note 1: Cross section is the reaction rate per target particle for a specified process divided by the flux density of the incident radiation.

Note 2: In general, a specification is added of the type of nuclear radiation (e.g. neutron, photon), the energy of the incident radiation (e.g. thermal, epithermal, fast (See: *neutron energy*)) and the type of interaction of reaction (e.g. activation, fission, scattering).
38. **daughter product**

Nuclide which follows a specified *radionuclide* in a *decay chain*.

39. **dead time correction of a radiation counter**

dead time correction

Correction to be applied to the observed number of *counts* in order to take into account the number of counts lost during the resolving or *dead time of a radiation counter*.

Note: If the measured number of counts is N_m and the true number of counts is N_{true} then for measurements at time t with dead time t_d,

$$N_{true} = N_m/(1 - t_d/t).$$

Source: Adapted from [3] p 2518.

40. **dead time of a radiation counter**, t_d

down time

Time taken for charged particles to reach an electrode in a *radiation counter*, during which time particles are not counted.

Example: The dead time of a *Geiger-Müller counter* is 100 to 400 μs.

41. **decay chain**

radioactive chain
radioactive series

Series of *radionuclides* in which each radionuclide transforms into the next through *nuclear decay* until a stable *nuclide* has been formed.

Source: Adapted from [3] p 2518.

42. **decay constant of a radionuclide**, λ, k

decay rate constant of a radionuclide

Proportionality constant between the *activity* (A) of a specified *radionuclide* and the number of decaying entities (N_B).

$$A = \lambda \cdot N_B.$$
Note 1: The decay constant is related to the half life of a radionuclide \((t_{1/2}) \) by
\[
 t_{1/2} = \frac{(\ln 2)}{\lambda} \approx 0.693/\lambda .
\]

Note 2: Synonyms ‘disintegration constant of a radionuclide’ and ‘disintegration rate constant of a radionuclide’ are not recommended.

Source: [12] p 24. See also: \textit{mean life of a radionuclide}.

43. \textbf{decay curve}

Graph of the activity of a radionuclide against time after a specified reference time.

44. \textbf{decay fraction}

See: branching ratio.

45. \textbf{decay probability}

See: branching ratio.

46. \textbf{decay rate}

See: activity of a radioactive substance.

47. \textbf{decay rate constant of a radionuclide}

See: decay constant of a radionuclide.

48. \textbf{delayed-neutron activation analysis, (DNAA)}
delayed-neutron analysis, (DNA)
delayed-neutron counting, (DNC)

\textit{Neutron activation analysis} where neutrons are counted after a delay to allow interfering species to decay.

49. \textbf{delayed-neutron analysis, (DNA)}

See: delayed-neutron activation analysis.

50. \textbf{delayed-neutron counting, (DNC)}

See: delayed-neutron activation analysis.

51. \textbf{destructive activation analysis}

See: \textit{radiochemical activation analysis}.
52. direct isotope dilution analysis

See: isotope dilution analysis.

53. directly-ionizing radiation

Beam of particles capable of removing one or more orbital electrons in a single quantum event from a specified atom resulting in an ion.

Note 1: To have sufficient energy for direct ionization most ionizing particles are electrically charged, for example, alpha particles, beta particles, electrons, positrons, protons. Photons can ionize atoms directly through the photoelectric effect or the Compton effect.

Note 2: When considering health effects of radiation, the distinction may be made between multiple ionizations by charged particles as they move through a material (called 'direct ionization'), and a single event of ionization caused by a photon.

See also: indirectly-ionizing radiation.

Reference: [22] p 11.

54. disintegration constant of a radionuclide

See: decay constant of a radionuclide.

55. disintegration rate constant of a radionuclide

See: decay constant of a radionuclide.

56. down time

See: dead time of a radiation counter.

57. effective cadmium cut-off energy

In a given experimental configuration, the energy value determined by the condition that the radiation detector response would be unchanged if the cadmium cover surrounding the detector was replaced by a cover opaque to neutrons with energy below this value and transparent to neutrons with energy above this value.

Note: Typically, the thickness of this cadmium cover is taken to be 1 mm.

58. effective thermal cross section

Westcott cross section
A calculated cross-section for a specified reaction, which, when multiplied by the 2200-metre-per-second particle (or photon) flux density, gives the correct reaction rate for thermal neutrons.

Source: Adapted from [3] p 2517.

59. **energy flux density, J_E**

Energy of radiation traversing unit area perpendicular to the direction of the energy flow per unit time.

Note: The SI unit of energy flux density is $\text{J s}^{-1} \text{m}^{-2} = \text{W m}^{-2}$

Source: Adapted from [3] p 2519.

60. **energy resolution**

For a given energy, the smallest difference between the energies of two particles or photons capable of being distinguished by a radiation counter.

Note: The energy resolution is often expressed as the Full Width at Half Maximum (FWHM) of the counter’s indication [VIM 4.1] at a given energy of radiation.

61. **energy threshold**

Limiting kinetic energy of an incident particle or energy of an incident photon below which a specified nuclear reaction is not detectable.

62. **energy-dispersive X-ray analysis, (EDXA)**

See: energy-dispersive X-ray fluorescence analysis.

63. **energy-dispersive X-ray fluorescence analysis, (EDX)**

energy-dispersive X-ray analysis, (EDXA)
energy-dispersive X-ray spectroscopy, (EDS, EDXS)

Measurement method [VIM 2.5] of X-ray fluorescence analysis in which the energies and intensities of characteristic X-radiation are used to measure amounts of elements.

Note: EDX is often coupled with scanning electron microscopy, or proton-induced X-ray emission.

Source: [24].
64. energy-dispersive X-ray spectroscopy, (EDS, EDXS)

See: energy-dispersive X-ray fluorescence analysis.

65. epicadmium neutron

Neutron of kinetic energy greater than the effective cadmium cut-off energy.

66. epithermal neutron

Neutron of kinetic energy greater than that of thermal agitation.

Note 1: The term ‘epithermal’ is often restricted to energies just above thermal.
See also: neutron energy.

Note 2: ‘Epithermal neutron’ is often used interchangeably with epicadmium neutron.

67. extended X-ray absorption fine structure, (EXAFS)

Measurement method [VIM 2.5] of X-ray absorption analysis in which the fine structure of the adsorption spectrum in the range 30 eV to 1 keV above the adsorption edge is used to measure the number and species of neighbouring atoms, their distance from the selected atom, and the thermal or structural disorder of their positions.

Note 1: In the EXAFS region interference between the wave functions of the core and neighbouring atoms gives a periodic pattern which contains information characterizing the arrangement of atoms, including number and type of neighbouring atoms and their distance to the absorbing atom.

Note 2: The method uses synchrotron radiation.

Source: [25, 26]. See also: X-ray absorption near edge structure.

68. external standardization for quenching correction

Measurement method [VIM 2.5] to obtain a quenching correction by use of a gamma-radiation source to generate a spectrum of Compton electrons within the sample vial.

Source: [27]. See also: Compton scattering analysis.
69. **fluence, \(F, H \)**

Energy per area delivered in a given time interval. \(F = \int I \, dt = \int (dP/dA) \, dt \), where \(I \) is intensity, \(P \) is power and \(A \) is area.

Note: The SI unit of fluence is J m\(^{-2}\).

Source: Adapted from [12] p 35.

70. **fluorescence**

Prompt (within about \(10^{-8} \) s) emission of electromagnetic radiation caused by de-excitation of atoms in a material following the initial excitation of these atoms by absorption of energy from incident radiation or particles.

Note: Fluorescence is often specified by the type of incident radiation, such as X-ray fluorescence.

Replaces: [3] p 2519. See also: *prompt gamma radiation*.

71. **fluorescence yield**

For a given transition from an excited state of a specified atom, the number of excited atoms which emit a photon divided by the total number of excited atoms.

Source: Adapted from [3] p 2526. See also: [28].

72. **flux depression**

Reduction of particle (or photon) flux density in the neighbourhood of an object due to absorption and/or scattering of these particles (or photons) in the object.

Source: Adapted from [3] p 2519. See also: [29].

73. **flux monitor**

Radiation detector to measure energy flux density.

Note: A flux monitor may be a known amount of material irradiated together with a sample; the induced radioactivity is used to measure the flux density during the irradiation.

74. **flux perturbation**

Change of energy flux density or energy distribution of particles or photons in an object as a result of effects such as flux depression and/or self-shielding.

Source: Adapted from [3] p 2519. See also: [30].
75. **gamma-ray spectrometry**
obsolete: gamma-ray spectroscopy

Measurement principle [VIM 2.4] of the quantitative study of the energy spectra of gamma-ray sources.

Source: [31].

76. **Geiger-Müller counter**

Gas-filled X-ray detector in which gas amplification reaches saturation and proportionality no longer exists. The output signal does not depend on the incident energy.

Note 1: Radiation detected includes alpha particles, beta particles and gamma rays using the ionization effect produced in a Geiger–Müller tube; which gives its name to the instrument [32].

Note 2: Geiger-Müller counters are in wide use as a hand-held radiation survey instrument.

Note 3: The time taken for the counter to recover from saturation is called *dead time*.

Adapted from [33] p 1754.

77. **geometry factor**

Average solid angle in steradians at a *source* subtended by the aperture or sensitive volume of the *radiation detector*, divided by 4π.

78. **half life of a radionuclide, $t_{1/2}$, $T_{1/2}$**

Time for a number of decaying entities (N_B) to be reduced to one half of that value. $N_B(t_{1/2}) = N_B(0)/2$.

Note: *Half life* is related to the *decay constant of a radionuclide* λ by $t_{1/2} = (\ln 2)/\lambda$.

79. **half thickness**

See: *half-value thickness*.

80. **half-value thickness**

half thickness

half-value layer thickness
Thickness of a specified material which, when introduced into the path of a given beam of radiation, reduces the intensity of a specified radiation by one half.

Source: [3] p 2520. See also: [35].

81. **hot atom**

Atom in an excited energy state or having kinetic energy above the ambient thermal level, usually as a result of nuclear processes.

Source: [3] p 2520. See also: [36].

82. **hot cell**

Heavily shielded enclosure for highly radioactive materials.

Note: A hot cell may be used for handling or processing highly radioactive materials by remote means or for their storage.

Source: Adapted from [3] p 2520.

83. **indirectly-ionizing radiation**

Beam of electrically neutral particles that cause ionization by interaction with atoms in a material producing electrically-charged particles that subsequently cause direct ionization (See: *directly-ionizing radiation*) in the material.

Examples: Gamma-rays and X-rays which produce electrons, and neutrons which produce alpha and beta particles.

Reference: [22] p 11.

84. **instrumental activation analysis**

non-destructive activation analysis

Measurement method [VIM 2.5] of *activation analysis* in which the amounts of elements in a material are measured using a *measurement model* [VIM 2.48] with known nuclear constants, irradiation and radiation measurement parameters and the use of a calibrator with known property values, without the use of chemical processing after the irradiation.

Source: [7] p 1569. See also: [37].

85. **intrinsic counting efficiency**

See: *counting efficiency*.
86. **in-vivo neutron activation analysis**

Measurement method [VIM 2.5] of neutron activation analysis in which a living organism is exposed to neutrons for measuring the concentrations of elements in that living organism.

Note 1: The neutrons are typically provided by a neutron beam.

Note 2: Often prompt gamma-ray analysis is used to measure half-value thickness, rather than the *activity* of neutrons produced.

Source: [7] p 1567. See also: [38].

87. **ion beam analysis** (IBA)

Measurement principle [VIM 2.4] in which elementary particles resulting from nuclear reactions of charged particles with nuclei in a material are applied for the measurement of the amount and depth distribution of elements in materials.

88. **ionizing radiation**

Radiation with sufficient *energy* to liberate electrons from atoms or molecules, thereby ionizing them.

Note: Radiation may be termed *directly-ionizing radiation* or *indirectly-ionizing radiation*.

Source: Adapted from [3] p 2520.

89. **irradiation**

Exposure to *radiation*.

Source: Adapted from [3] p 2520.

90. **isotope dilution**

Mixing of a given *nuclide* with one or more of its *isotopes*.

91. **isotope dilution analysis** (IDA)

direct isotope dilution analysis
radioisotope dilution analysis

Measurement principle [VIM 2.4] in which the amount of an element in a substance is measured by adding to that substance a known amount of a *radionuclide* of that element and mixing it with a stable *isotope* of this element in
the substance, and subsequent measurement of the *activity* of that *radionuclide* in a subsample taken from the mixture.

Note: IDA may be classified in terms of (i) the manner of introducing radioactivity into the system; (ii) the method of measuring the activity; (iii) number of dilution steps; (iv) relative masses of sample and diluent.

92. *isotope effect*

isotopic effect

Effect on the rate constant or equilibrium constant of two reactions that differ only in the isotopic composition of one or more of their otherwise chemically identical components is referred to as a kinetic isotope effect or a thermodynamic (or equilibrium) isotope effect, respectively. (See: *isotopes*).

Source: Adapted with minor change from [42] p 1130. See also: [43, 44].

93. *isotope exchange*

See: *isotopic exchange*.

94. *isotopes*

isotopic nuclides

Nuclides having the same atomic number but different mass numbers.

Examples: 12C and 13C; 1H, 2H and 3H.

Note 1: If no left superscript is added denoting the mass number an element symbol is read as including all isotopes in natural abundance.

Source: Adapted from [12] p 49.

Note 2: The use of the singular term ‘*isotope*’ should always relate to a particular element (e.g. deuterium is an isotope of hydrogen). When used in a general sense, the term *nuclide* is preferred (e.g. *radionuclides* are used in the treatment of cancer).

See also: *radioisotope*.
95. isotopic carrier

Excess of a substance, differing only in isotopic composition from an isotopic tracer, which will carry the tracer through a chemical or physical process, preventing the tracer from undergoing non-specific processes due to its low concentration.

Source: Adapted from [3] p 2516.

96. isotopic effect

See: isotope effect.

97. isotopic enrichment

Any process by which the isotopic abundance of a specified isotope in a mixture of isotopes of an element is increased.

Note: When the specified isotope is stable, the process is termed ‘stable isotopic enrichment’.

98. isotopic exchange

isotope exchange

Exchange of places between isotopes of atoms in different chemical or physical states or positions.

99. isotopic exchange analysis

Measurement principle [VIM 2.4] based on isotopic exchange to measure the amount of the corresponding element.

100. isotopic label

Radioactive or stable isotope of a specified element distinguishable by the observer but not by the system used to identify an isotopic tracer.

Note 1: ‘Isotopic labelling’ is the incorporation of an isotopic label in a substance. It may be qualified by the manner of introduction of the label, e.g. exchange labelling, conjugation labelling, recoil labelling.

Example: Deuterium (‘isotopic label’) that is substituted for protium in the illegal drug methylamphetamine, for use in analysis by mass spectrometry. Methyamphetamine incorporating deuterium is the ‘isotopic tracer’.
Note 2: In general usage ‘label’ and ‘tracer’ are used synonymously. See: [46] 4.1.12.

Source: Adapted from [3] p 2521.

101. isotopic nuclides

See: isotopes.

102. isotopic tracer

Isotopically labelled molecule (See: isotopic label) used to measure certain properties of a system.

Source: Adapted from [3] p 2526. See also: isotopic enrichment.

Example: Deuterium (‘isotopic label’) that is substituted for protium in the illegal drug methylamphetamine, for use in analysis by mass spectrometry. Methylamphetamine incorporating deuterium is the ‘isotopic tracer’.

Note: In general usage label and tracer are often used synonymously. See: [46] 4.1.12.

103. lifetime of a radionuclide

See: mean life of a radionuclide.

104. liquid scintillation detector

Scintillation detector in which the sample is mixed with a liquid scintillator.

105. live time

Time interval during which a radiation detector is capable of processing events.

Note 1: Live time equals the clock time minus the integrated resolving or dead time.

Note 2: Live time should not be confused with ‘lifetime’ of a radioactive species.

Source: Adapted from [3] p 2522 and [47].

106. macroscopic cross section

Cross section per unit volume of a given material for a specified process.
Note: For a pure nuclide, it is the product of the microscopic cross section and the number of target nuclei per unit volume; for a mixture of radionuclides, it is the sum of such products.

Source: Adapted from [3] p 2517 and [21].

107. mean life of a radionuclide, τ
average life of a radionuclide
lifetime of a radionuclide

Reciprocal of the decay constant of a radionuclide (λ). $\tau = 1/\lambda$.

Note: The mean life is greater than the half life of a radionuclide by the factor $1/\ln 2$ (≈ 1.44); the difference arises because of the weight given in the averaging process to the fraction of atoms that by chance survives for a long time.

Source: Adapted from [12] p 24.

108. microscopic cross section

See: cross section (in radiation chemistry).

109. moderator

Material used to reduce the energy of a neutron by scattering without appreciable capture.

110. molar activity of a radionuclide, $A_m(R)$
molar activity

Activity of a specified radionuclide (R) per unit amount of substance of the specified radionuclide.

Note 1: The SI unit of molar activity is Bq mol$^{-1}$. Also used is Ci mmol$^{-1}$. (Curie, symbol Ci, is a former unit of activity equal to exactly 3.7×10^{10} Bq.)

Note 2: If the term “molar activity” is used without qualification it should be made clear whether it is of a material or of a radionuclide. See: molar activity of a radionuclide in a material.

Replaces: [3] p 2515. See also specific activity of a radionuclide.

111. molar activity of a radionuclide in a material, $A_m(R,M)$
molar activity
Activity of a specified radionuclide (R) in a material (M) divided by amount of substance of that material.

Note 1: The SI unit of molar activity is Bq mol\(^{-1}\), but molar activity is often expressed in unit Ci mmol\(^{-1}\). (Curie, symbol Ci, is a former unit of activity equal to exactly \(3.7 \times 10^{10}\) Bq.)

Note 2: If the term “molar activity” is used without qualification it should be made clear whether it is of a material or of a radionuclide. See: molar activity of a radionuclide.

Example: The certificate of analysis of adenosine 5'-triphosphate containing the isotopic label \(^{33}\)P (called \(^{33}\)P-gamma-ATP) quotes the activity as 3000 Ci mmol\(^{-1}\) [48]. Using the recommended symbol, \(A_m(\text{\(^{33}\)P,ATP}) = 3000\) Ci mmol\(^{-1}\).

Replaces: [3] p 2515. See also: specific activity of a radionuclide in a material.

112. monoisotopic element

Chemical element having only one stable nuclide.

Note 1: There are 26 elements that follow the definition: \(^9\)Be, \(^{19}\)F, \(^{23}\)Na, \(^{27}\)Al, \(^{31}\)P, \(^{45}\)Sc, \(^{51}\)V, \(^{55}\)Mn, \(^{59}\)Co, \(^{75}\)As, \(^{85}\)Rb, \(^{89}\)Y, \(^{93}\)Nb, \(^{103}\)Rh, \(^{113}\)In, \(^{127}\)I, \(^{133}\)Cs, \(^{139}\)La, \(^{141}\)Pr, \(^{153}\)Eu, \(^{159}\)Tb, \(^{165}\)Ho, \(^{175}\)Lu, \(^{185}\)Re, \(^{197}\)Au.

Note 2: General usage of the term "monoisotopic" refers to the 21 elements with one isotope determining their relative atomic masses, i.e. \(^9\)Be, \(^{19}\)F, \(^{23}\)Na, \(^{27}\)Al, \(^{31}\)P, \(^{45}\)Sc, \(^{55}\)Mn, \(^{59}\)Co, \(^{75}\)As, \(^{89}\)Y, \(^{93}\)Nb, \(^{103}\)Rh, \(^{127}\)I, \(^{133}\)Cs, \(^{141}\)Pr, \(^{159}\)Tb, \(^{165}\)Ho, \(^{175}\)Lu, \(^{185}\)Re, \(^{209}\)Bi, \(^{231}\)Pa.

Reference: [49].

113. Mössbauer spectrometry

Measurement method [VIM 2.5] in which recoil-less resonance gamma ray scattering and absorption in solids is applied to measure the nuclear environment of atoms of elements in a material.

Source: [50]. See also: [51].

114. muon induced X-ray emission analysis

Measurement method [VIM 2.5] of X-ray analysis in which characteristic X-radiation emitted upon irradiation of a material with a beam of muons of certain energy is used to measure the chemical composition and chemical state of an element.
115. near edge X-ray absorption fine structure, (NEXAFS)

Measurement method [VIM 2.5] of X-ray absorption analysis similar to X-ray absorption near edge structure, but usually reserved for soft X-rays with photon energy less than 1 keV.

Note: NEXAFS is generally used in surface and molecular science.

116. neutron activation analysis, (NAA)

Activation analysis using neutrons as the incident particles.

117. neutron density

Number of free neutrons divided by their containing volume.

Note: Partial densities may be defined for neutrons characterized by such parameters as neutron energy and direction.

Source: [52].

118. neutron depth profiling, (NDP)

Measurement method [VIM 2.5] of activation analysis for near-surface-depth light elements in which a thermal neutron or cold neutron (see: neutron energy) beam passes through a material with target nuclei that emit monoenergetic charged particles upon neutron absorption. The reduction of the energy of an emitted charged particle measures the depth of the target nuclei in a material.

Source: [53].

119. neutron diffraction analysis

Measurement method [VIM 2.5] in which the diffraction of neutrons is applied to measure parameters of the atomic and/or magnetic structure of a material.

Source: [54, 55].

120. neutron energy

Kinetic energy of a free neutron.

Note 1: Neutron energy is usually given with unit electronvolt (eV). 1 eV = 1.602 176 634 × 10⁻¹⁹ J.

Note 2: Neutrons are classified according to their energies as follows:

<table>
<thead>
<tr>
<th>Neutron energy range (in eV)</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 to 0.025</td>
<td>cold neutron</td>
</tr>
<tr>
<td>Energy Range</td>
<td>Neutron Type</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>0.025 (corresponding to 295 K)</td>
<td>thermal neutron</td>
</tr>
<tr>
<td>0.025 to 0.4</td>
<td>epithermal neutron</td>
</tr>
<tr>
<td>0.4 to 0.6</td>
<td>cadmium neutron</td>
</tr>
<tr>
<td>0.6 to 1</td>
<td>epicadmium neutron</td>
</tr>
<tr>
<td>1 to 10^8</td>
<td>slow neutron</td>
</tr>
<tr>
<td>10 to 300</td>
<td>resonance neutron</td>
</tr>
<tr>
<td>$300 \text{ to } 1\times10^6$</td>
<td>intermediate neutron</td>
</tr>
<tr>
<td>$(1 \text{ to } 20)\times10^6$</td>
<td>fast neutron</td>
</tr>
<tr>
<td>> 20×10^6</td>
<td>ultrafast neutron</td>
</tr>
</tbody>
</table>

* Slow neutron also may be defined as any neutron below a threshold which may vary over a wide range and depends on the application. In reactor physics, the threshold value is frequently chosen to be 1 eV; in dosimetry, the effective cadmium cut-off is used. See: [2] p1547.

Note 3: *Neutron temperature* has unit kelvin, and the term should not be used for the neutron energy.

Source: [56, 57].

121. neutron scattering analysis

Measurement method [VIM 2.5] in which elastic or inelastic *scattering* of neutrons by the target nuclei is applied to study the composition and structure of a material.

Source: [58, 59].

122. neutron temperature

Temperature assigned to a population of neutrons when this population is approximated by a Maxwellian distribution.

Note: Neutron temperature (T) is related to the *neutron energy* (E) $T = 2E/3k$, where k is the Boltzmann constant.

Source: Adapted from [60].

123. no carrier added, (NCA)

carrier-free

Preparation of a *radioactive isotope* which is essentially free from *stable isotopes* of the element in question.

Source: [3] p 2522. See also: *isotopic carrier*.
124. **non-destructive activation analysis**

See: *instrumental activation analysis*.

125. **non-radiative quenching**

Deactivation of an electronically-excited state by interaction with the external environment through a non-radiative process.

Note 1: Non-radiative quenching may lead to spectral shift or *counting losses*.

Note 2: The effects of quenching may be taken into account by a *quenching correction*.

126. **nuclear capture**

Process in which an atomic nucleus acquires an additional particle.

Note 1: The captured particle may be an elementary particle (See: [2] p 1547) and may be charged or neutral.

Note 2: In general, a specification is added of the type of the captured particle or its energy.

Example: Gold-197 captures a neutron and emits a gamma ray:

\[^{197}\text{Au} + n \rightarrow ^{198}\text{Au} + \gamma, \text{ or in short form } ^{197}\text{Au(n,}\gamma)^{198}\text{Au}. \]

Source: Adapted from [3] p 2513. See also: *capture cross section*.

127. **nuclear chemistry**

Scientific discipline which deals with the study of nuclei, *nuclear decay*, nuclear reactions and nuclear processes using chemical methods.

128. **nuclear decay**

Spontaneous nuclear transformation.

129. **nuclear fission**

Exoergic division of a nucleus into two or more parts with masses of approximate equal order of magnitude, usually accompanied by the emission of neutrons, gamma radiation and, rarely, small charged nuclear fragments.
130. nuclide

Atom of specified atomic number (proton number) and mass number (nucleon number).

Note 1: A nuclide may be specified by attaching the mass number as a left superscript to the symbol for the element as in 14C or added with a hyphen after the name of the element as in carbon-14.

Note 2: Nuclide is the general term used when referring to all elements. The term ‘isotopes’ should only be used to describe nuclides of a particular element (i.e. same atomic number Z).

Note 3: The suffix ‘radio’ may be added to denote that the nuclide is radioactive. See: radionuclide, radioisotope.

131. nuclide precursor

Radionuclide which precedes a nuclide in a decay chain.

Source: Adapted from [3] p 2523.

132. particle (or photon) flux density, j

Obsolete: fluence rate

Number of particles (or photons) incident on a plane perpendicular to the incident radiation per unit time per unit area.

Note 1: Particle flux density is identical with the product of the particle density and the average speed of the particles.

Note 2: The SI unit of flux density is m$^{-2}$s$^{-1}$.

Note 3: Often an indication of the type of incident particles is wrongly added to the unit of flux density, e.g., the neutron flux density is sometimes indicated as n cm$^{-2}$s$^{-1}$. As ‘n’ is not a unit, it is metrologically unacceptable and therefore not recommended.

Replaces: [3] p 2519. See also: [12] at Note (26) at p 44 to the definition of diffusion coefficient on p 43.

133. particle induced X-ray emission analysis, (PIXE)

Measurement method [VIM 2.5] of X-ray analysis in which energies and intensities of characteristic X-radiation emitted by a test portion during irradiation
with charged particles other than electrons are used to measure the amounts of elements in a material.

Note 1: The particle, inducing the X-radiation is sometimes explicitly mentioned, e.g. proton-induced X-ray emission analysis.

Note 2: Micro PIXE (µ-PIXE) uses highly collimated beams to analyse very small areas.

Source: [62].

134. particle-induced gamma-ray-emission analysis, (PIGE)

Measurement principle [VIM 2.4] in which the energies and intensities of characteristic prompt gamma-radiation emitted during nuclear reactions with charged particles other than electrons, is applied for measurement of amounts of elements in a material.

Note: The particle that induces gamma-rays may be explicitly mentioned, e.g. ‘proton-induced gamma-ray-emission analysis’.

Source: [63] p 546.

135. perturbed angular correlation spectrometry, (PAC)
perturbed directional correlation spectrometry

Measurement method [VIM 2.5] of gamma-ray spectrometry in which coincidence counting is used for measurement of parameters describing hyperfine interactions, with internal or external electrical or magnetic field gradients, of the spin of an intermediate level between two gamma-ray transitions in cascade emitted in the decay of a radionuclide.

Note 1: Perturbed angular correlation spectrometry is performed both in a time-differential (TDPAC) or time-integrated (TIPAC) mode of measurement.

Note 2: The parameters describing hyperfine interactions provide information on the chemical atomic environment of the decaying nucleus.

Source: [64] p 997.

136. perturbed directional correlation spectrometry

See: perturbed angular correlation spectrometry.

137. positron annihilation analysis, (PAA)
positron annihilation spectroscopy for chemical analysis, (PASCA)

Measurement principle [VIM 2.4] in which the annihilation of positrons is applied to study the microscopic structure of materials.
Note 1: Annihilation lifetime (See: positron lifetime spectrometry), Doppler broadening and angular correlation of annihilation radiation are measured in this technique.

Note 2: In the most common case of positron annihilation, two photons are created, each with energy equal to the rest energy of the electron or positron (0.511 MeV = 8.187 122 6 \times 10^{-14} J).

Note 3: Techniques based on PAA have been used particularly for the study of free volume in polymers.

Source: [65].

138. positron annihilation lifetime spectrometry, (PALS)

See: positron lifetime spectrometry.

139. positron annihilation spectroscopy for chemical analysis, (PASCA)

See: positron annihilation analysis.

140. positron emission tomography, (PET)

Imaging method based on the detection of pairs of gamma rays emitted indirectly by a positron-emitting isotopic tracer.

Note 1: A commonly used nuclide is fluorine-18.

Note 2: Three-dimensional imaging is obtained using computed tomography.

Source: [66].

141. positron lifetime spectrometry, (PLS)
posion annihilation lifetime spectrometry, (PALS)

Measurement method [VIM 2.5] of positron annihilation analysis in which the time interval between the emission of positrons from a radioactive source and the detection of gamma rays due to annihilation of these positrons with electrons from the surrounding matter is the lifetime of the positron or positronium.

Source: [67] p 500.

142. prompt gamma radiation

Gamma radiation emitted during the de-excitation of a compound nucleus formed in a nuclear capture reaction.

143. prompt gamma-ray analysis, (PGA)
deprecated: prompt gamma activation analysis, (PGAA)
deprecated: prompt gamma neutron activation analysis, (PGNAA)
Measurement principle [VIM 2.4] in which gamma radiation emitted during the de-excitation of the compound nucleus formed by neutron capture is applied to measure the amounts of elements in a material.

Note: The measurement method is often denoted as prompt gamma-ray neutron activation analysis (PGNAA) or prompt gamma-ray activation analysis (PGAA) though the measurement method is not in agreement with the definition of activation analysis. The term prompt gamma-ray analysis (PGA) is therefore to be preferred.

Source: [38, 68].

144. pulse pile-up

Processing by a radiation counter of pulses resulting from the simultaneous absorption of independent particles or photons in a radiation detector resulting in the counting as one single particle or photon with energy between the individual energies and the sum of these energies.

Source: [69] p 655.

145. quenching correction

Correction for errors due to different quenching in radiation detectors for standards and samples.

Note: When using liquid scintillation detectors, these corrections can be based e.g. on the standard addition or sample channels ratio method or the use of automated external standardization.

Source: Adapted from [3] p 2523.

146. quenching in radiation detectors

Process of inhibiting continuous or multiple discharges following a single ionizing event in certain types of radiation detectors, particularly in Geiger-Müller counters.

Source: [70]. See: quenching correction.

147. radiation

Emission of energy as electromagnetic waves or as fast-moving subatomic particles.

Note: In radioanalytical chemistry, the term usually refers to radiation used and emitted during nuclear processes (e.g., radioactive decay, nuclear decay, nuclear fission).

Source: Adapted from [3] p 2523. See also: ionizing radiation.
148. **radiation chemistry**

Sub-discipline of chemistry which deals with the chemical effects of *ionizing radiation*.

Note: Radiation chemistry is distinguished from photochemistry which is associated with visible and ultraviolet electromagnetic *radiation*.

149. **radiation counter**

counter

Measuring system [VIM 3.2] for measuring *radiation* comprising a *radiation detector*, in which events caused by interaction of the *radiation* with the radiation detector result in electrical pulses, and the associated equipment for processing and counting the pulses.

Note: Often an expression is added indicating the type of radiation detector (e.g. ionization, *scintillation*, semiconductor).

Source: Adapted from [3] p 2516.

150. **radiation detector**

Measuring system [VIM 3.2] or material for the conversion of *radiation energy* to a kind of energy which is suitable for indication and/or measurement.

Note: Detectors are usually named by the principle of detection or kind of material, e.g. *scintillation detector*, *semiconductor detector*

Source: Adapted from [2] p 1540.

151. **radiation filter**

Material interposed in the path of *radiation* to modify the energy distribution of the radiation.

Source: Adapted from [2] p 1542.

152. **radioactive**

Property of a *nuclide* undergoing spontaneous nuclear transformations with the emission of *radiation*.

Note 1: Such a nuclide may be termed *radionuclide*.

Note 2: ‘Radioactive’ is also used to describe a material that includes a radionuclide.
153. radioactive chain
 See: decay chain.

154. radioactive decay
 Nuclear decay in which particles or electromagnetic radiation are emitted or the nucleus undergoes spontaneous fission or electron capture.

155. radioactive equilibrium
 See: radioactive steady state.

156. radioactive purity
 See: radionuclide purity.

157. radioactive series
 See: decay chain.

158. radioactive source
 Radioactive material which is intended for use as a source of ionizing radiation.
 Source: Adapted from [3] p 2526.

159. radioactive steady state
 radioactive equilibrium
 secular equilibrium
 Among the radionuclides of a decay chain, the state which prevails when the ratios between the activities of successive radionuclides remain constant.
 Note: This is not equilibrium in the strict sense since radioactive decay is an irreversible process.

160. radioactivity
 Phenomenon of nuclides undergoing radioactive decay.
 Source: Adapted from [3] p 2513.

161. radioanalytical chemistry
 analytical radiochemistry
That part of analytical chemistry in which the application of radioactivity is an essential step in the analytical procedures.

Note 1: Use is made of nuclear processes (e.g., nuclear decay, nuclear fission), nuclear effects, radiation, and nuclear facilities, and of radiochemical and nuclear measurement techniques.

Note 2: Radioanalytical chemistry is part of radiochemistry.

162. radiochemical activation analysis
destructive activation analysis

Measurement method [VIM 2.5] of activation analysis, in which concentrations or mass contents of elements in a material are measured using a *measurement model* [VIM 2.48] with known nuclear constants, irradiation and radiation measurement parameters and the use of a calibrator with known property values and in which chemical separation is applied after the irradiation.

Source: [7] p 1583. See also: [73].

163. radiochemical purity

For a material, the fraction of the stated radionuclide present in the stated chemical form.

Note 1: The unit of radiochemical purity is mol/mol = 1.

Note 2: The medical literature often defines radiochemical purity as the fraction of the radioactivity of a material in a stated chemical form. (See: [74] p347, and radionuclide purity.)

164. radiochemical recoil effect

See: Szilard-Chalmers effect.

165. radiochemical separation

Separation by a chemical means of radionuclide(s) of a specific element from a mixture of radionuclides of other chemical elements.

166. radiochemical yield

Activity of a specified radionuclide of a specified element after its *radiochemical separation* divided by its activity originally present in the substance undergoing radiochemical separation.
167. radiochemistry

Part of chemistry which deals with radioactive materials.

Note: Radiochemistry includes the production of radionuclides and their compounds by processing irradiated materials or naturally occurring radioactive materials, the application of chemical techniques to nuclear studies, and the application of radioactivity to the investigation of chemical, biochemical or any other problems.

168. radioenzymatic assay

Measurement principle [VIM 2.4] in which a radioactive substrate is applied to measure the catalytic activity of an enzyme.

169. radiograph

Visual representation of an object produced by placing the object between a source of ionizing radiation and a photographic plate, film or detector.

Source: Adapted from [3] p 2524.

Note: Radiographs are used in medicine and dentistry.

170. radiogravimetric analysis

Measurement principle [VIM 2.4] in which the activity of a precipitate is applied to measure its mass.

Source: Adapted from [3] p 2524.

171. radioiodination

Incorporation of a radionuclide of iodine into substance, or of covalently linking a radioiodinated substance to a substance.

Note: Commonly used radionuclides of iodine are 129I, 131I and 123I.

Source: Adapted from [3] p 2524.

172. radioisotope

A radioactive isotope (See: isotopes) of a specified element.

173. **radioisotope dilution analysis**

See: *isotope dilution analysis*.

174. **radioisotope induced X-ray emission analysis**

Measurement method [VIM 2.5] of *X-ray analysis* in which a *radioactive source* is used for irradiation of the sample.

Source: [19].

175. **radiolysis**

Chemical decomposition of materials by *ionizing radiation*.

176. **radiometric analysis**

Measurement principle [VIM 2.4] in which the *activity* of a *radioactive* component with known specific activity is applied for measurement of the amount of an element in a material.

177. **radiometric titration**

Titration in which a *radioactive* indicator is used to monitor the end-point of the titration.

178. **radionuclide**

Nuclide that is *radioactive*.

Note: When an element is specified the radionuclide is termed a *radioisotope*.

179. **radionuclide purity**

radionuclidic purity

radioactive purity

Activity of a stated radionuclide, including *daughter products*, in a material divided by the total activity of the material.

Source: Adapted from [3] p 2523.

Note 1: The SI unit of radionuclide purity is Bq/Bq = 1.
Note 2: Radionuclide purity is important for calibrators, *isotopic tracers*, and in pharmaceutical uses.

Example: Activity of 99mTc from a Mo generator with impurities 99Mo, 95Nb, 188Re, 198Au, etc. (Note that 99Tc is generated as a daughter product from 99Mo, directly or via 99mTc.)

180. radionuclidic purity

See: radionuclide purity.

181. radioreceptor assay

Measurement principle [VIM 2.4] in which labelled (See: *isotopic label*) and unlabelled molecules, assumed to bind to a receptor at random, are applied to measure the amount of an analyte by exposing a mixture of the sample and a known amount of the radiolabelled substance to a measured amount of receptors for the analyte.

Note: The analyte is typically a hormone.

Source: [79].

182. recoil

Nuclear phenomenon in which an atom or a particle undergoes a movement through a collision with, or the emission of, another particle or electromagnetic radiation.

Source: Adapted from [3] p 2524.

183. recoil effect

See: Szilard-Chalmers effect.

184. recovery time of a radiation counter

Period of time after the *dead time of a radiation counter* during which the output pulses are smaller than the original.

Note: Depending on the sensitivity of the *counter* some pulses in this period will not be counted.

Source: [21].

185. relative counting

Measurement method [VIM 2.5] in which the *activity* of a sample is measured from the *counting rate* of the sample divided by the *counting rate* of a *radioactive source* of known activity.
186. relative counting efficiency

Absolute counting efficiency of a given *radiation counter* divided by the absolute counting efficiency of a reference radiation counter.

187. resolving time correction

See: *dead time correction of a radiation counter*.

188. resolving time of a radiation counter, τ

Smallest time interval which elapses between the occurrence of two consecutive ionizing events, in order that the *radiation counter* can be capable of fulfilling its function for each of the two occurrences separately.

189. resonance energy

Minimum *energy* of a particle entering a *nuclear reaction*, required to form reaction products in one of their excited states.

Source: Adapted from [3] p 2525.

190. resonance integral, I_X

Integral, over all or some specified portion of the *resonance energy* range, of the *cross section* divided by the energy of a *radiation*.

$$I_X = \int_{E_c}^{\infty} \frac{\sigma_X(E)}{E} dE$$

where X is the nature of the radiation ($X = n$ denotes neutron, $X = fis$ denotes neutron induced fission), σ_X the cross section, and E_c the lower limit of energy (e.g. *effective cadmium cut-off energy*)

Note: In *radioanalytical chemistry*, the resonance integral range coincides with the definition of the *epithermal neutron* energy range.

191. resonance neutron

Neutron, the energy of which, corresponds to the *resonance energy* of a specified *nuclide* or element.

Note: If the nuclide is not specified, the term refers to a resonance neutron of 238U.
192. reversed isotope dilution analysis

Isotope dilution analysis in which the amount of an isotopic carrier in a solution of a radionuclide is measured by addition of one of its stable isotopes.

Source: [41] p 122-124.

193. saturation (in radiation chemistry)

Of an irradiated element for a specified nuclide, the steady state reached when the decay rate of the nuclide formed is equal to its production rate.

Source: Adapted from [3] p 2525.

194. saturation activity, A_s

For a specified radionuclide, the maximum activity at saturation, $A_s = \sigma \times \Phi$ where σ is the cross section and Φ the particle flux density.

195. scanning proton microscopy, (SPM)

Measurement method [VIM 2.5] of X-ray fluorescence analysis in which protons are focused and collimated to form a micro beam to obtain an image of a surface.

196. scavenging of radionuclides

scavenging

In radiochemistry, the use of a precipitate to remove from solution by absorption or co-precipitation, a large fraction of one or more radionuclides.

Note: In radiation chemistry the term scavenging is used to denote binding of radicals or free electrons with a receptive (or reactive) material.

Source: Adapted from [3] p 2525.

197. scintillation

Burst of luminescence caused by an individual energetic particle.

Source: Adapted from [3] p 2525.

198. scintillation detector

Kind of radiation detector having a scintillator to measure ionizing radiation.

199. **scintillator**

Material in which *scintillation* occurs.

Note: A scintillator may be a solid or a liquid (See: *liquid scintillation detector*). See: *scintillation detector*.

200. **secular equilibrium**

See: *radioactive steady state*.

201. **selectively-labelled isotopic tracer**

An isotopically labelled compound is designated as selectively labelled when a mixture of isotopically substituted compounds is formally added to the analogous isotopically unmodified compound in such a way that the position(s) but not necessarily the number of each labelling nuclide is defined.

Note: A selectively labelled compound may be considered as a mixture of specifically-labelled isotopic tracers.

Source: [82] p 1893.

202. **self-absorption factor**

source efficiency

Intensity of *radiation* emitted by a *source* divided by intensity of radiation produced by *radionuclides* present in the source.

203. **self-absorption of radiation**

Absorption of *radiation* by the emitting source.

204. **self-shielding**

Decrease of particle flux density in the inner part of an object due to interactions in its outer layers.

Source: Adapted from [3] p 2525.

205. **semiconductor detector**

Kind of *radiation detector* using a semiconductor material, in which free electric charge carriers are produced along the path of incident *ionizing radiation*, in
combination with a high voltage and electrodes for collection of these charge
carriers.

206. sensitive volume of a radiation detector

That volume of a radiation detector where an incident radiant power produces a
measurable output.

Source: [33] p 1751.

207. solid phase antibody radioimmunoassay

Measurement method [VIM 2.5] of radioimmunoassay employing an antibody,
made into an isotopic tracer by labelling with a radionuclide, bound to a solid
phase.

208. source efficiency

See: self-absorption factor.

209. specific activity of a radionuclide, $A_S(R)$
specific activity

Activity of a specified radionuclide (R) per unit mass of that nuclide.

Note: If the term “specific activity” is used without qualification it should be
made clear whether it is of a material or of a radionuclide. See: specific
activity of a radionuclide in a material.

Example: Specific activity of tritium (3H) is 3.57×10^{17} Bq kg$^{-1}$ (9.65 Ci mg$^{-1}$)
[85].

210. specific activity of a radionuclide in a material, $A_S(R,M)$
specific activity

Activity of a specified radionuclide (R) in a material (M) divided by the mass of
that material.

Note 1: It is implicitly assumed that the various isotopes (stable and radioactive
ones) are present in the same chemical and physical form, and thus will
behave fully identically in radiochemical processing and a radionuclide
application, i.e. nuclidic exchange with other chemical forms is
prohibited or at least very slow compared to the duration of the
experiment.
Note 2: The SI unit of specific activity is Bq kg⁻¹, but specific activity is often expressed in unit s⁻¹ g⁻¹ or Ci mg⁻¹. (Curie, symbol Ci, is a former unit of activity equal to exactly 3.7×10^{10} Bq.)

Note 3: Commercial preparations of isotopically-labelled molecules often quote ‘specific activity’ in Ci mmol⁻¹. The correct term is molar activity of a radionuclide in a material.

Note 4: If the term “specific activity” is used without qualification it should be made clear whether it is of a material or of a radionuclide. See: specific activity of a radionuclide.

Example: Certificate of analysis of adenosine 5'-triphosphate solution isotopically-labelled with $[\gamma^{33}P]$ gives “Specific activity 370 MBq/g”

211. specifically-labelled isotopic tracer

Isotopic tracer in which the *isotopic label* is present in a specified position in the molecule.

Source: Adapted from [3] p 2526. See also: selectively-labelled isotopic tracer.

Note: The name of a specifically labelled compound is formed by inserting in square brackets the nuclide symbol(s), preceded by any necessary locant(s) (letters and/or numerals), before the name or preferably before the name for that part of the compound that is isotopically modified. Immediately after the brackets there is neither space nor hyphen, except that when the name, or a part of the name, requires a preceding locant, a hyphen is inserted.

Example: $\text{H}\left[{^{36}\text{Cl}}\right]$, hydrogen $\left[{^{36}\text{Cl}}\right]$chloride. $\text{Ge}\left[{^{2}\text{H}}_2\right]\text{F}_2$, difluoro$\left[{^{2}\text{H}}_2\right]$germane, $\left[{^{15}\text{N}}\right]\text{H}_2\left[{^{2}\text{H}}\right]$, $\left[{^{2}\text{H}}_1, {^{15}\text{N}}\right]$ammonia.

Source: [82] p 1892.

212. stereospecifically-labelled isotopic tracer

Isotopic tracer in which the *isotopic label* is present in a stereo-specific position in the molecule.

Source: Adapted from [3] p 2526.

213. substoichiometric isotope dilution analysis

Isotope dilution analysis in which a substoichiometric amount of a *radionuclide* of the element to be measured is added to both a sample and to a *calibrator* and subsequently, after mixing, the specific activities of that *radionuclide* are measured in equal amounts of the sample and calibrator.
214. synchrotron radiation induced X ray fluorescence analysis

Measurement method [VIM 2.5] of *X-ray fluorescence analysis* in which synchrotron X- radiation is used to irradiate the substance.

Source: [87].

215. Szilard-Chalmers effect

Rupture of the chemical bond between an atom and the molecule of which the atom is a part, as a result of *nuclear reaction* of that atom.

Source: Adapted from [3] p 2525. See also: [88] p 240.

216. thermal neutron

Neutron in thermal equilibrium with the medium in which it exists.

Note: Thermal neutrons have an average energy of approximately 0.025 eV and an average speed of 2200 m s⁻¹.

217. total reflection X- ray fluorescence analysis, (TXRF)

Measurement method [VIM 2.5] of *X-ray fluorescence analysis* in which a collimated X-ray flux impinges on a smooth surface under a grazing angle rendering total reflection is used to excite atoms in the top layers of the material for measurement of the amounts of elements.

Note: The method is highly sensitive because interfering X-rays of higher energies are refracted or adsorbed. Mass fractions of 10⁻¹² (ng kg⁻¹) may be measured.

Source: [89].

218. two-site immunoradiometric assay

See: *two-site radioimmunoassay*.

219. two-site radioimmunoassay

two-site immunoradiometric assay

Radioimmunoassay in which two sets of antibodies, one of which is isotopically labelled (See: *isotopic label*), combine with different immunoreactive sites of an antigen molecule.
220. uniformly-labelled isotopic tracer

Isotopic tracer in which the isotopic label is uniformly distributed over its possible positions in a molecule.

221. wavelength-dispersive X-ray fluorescence analysis

Measurement method [VIM 2.5] of X-ray fluorescence analysis in which the wavelength spectrum of the emitted radiation is used to measure the amounts of elements.

Note: A diffraction grating, or crystal is used to obtain the spectrum.

Source: [91].

222. Westcott cross section

See: effective thermal cross section.

223. Wilzbach labelling

Isotopic labelling (See: isotopic label) of a substance by exposing it to tritium gas.

224. X-ray absorption analysis, (XAA)
X-ray absorption spectroscopy, (XAS)

Measurement principle [VIM 2.4] of X-ray analysis in which the absorption spectrum is used to measure the number of atoms, species and other parameters of chemical elements.

Note 1: XAS measures changes in the linear absorption coefficient of an element in a sample as a function of incident photon energy.

Note 2: XAS requires a highly monochromatic (with \(\Delta E/E \approx 10^{-4}\) to \(10^{-5}\)), high flux X-ray beam.

Source: [25, 26]. See also: X-ray absorption near edge structure,

225. X-ray absorption edge
absorption edge

Increase in X-ray absorption observed at the energy at which a strongly bound electron is released.

Source: [92].
226. X-ray absorption near edge fine structure

See: X-ray absorption near edge structure.

227. X-ray absorption near edge structure, (XANES)

X-ray absorption near edge fine structure

Measurement method [VIM 2.5] of X-ray absorption analysis in which the fine structure of the adsorption spectrum in the range 30 below to 50 eV above the adsorption edge is used to measure parameters describing the chemical state, coordination environment, and local geometry distortion for the X-ray absorbing atom.

Note 1: The method uses synchrotron radiation.

Note 2: The wavelength of the emitted photoelectrons is longer than the interatomic distances between the absorbing atom and its nearest neighbours.

Source: [25, 92]. See also: near edge X-ray absorption fine structure, extended X-ray absorption fine structure.

228. X-ray absorption spectroscopy, (XAS)

See: X-ray absorption analysis.

229. X-ray analysis

Measurement principle [VIM 2.4] in which characteristic X-radiation, produced upon irradiation of a material with elementary particles or photons, is applied to measure amounts of elements in a material.

Source: [62, 93].

230. X-ray computed micro-tomography, (XCMT)

X-ray micro-tomography, (XMT)

Measurement method [VIM 2.5] based on the transmission of X-rays to obtain three-dimensional images of a sample.

Note: Spatial resolution is in the range 100 nm to 10 μm.

Source: [4].

231. X-ray diffraction analysis

X-ray diffraction, (XRD)

Measurement method [VIM 2.5] using diffraction of X-radiation to obtain the spatial arrangement of atoms in a crystalline sample.
Note 1: Bragg reflection follows \(n\lambda = 2d \sin \theta \) where \(\lambda \) is the X-ray wavelength, \(d \) is the spacing between atomic planes and \(\theta \) is the angle of diffraction.

Note 2: Copper K-\(\alpha \) radiation (\(\lambda = 0.15406 \text{ nm}, E = 8.04 \text{ keV} \)) is typically used for routine XRD.

232. X-ray diffraction, (XRD)

See: X-ray diffraction analysis.

233. X-ray fluorescence analysis

X-ray fluorescence spectroscopy

Measurement method [VIM 2.5] of X-ray fluorescence used to measure amounts of elements in a material.

Note: Micro-XRF (\(\mu \)-XRF) analysis uses highly brilliant X-ray sources (synchrotron source and spot size 100 nm to 2 \(\mu \)m) and microfocussing X-ray optics to give fg to ag detection limits [4].

Source: [94].

234. X-ray fluorescence microscopy, (XRM)

Measurement method [VIM 2.5] of X-ray fluorescence to obtain quantitative and spatial information of elements in a sample.

Note 1: X-ray beam energies of 5 to 25 keV excite core level vacancies and promote hard X-ray emission for which the fluorescence yield is high.

Note 2: Spatial resolution is typically in the range from 200 nm to 10 \(\mu \)m, but using specialised probes at synchrotron facilities the lower limit can be reduced to tens of nm [95].

Source: [4].

235. X-ray fluorescence spectroscopy

See: X-ray fluorescence analysis.

236. X-ray fluorescence, (XRF)

Emission of characteristic \(X \)-radiation by an atom after photoemission of inner-shell electrons and refilling of the vacated energy level by outer-shell electrons.

Note: X-ray fluorescence is the measurement principle [VIM 2.4] of X-ray fluorescence analysis and X-ray fluorescence microscopy.

Source: [96, 97].
237. X-ray micro-tomography, (XMT)

See: X-ray computed micro-tomography.

LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>decay constant of a radionuclide</td>
<td>42</td>
</tr>
<tr>
<td>σ</td>
<td>cross section (in radiation chemistry)</td>
<td>37</td>
</tr>
<tr>
<td>τ</td>
<td>mean life of a radionuclide</td>
<td>107</td>
</tr>
<tr>
<td>τ</td>
<td>resolving time of a radiation counter</td>
<td>188</td>
</tr>
<tr>
<td>A</td>
<td>activity of a radioactive substance</td>
<td>12</td>
</tr>
<tr>
<td>$A_{m}(R)$</td>
<td>molar activity of a radionuclide</td>
<td>110</td>
</tr>
<tr>
<td>$A_{m}(R,M)$</td>
<td>molar activity of a radionuclide in a material</td>
<td>111</td>
</tr>
<tr>
<td>A_s</td>
<td>saturation activity</td>
<td>194</td>
</tr>
<tr>
<td>$A_s(R)$</td>
<td>specific activity of a radionuclide</td>
<td>209</td>
</tr>
<tr>
<td>$A_s(R,M)$</td>
<td>specific activity of a radionuclide in a material</td>
<td>210</td>
</tr>
<tr>
<td>b</td>
<td>barn</td>
<td>18</td>
</tr>
<tr>
<td>F</td>
<td>fluence</td>
<td>69</td>
</tr>
<tr>
<td>H</td>
<td>fluence</td>
<td>69</td>
</tr>
<tr>
<td>I_X</td>
<td>resonance integral</td>
<td>190</td>
</tr>
<tr>
<td>j</td>
<td>particle (or photon) flux density</td>
<td>132</td>
</tr>
<tr>
<td>J_E</td>
<td>energy flux density</td>
<td>59</td>
</tr>
<tr>
<td>k</td>
<td>decay constant of a radionuclide</td>
<td>42</td>
</tr>
<tr>
<td>$t_{1/2}$</td>
<td>half life of a radionuclide</td>
<td>78</td>
</tr>
<tr>
<td>$T_{1/2}$</td>
<td>half life of a radionuclide</td>
<td>78</td>
</tr>
<tr>
<td>t_d</td>
<td>dead time of a radiation counter</td>
<td>40</td>
</tr>
<tr>
<td>AMS</td>
<td>accelerator mass spectrometry</td>
<td>7</td>
</tr>
<tr>
<td>DNAA</td>
<td>delayed-neutron activation analysis</td>
<td>48</td>
</tr>
<tr>
<td>DNA</td>
<td>delayed-neutron analysis</td>
<td>48</td>
</tr>
<tr>
<td>DNC</td>
<td>delayed-neutron counting</td>
<td>48</td>
</tr>
<tr>
<td>EDS</td>
<td>energy-dispersive X-ray spectroscopy</td>
<td>63</td>
</tr>
<tr>
<td>EDX</td>
<td>energy-dispersive X-ray fluorescence analysis</td>
<td>63</td>
</tr>
<tr>
<td>EDXA</td>
<td>energy-dispersive X-ray analysis</td>
<td>63</td>
</tr>
<tr>
<td>EDXS</td>
<td>energy-dispersive X-ray spectroscopy</td>
<td>63</td>
</tr>
<tr>
<td>EXAFS</td>
<td>extended X-ray absorption fine structure</td>
<td>67</td>
</tr>
<tr>
<td>IBA</td>
<td>ion beam analysis</td>
<td>87</td>
</tr>
<tr>
<td>IDA</td>
<td>isotope dilution analysis</td>
<td>91</td>
</tr>
<tr>
<td>NAA</td>
<td>neutron activation analysis</td>
<td>116</td>
</tr>
<tr>
<td>NCA</td>
<td>no carrier added</td>
<td>123</td>
</tr>
<tr>
<td>NDP</td>
<td>neutron depth profiling</td>
<td>118</td>
</tr>
<tr>
<td>NEXAFS</td>
<td>near edge X-ray absorption fine structure</td>
<td>115</td>
</tr>
<tr>
<td>PAA</td>
<td>positron annihilation analysis</td>
<td>137</td>
</tr>
<tr>
<td>PAC</td>
<td>perturbed angular correlation spectrometry</td>
<td>135</td>
</tr>
<tr>
<td>PALS</td>
<td>positron annihilation lifetime spectrometry</td>
<td>141</td>
</tr>
<tr>
<td>PASCA</td>
<td>positron annihilation spectroscopy for chemical analysis</td>
<td>137</td>
</tr>
<tr>
<td>PET</td>
<td>positron emission tomography</td>
<td>140</td>
</tr>
<tr>
<td>PIGE</td>
<td>particle-induced gamma-ray-emission analysis</td>
<td>134</td>
</tr>
<tr>
<td>PIXE</td>
<td>particle induced X-ray emission analysis</td>
<td>133</td>
</tr>
<tr>
<td>PGA</td>
<td>prompt gamma-ray analysis</td>
<td>143</td>
</tr>
</tbody>
</table>
PLS positron lifetime spectrometry 141
SPM scanning proton microscopy 195
TDPAC time-differential perturbed angular correlation spectrometry 135
TIPAC time-integrated perturbed angular correlation spectrometry 135
XAA X-ray absorption analysis 224
XANES X-ray absorption near edge structure 227
XCM T X-ray computed micro-tomography 230
XAS X-ray absorption spectroscopy 224
XMT X-ray micro-tomography 230
XRD X-ray diffraction 231
XRF X-ray fluorescence 236
XRM X-ray fluorescence microscopy 234

REFERENCES

Vocabulary of radioanalytical methods (IUPAC Recommendations 20xx)

Zhifang Chai, Amares Chatt, Peter Bode, Jan Kucera, Robert Greenberg, D. Brynn Hibbert

Responses to reviewers’ comments. Note there is a track changes document following these specific points.

<table>
<thead>
<tr>
<th>Comment</th>
<th>Response</th>
<th>Changes to MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reviewer 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I didn't receive a version of the MS with tracked changes or a point-by-point response to the reviewers' comments. These documents may have been submitted, but didn't make it through the manuscript handling system. Therefore, I've just looked for changes relating to my previous comments/suggestions. The changes made are all completely adequate and alleviate my previous concerns.</td>
<td>Apologies but these files were included in the resubmission. We may have uploaded them in the wrong place.</td>
<td></td>
</tr>
<tr>
<td>The new note 1 for term 207 ("It is implicitly assumed that the various isotopes (stable and radioactive ones) are present in the same chemical and physical form, and thus will behave fully identically in radiochemical processing and a radionuclide application, i.e. nuclidic exchange with other chemical forms is prohibited or at least very slow compared to the duration of the experiment.") should be moved to term 208 (specific activity of a radionuclide in a material) because term 207 only refers to a single radionuclide. The explanation about "various isotopes" does not make sense in the context of term 207.</td>
<td>Accepted</td>
<td>Note 1 of 207 moved to become Note 1 of 208. Other notes re-numbered. (these are now 209 and 210 because of addition of new entries 201 and 206)</td>
</tr>
<tr>
<td>Reviewer 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The revised definition of counting efficiency is not grammatically correct.</td>
<td>Accepted. The second sentence is adopted as suggested as a Note.</td>
<td>32. counting efficiency</td>
</tr>
<tr>
<td>Comment</td>
<td>Response</td>
<td>Changes to MS</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Number of particles or photons counted divided by the number that has struck the envelope. This ratio limits the sensitive volume of a radiation detector.</td>
<td></td>
<td>intrinsic counting efficiency</td>
</tr>
<tr>
<td>'sensitive volume' should be defined</td>
<td>done – we take the definition in the present Gold Book from PAC, 1995, 67, 1745. (Nomenclature, symbols, units and their usage in spectrochemical analysis-XI. Detection of radiation (IUPAC Recommendations 1995)) on page 1751</td>
<td>205. sensitive volume of a radiation detector</td>
</tr>
<tr>
<td>Neither of the two cover letters accompanying the two revisions of the document present any discussion of the reviews submitted. This seems highly unusual. The latest cover letter states that adjustments have been made in accord with the reviewers' comments. However, quite a few problems remain, as will be seen below, and now we do not know whether this is because the authors (or the editor) after all did not agree in every suggestion made.</td>
<td>See answer to Reviewer 6. We can only apologise that the uploaded files did not get through to the reviewer. Our response document was 11 pages, and we certainly answered each point raised by each reviewer.</td>
<td></td>
</tr>
<tr>
<td>An overall purpose of recommending vocabularies like this one is to amend definitions in the Gold Book where needed and supply new ones as needed. I would expect to be able to see whether any given entry in the document is new, is copied from the Gold Book without change or is changed (in which case the change should, in general be motivated). The Gold Book, in principle, picks up definitions from the Orange Book, so reference to what is in the latest Orange Book would be as good. But the entire vocabulary here has no</td>
<td>No. At present the Gold Book picks up PAC Recommendations (although with almost no activity since 2007). The definitive version is PAC (or some colour books, e.g. Green Book). So the ultimate authority is still a PAC Recommendation, and this is what is cited even though it might also appear in the Gold Book.</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>Response</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>references to the 1997 Orange Book [1] or the Gold Book in any of its entries.</td>
<td>The 1997 Orange Book is being completely re-written and the way agreed with ICTNS (Ron Weir) was to submit each chapter as a PAC Rec before compiling into the OB. In the 12 years (!) since the start of the OB project this approach has been modified to one in which terms that are appropriately defined by Division V of IUPAC are submitted to PAC in Recommendations. These will appear without change in the OB. As the OB is a general work of reference other material may be included along with terms taken from different sources (ISO, VIM etc). It is intended that the final manuscript of the OB will be reviewed by ICTNS.</td>
<td></td>
</tr>
<tr>
<td>Some entries just disappeared since the last version (e.g., average life of a radionuclide, competitive binding assay, radioimmunoassay, stable isotope enrichment). I would expect to see an explanation for that, if not in the document, then at least to the reviewers.</td>
<td>Once again we provided a commentary against the reviewers suggestions. Could the reviewer be given the Response submitted with the last revision? (We are loath to add here for fear of confusing the situation more).</td>
<td></td>
</tr>
<tr>
<td>The definition of 'isotopes' (now Def. 94) was reworded to emphasise how one should go about using the singular and plural of the word. In the following definitions, the singular 'isotope' and/or the plural 'isotopes' is used at variance with the prescription in Def. 94, note 2 (list not pretending to be exhaustive): 7. accelerator mass spectrometry 9. activation analysis 100. isotopic label 140. position emission tomography, Note 1 163. radiochemical purity</td>
<td>The definition of Isotopes was not changed from R1 to R2 (but from the original manuscript to R1). We have reviewed the occurrences of ‘isotope’ and ‘isotopes’ and have made changes as indicated.</td>
<td></td>
</tr>
<tr>
<td>7 AMS isotope abundances -> nuclide abundances</td>
<td>9 AA by stable isotopes -> by stable nuclides</td>
<td></td>
</tr>
<tr>
<td>140 PET Note 1: A commonly used nuclide is fluorine-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comment

12. activity of radioactive material

From the point of view of strict terminology, this definition is in bad shape.

The definition involves 'a radioactive material', 'a radioactive entity' and 'the number of decaying entities B'. This makes it completely unclear what situation the definition relates to. The term 'radioactive' is italicised, and if one looks up the definition (Def. 152), it is the defining characteristic of a radionuclide, not a material or an entity. Thus, for Def. 12 to work as it stands, the definition of 'radioactive' will have to be extended to include material. On the other hand, the subscript 'B' maybe indicates that there was a desire to single out a particular kind of radionuclides. This will also have to be made clear, since a material could include several kinds of radionuclides.

Later definitions of molar and specific activities of specified radionuclides cover intensive properties, so here it was probably desired to express a extensive quantity, in which case the definition should speak about an amount of material.

In any case the definition is basically 'number of decays per unit of time'. The number of entities present does not matter for that definition and it does not make sense to designate N as the number of decaying entities – most of them are not decaying at time t. In the integrated form with exponential function there will of course be an initial population at $t = 0$. Finally, 'disintegration rate' is deprecated.

Response

This comment shows nicely the problems faced by writers of Recommendations.

The entry is taken from the PAC Rec PAC, 1994, 66, 2513. (Nomenclature for radioanalytical chemistry (IUPAC Recommendations 1994)) on page 2515, and the Green Book (p 24) and is abstracted in the Gold Book. The term is “activity of a radioactive material” and we see in the Green Book on p24

activity (of a radioactive substance)

and

(18) N_a is the number of decaying entities B.

So we have 'material’, ‘substance’ and ‘entities’.

We accept that ‘radioactive’ would be improved with a note saying the term is used to describe a material that includes a radionuclide.

Changes to MS

18. 100 isotopic label

Radioactive or stable isotope of a specified element distinguishable by the observer but not by the system used to identify an isotopic tracer.

163 radiochemical purity

See response below

152 radioactive

Note 2: ‘Radioactive’ is also used to describe a material that includes a radionuclide.

12. activity of a radioactive material, A

activity

absolute activity

decay rate

deprecated: disintegration rate

Number of nuclear decays occurring in a given quantity of material in a small time interval, divided by that time interval.

Source: [3] p 2515

Note 1: For a specified substance B, $A = -$
<table>
<thead>
<tr>
<th>Comment</th>
<th>Response</th>
<th>Changes to MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>here, but it is nevertheless used later (e.g., in Def. 42). See also comments for Def. 42.</td>
<td>Having said all of the above, we accept the point with thanks and revert to the 1994 PAC Rec definition, with a note to bring in the Green Book equation. The awkwardness of the Green Book ‘decaying entities’ remains. We remove ‘deprecate’ against disintegration, but suggest it is no longer recommended.</td>
<td>dNB/dt where NB is the number of decaying entities B. (Source: [12] p 24). Note 2: The SI unit of activity is the becquerel (Bq) which is equal to one decay per second (s-1). Curie (Ci) is a former unit of activity equal to exactly 3.7 × 10¹⁰ Bq. Note 3: The synonym ‘disintegration rate’ is no longer recommended.</td>
</tr>
</tbody>
</table>

42. decay constant of a radionuclide
The comments for this definition are to be seen together with the comments for Def. 12. Def. 42 presupposes a definition of the activity of a radionuclide. Presumably, here, the subscript B is intended to specify a particular radionuclide. The definition of activity of a radionuclide must relate to a population of that particular radionuclide to make sense. Here, 'disintegration rate' does not seem to be deprecated (as opposed to Def. 12)?? Yes – this is for a radionuclide not a material. We insert ‘specified’ before ‘radionuclide’ and expect the reader to understand this is the Green Book definition. We hope that in the next edition of the Green Book the advice that “Synonyms ‘disintegration constant of a radionuclide’ and ‘disintegration rate constant of a radionuclide’ are not recommended” might be heeded. decay constant of a radionuclide, λ, k decay rate constant of a radionuclide Proportionality constant between the activity (A) of a specified radionuclide and the number of decaying entities (NB). A = λ NB. Note 1: The decay constant is related to the half life of a radionuclide (t½) by t½ = (ln 2)/λ ≈0.693/λ. Note 2: Synonyms ‘disintegration constant of a radionuclide’ and ‘disintegration rate constant of a radionuclide’ are not recommended. Note 3: The synonym ‘disintegration rate’ is no longer recommended. Source: [12] p 24. See also: mean life of a radionuclide. |

78. half life of a radionuclide
The definition has the two incongruent | Noted. | |

P.O. 13757, Research Triangle Park, NC (919) 485-8700
<table>
<thead>
<tr>
<th>Comment</th>
<th>Response</th>
<th>Changes to MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>constructions 'half life of a radionuclide' and 'number of decaying entities', one referring to a single atomic entity, the other one to an ensemble. I maintain that the number (N_b) is not the number of decaying entities, and it is not necessary to use that construction. One could, for example, write: 'the half life of a radionuclide is the time for a number of that radionuclide to be reduced to one half through its radioactive decay'. The definition refers to 'average life' in italics, but that is not an entry any longer. See also comment for Def. 107.</td>
<td>However given that the Green Book espouses ‘decaying entities’ meaning ‘entities capable of decay’ we keep these words without too much concern that the reader will be misled.</td>
<td></td>
</tr>
<tr>
<td>91. isotope dilution analysis</td>
<td>I wonder why the notes 1 and 2 present in the former version are not there any more. And does the term now not replace the earlier definition?</td>
<td>There was lengthy debate about ‘specific activity’ and we realised Notes 2 and 3 were no longer correct. Yes – it does replace [3] p 2521 (see reference line)</td>
</tr>
<tr>
<td>The definition is not worded properly. It should not involve both 'places' and 'positions'. It must be something like 'Exchange of isotopes of atoms between different chemical or physical states or positions (or perhaps better, '...isotopes of a particular kind of atom...').</td>
<td>This is the wording of the existing Recommendation (other than to make the main term ‘isotopic exchange’ which is more exact grammar). The point about ‘isotopes’ is that they must be of a given element. We cannot see sufficient reason to change.</td>
<td>no change</td>
</tr>
<tr>
<td>100. isotopic label</td>
<td>Definition uses 'isotope' where I believe it should be 'nuclide' due to the strict definition of the use of isotope. But that strictness does get one into trouble with a term like this, where nobody speaks about 'nuclidic label'. The part 'used to identify an isotopic tracer' does not make sense to me. Maybe elaboration of the deuterium example would help (what is the label, the system, and the tracer).</td>
<td>Again there was much discussion after comments on the previous revision. ‘Isotope’ is used throughout even when, as the reviewer points out, ‘nuclide’ is more exact. However again the definition is from the Recommendation, particularly “used to identify a tracer”</td>
</tr>
<tr>
<td>Comment</td>
<td>Response</td>
<td>Changes to MS</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>107. mean life of a radionuclide The note suddenly uses 'average life' which is not defined. I assume it should have been mentioned together with lifetime as an alternative to mean life.</td>
<td>Thank you. average life added as alternative term and average changed to mean in Note.</td>
<td>107 mean life of a radionuclide, (\tau) average life of a radionuclide lifetime of a radionuclide Reciprocal of the decay constant of a radionuclide (\lambda). (\tau = \frac{1}{\lambda}). Note: The average mean life is greater than the half life of a radionuclide by the factor (\frac{1}{\ln 2} \approx 1.44); the difference arises because of the weight given in the averaging process to the fraction of atoms that by chance survives for a long time. Source: Adapted from [12] p 24.</td>
</tr>
<tr>
<td>110. molar activity of a radionuclide Why does the definition include 'in a material'? The distinction from Def. 111 would seem to me to dictate that 'material' not be involved here.</td>
<td>Thank you – you are completely correct. ‘in a material’ deleted</td>
<td>110. molar activity of a radionuclide, (\text{Am}(R)) molar activity Activity of a specified radionuclide (R) per unit amount of substance of the specified radionuclide.</td>
</tr>
</tbody>
</table>
| **126. nuclear capture** The term 'elementary particle' is not defined within this document. The wording 'elementary or charged particle' is unclear. Certainly some particles normally considered to be elementary particles are charged. On the other hand, any atomic nucleus can be captured. | ‘Elementary particle’ is not defined here, but already exists in the Gold Book (from a 1982 Rec). However ‘elementary or\]
<table>
<thead>
<tr>
<th>Comment</th>
<th>Response</th>
<th>Changes to MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>the other hand, alpha particles are not elementary. Are they, or even charged molecules, included? The term 'gamma ray' was also used in the previous version. It does not seem appropriate in a context where a reaction on the atomic scale is described. It should be, e.g., a 'gamma quantum'. A ray is understood to be a beam, i.e., a stream of particles or quanta.</td>
<td>charged’ is not in the Recommendation which uses ‘additional’. We wanted to be more specific, but this doesn’t work. We revert to the original but add a note.</td>
<td>Note 1: The captured particle may be an elementary particle (See: [2] p 1547) and may be charged or neutral. ...</td>
</tr>
<tr>
<td>163. radiochemical purity The definition first uses 'isotope' in the singular. See general comment on that above. Should it not have been 'Amount of a particular radionuclide...'? It then speaks about 'the total amount of isotopes'. It is not clear at all what that means: isotopes of what? Any relation of the term defined here to other terms used in practice in connection with labelled compounds, e.g., degree of substitution, should be explained. Some examples would be in place here.</td>
<td>Thank you. We have reverted to the original PAC Rec definition, but using your suggestion of ‘radionuclide’ and clarifying ‘fraction’ by adding ‘amount’</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>In reading more on this entry we note the large medical literature that defines this in terms of activity fraction.</td>
</tr>
<tr>
<td>179. radionuclide purity I note that the introduction of daughter products is new to this revision. A comment on that should be made. The 99mTc example should be elaborated. What is the material there, the daughter products if any (if there are none, provide an additional example where there are some), and what do the other nuclides mentioned mean in terms of the total activity.</td>
<td>The definition is from the PAC REC and had included ‘daughter products’ before. We add to the example “99Tc is generated as a daughter product from 99mMo, directly or via 99mTc.”</td>
<td>163. radiochemical purity For a material, the fraction of the stated radionuclide present in the stated chemical form. Source: [3] p 2523. Note 1: The unit of radiochemical purity is mol/mol = 1. Note 2: The medical literature often defines radiochemical purity as the fraction of the radioactivity of a material in a stated chemical form. (See: [74] p347.)</td>
</tr>
<tr>
<td>190. resonance integral The designations 'n' and 'fis' explained in the parenthesis are not present in the equation. As for the note, a matter of language: an integral cannot coincide with a definition of an energy range!</td>
<td>See definition where X in the equation is replaced by ‘n’ or ‘fis’. We clarify. c Also the word ‘range’ was missing from the Note.</td>
<td>where X is the nature of the radiation (X ≡ ‘ n’ denotes neutron, X ≡ ‘fis’ denotes neutron induced fission), Note: In radioanalytical</td>
</tr>
<tr>
<td>Comment</td>
<td>Response</td>
<td>Changes to MS</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>193. saturation (in radiation chemistry)
The definition now omitted the wording about the irradiation. This makes it unclear what situations the definition is intended to cover. In cases with irradiation of a particular element, the nuclide being irradiated is not necessarily a radionuclide?</td>
<td>Accepted. We use the original wording ‘Of an irradiated element’ and write ‘nuclide’ instead of ‘radionuclide’ (or ‘isotope’ in the original)</td>
<td>193. saturation (in radiation chemistry)
Of an irradiated element for a specified nuclide, the steady state reached when the decay rate of the nuclide formed is equal to its production rate.</td>
</tr>
<tr>
<td>194. saturation activity
What cross-section of what? the density of which particles? This must be explained for the definition to make sense.</td>
<td>If the cross references are followed we believe the definition is sufficient.</td>
<td>particle flux density is now cross referenced</td>
</tr>
<tr>
<td>201. self-absorption factor
With the definition given, a factor of 1 corresponds to no self-absorption and a factor of 0 corresponds to 100% self-absorption. The factor defined corresponds better to the term 'source efficiency' which runs oppositely to self-absorption.</td>
<td>True, but both the Gold Book (PAC Rec) and the new reference define it thus. See http://goldbook.iupac.org/terms/view/S05581</td>
<td>no change</td>
</tr>
<tr>
<td>207. specific activity of a radionuclide
Note 1 seems completely out of place here. The definition has nothing to do with 'radiochemical processing' or any experiment. Maybe copied from somewhere else?</td>
<td>This note is out of place and has been moved. (See response to reviewer 6).</td>
<td></td>
</tr>
<tr>
<td>208. specific activity of a radionuclide in a material
Note 2: do we really want to call activity specified in Ci mmol:-'molar activity'? Perhaps millimolar activity? It would be good to have a relevant example. The example given would seem to rather relate to definition 207.</td>
<td>molar activity is correct. See Green Book 1.4 USE OF THE WORDS “EXTENSIVE”, “INTENSIVE”, “SPECIFIC”, AND “MOLAR”. Thank you. Example moved to 207, and new example provided.</td>
<td>Example: Certificate of analysis of adenosine 5’-triphosphate solution isotopically-labelled with [γ32P] gives “Specific activity 370 MBq/g”</td>
</tr>
<tr>
<td>209. specifically-labelled isotopic tracer
Change 'a molecule' to 'the molecule'. A particular molecule is implicitly understood.</td>
<td>done. Yes – thank you, selectively-labelled now</td>
<td>a molecule -> the molecule
See new entry 201</td>
</tr>
<tr>
<td>Comment</td>
<td>Response</td>
<td>Changes to MS</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>Should there also be a definition of 'selectively-labelled'?</td>
<td>defined. We also add a useful note on Nomenclature from ref [86]</td>
<td>selectively-labelled isotopic tracer Also see new Note and example to specifically-labelled isotopic tracer</td>
</tr>
</tbody>
</table>
Vocabulary of radioanalytical methods (IUPAC Recommendations 201x)

Zhifang Chai¹, Amares Chatt², Peter Bode³, Jan Kucera⁴, Robert Greenberg⁵, D. Brynn Hibbert⁶‡

¹Lab. Nuclear Analytical Techniques Institute of High Energy Physics Chinese Academy of Sciences, P.O.Box 918, Beijing 100049,

²Trace Analysis Research Centre, Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4J3 Canada

³Delft University of Technology, Reactor Institute Delft, Mekelweg 15, NL-2629 JB Delft, The Netherlands

⁴Nuclear Physics Institute CZ-25068, Rez near Prague, Czech Republic

⁵National Institute of Standards and Technology, 100 Bureau Drive, 8395 Building 235, Rm B176, Gaithersburg,

⁶School of Chemistry, UNSW Sydney, NSW 2052, Australia

‡Corresponding author: School of Chemistry, UNSW Sydney, NSW 2052, Australia. b.hibbert@unsw.edu.au

Abstract:

These recommendations are a vocabulary of basic radioanalytical terms which are relevant to radioanalysis, nuclear analysis and related techniques. Radioanalytical methods consider all nuclear-related techniques for the characterization of materials where ‘characterization’ refers to compositional (in terms of the identity and quantity of specified elements, nuclides, and their chemical species) and structural (in terms of location, dislocation, etc. of specified elements, nuclides, and their species) analyses, involving nuclear processes (nuclear reactions, nuclear radiations, etc.), nuclear techniques (reactors, accelerators, radiation detectors, etc), and nuclear effects (hyperfine interactions, etc.). In the present compilation, basic radioanalytical terms are included which are relevant to radioanalysis, nuclear analysis and related techniques.

Keywords: radioanalytical chemistry; terminology; nuclides; nuclear processes; nuclear effects.

This work was started under the project 2010-030-1-500: Radioanalytical Chemistry – Revision of the Orange Book Chapter 8 with membership of Zhifang Chai (task group chair), Peter Bode, Amares Chatt, Robert Greenberg, D. Brynn Hibbert and Jan Kucera. (https://iupac.org/projects/project-details/?project_nr=2010-030-1-500).
INTRODUCTION

These Recommendations contain terms found in the corresponding chapter of the IUPAC Orange Book, third edition of the Compendium of Analytical Nomenclature (definitive rules 1997) [1], which was based on the Glossary of Terms used in Nuclear Analytical Chemistry published in 1982 [2] and the Nomenclature for Radioanalytical Chemistry, published in 1994 [3]. In addition to terms of analytical interest, terms are included from nuclear technology, nuclear physics and radioactivity measurements. The IUPAC Technical Report on the use of X-ray based techniques for analysis of trace elements in environmental samples provided a useful overview [4] of techniques using high-energy photons. This Recommendation will furnish terms on radioanalytical chemistry for the new chapter 8 in the next edition of the Orange Book [5].

The available terms in the field of radioanalytical methods were first compiled twenty to thirty years ago. With the development of modern science and technology, some of the terms are outdated. In the meantime, more and more new terms in the field of radioanalytical methods have appeared or are emerging. Particularly, sophisticated nuclear facilities and detectors, like advanced nuclear reactors, dedicated particle accelerators, and various new types of radiation detectors with excellent performances are changing the outlook of radioanalytical methods. For example, many advanced nuclear analytical laboratories in the world have access to synchrotron radiation devices and spallation neutron sources. Related new nuclear analytical methods have been established or are being developed for scientific and applied purposes. Various new radioanalytical methods, like neutron scattering, accelerator mass spectrometry, X-ray absorption and fluorescence methods based on synchrotron radiation have become more and more popular analytical tools.

Following the International Vocabulary of Metrology (VIM) [6] and present IUPAC format, the concept entries of these Recommendations provide term, definition and explanations by examples and notes. Additionally, the main document the information is taken from (not necessarily verbatim) is stated as "Source" using the respective reference number (e.g. [1] for the third edition of the Orange Book). Changes to wording are referenced as "Source: Adapted from …", and for Recommendations this change will replace the existing entry. Where a completely rewritten entry is to replace an existing Recommendation this is noted as “Replaces:”.

Within a given entry, terms referring to other concepts termed and defined in these Recommendations appear in italics on first use. The same holds for VIM terms, however these are marked with the VIM entry number, e.g. measurement principle [VIM 2.4], because the definition is not reproduced here.

TERMS IN RADIOANALYTICAL CHEMISTRY

1. absolute activation analysis

 Measurement method [VIM 2.5] of activation analysis in which the amounts of elements in a material are measured using a measurement model with known nuclear constants, irradiation and radiation measurement parameters without the use of a calibrator with known property values.

2. absolute activity

See: activity of a radioactive substance.

3. absolute counting

Measurement method [VIM 2.5] in which the observed *counting rate* under well-defined conditions is used to measure the *activity* of a *radionuclide* without the use of a *calibrator* with known property values.

4. absolute counting efficiency

Number of particles or photons counted by a *radiation detector* divided by the number emitted by a *radiation source*.

5. absorption cross section

See: *capture cross section*.

6. absorption edge

See: *X-ray absorption edge*.

7. accelerator mass spectrometry, (AMS)

Mass spectrometry technique in which atoms and molecules from a sample are *ionized*, accelerated to *mega-electron volt* (1 MeV = 1.602×10^{-13} J) *energies* and separated according to their momentun, charge, and energy, allowing high *discrimination* for measurement of *isotope* *nuclide* abundances.

Note: AMS is typically used for (but not limited to) measurement of radionuclides with long half-lives such as 10Be, 14C, 26Al, 36Cl, 57Mn, 129I.

Source: [9]. See also: [10].

8. activation (in radiation chemistry)

Induction of radioactivity by *irradiation*.

Note: In general, a specification is added of the type of incident radiation (e.g. nuclei, neutron, photon, charged particles) and/or the *energy* of this radiation (e.g. cold neutron, *thermal neutron*, *epithermal neutron*, fast neutron. See: *neutron energy*).

9. activation analysis

Measurement principle [VIM 2.4] for measuring elemental or isotopic contents in a specified amount of a material, in which the *activity* of radionuclides formed directly or indirectly by nuclear reactions of elementary particles, or absorption of electromagnetic radiation by stable isotopes, is measured.

Note: A specification is added of the type of the incident particle/radiation (e.g. *neutron activation analysis*, *photon activation analysis*, charged particle activation analysis) and its energy (e.g. cold neutron activation analysis, (epi)thermal neutron activation analysis, fast neutron activation analysis. (See: *neutron energy*)).

10. activation cross section

Microscopic cross section for a nuclear reaction resulting in the formation of a radionuclide under specified conditions.

11. activity growth curve

Graph of *activity* of a radioactive nuclide as a function of time and showing the increase of activity through the decay of the precursor or as a result of *activation*.

Source: Adapted from [3] p 2515.

12. activity of a radioactive material, A

activity
absolute activity
decay rate
deprecated: disintegration rate

Number of nuclear decays occurring in a given quantity of material in a small time interval, divided by that time interval Rate at which a radioactive entity decays. $A = -dN_B/dt$ where N_B is the number of decaying entities B.

Note 1: For a specified substance B, $A = -dN_B/dt$ where N_B is the number of decaying entities B. (Source: [12] p 24).

Note 2: The SI unit of activity is the becquerel (Bq) which is equal to one decay per second (s^{-1}). Curie (Ci) is a former unit of activity equal to exactly 3.7×10^{10} Bq.

Note 3: The synonym ‘disintegration rate’ is no longer recommended.
13. analytical radiochemistry

See: radioanalytical chemistry.

14. autoradiograph

Radiograph of an object containing a *radioactive* substance, produced by placing the object adjacent to a photographic plate or film or a fluorescent screen.

Source: [13].

15. autoradiolysis

Radiolysis of a *radioactive* material resulting directly or indirectly from its *radioactive decay*.

16. background radiation

Radiation from any *radioactive source* other than the one it is desired to measure.

17. backscattering analysis

Measurement principle [VIM 2.4] in which the backscattering of *nuclear radiation* impinging on a sample is applied for measurement of the structure and composition of materials.

18. barn, b

Non-SI unit of area used in expressing nuclear *cross section*. $1 \text{ b} = 1 \times 10^{-28} \text{ m}^2 = 100 \text{ fm}^2$.

Note: One barn is approximately the area of a nucleus of radius $5.6 \times 10^{-15} \text{ m}$.

19. branching ratio

decay fraction
decay probability

Number of nuclei of a given *radionuclide* divided by the total number of nuclei of that radionuclide that, in *nuclear decay* by two or more different transitions, decays by a specified transition.

Source: [14].
20. **calibration, k_0 method**

Calibration [VIM 2.39] method of *neutron activation analysis* in which the k_0 proportionality factors together with a value of the *neutron flux* (as a function of the neutron energy) and with a value of the *radiation detector’s response for gamma radiation* as a function of the gamma-ray energy are used for establishing a relation between the number of *counts* measured and the corresponding amounts of elements in a material.

Note: The k_0 proportionality factor is a ratio of experimentally measured nuclear parameters of the (radio)*nuclides* and those parameters of the respective (radio)*isotopes* of a *calibrator* (often based on Au).

Source: [15].

21. **calibrator (in activation analysis)** obsolete: comparator

Measured amount of an element with stated *measurement uncertainty* [VIM 2.26] that is simultaneously irradiated with the sample during *activation analysis*.

Note 1: The term ‘calibrator’ is preferred over ‘comparator’.

Note 2: If one calibrator is used (single calibrator method, which is preferred over “single comparator method”), it is essentially identical to a *flux monitor* (except that this term is not necessarily linked to activation analysis).

22. **capture**

See: *nuclear capture*.

23. **capture cross section**

absorption cross section

Cross section for nuclear capture.

Note: Absorption cross section is not recommended because it implies absorption of electromagnetic radiation.

Source: Adapted from [3] p 2516.

24. **carrier (in radiation chemistry)**

Substance in appreciable concentration which, when associated with an *isotopic tracer* of a specified substance, will carry the tracer with it through a chemical or physical process, or prevent the tracer from undergoing nonspecific processes due to its low mass fraction or concentration.

Source: [16].
25. carrier-free

See: no carrier added.

26. channeling effect

Range (traveling distance) increasing effect caused by the decrease in interaction cross sections of the incident particles with atoms in a single crystal when a highly collimated particle beam impinges on a crystal along its principal axis or principal plane.

Source: [17].

27. channels ratio method

Measurement method [VIM 2.5] to obtain a quenching correction by counting the spectrum in two separate channels, the ratio of which gives the degree of quenching.

Source: [18].

28. characteristic X-radiation

X-radiation consisting of discrete energies which are characteristic for the emitting element.

Note: X-rays are electromagnetic radiation with wavelength between 10^{-11} and 10^{-8} m, corresponding to energies between 100 keV and 100 eV.

Source: Adapted from [3] p 2526.

29. Compton scattering analysis

Measurement principle [VIM 2.4] in which wavelengths and angular distribution of Compton scattered electrons is applied for reconstruction of X-ray and gamma-ray spectra.

Note: Compton scattering analysis is applied e.g. in mammography.

30. count

Single event recorded by a radiation counter.

31. count rate

See: counting rate.
32. **counting efficiency**

 intrinsic counting efficiency

 Number of particles or photons counted divided by the number that has struck the envelope.

 Note: this ratio limits the sensitive volume of a radiation detector.

33. **counting geometry**

 Arrangement in space of the various components of an experiment, particularly the source and the radiation detector in radiation measurements.

34. **counting loss**

 Reduction of the counting rate resulting from phenomena such as the dead time of a radiation counter.

 Source: Adapted from [3] p 2517.

 Note: Counting loss is corrected for by a dead time correction or a resolving time correction.

35. **counting rate**

 count rate

 Number of counts occurring in unit time.

36. **cross reactivity**

 Ability of substances other than the analyte to bind to the binding reagent and ability of substances other than the binding reagent to bind the analyte in competitive binding assays.

 Note: Binding described here is known as cross reaction.

37. **cross section (in radiation chemistry), \(\sigma \)**

 microscopic cross section

 Characteristic area related to the probability of a specified interaction or reaction between an incident nuclear radiation and a target particle or system of particles.
Note 1: Cross section is the reaction rate per target particle for a specified process divided by the flux density of the incident radiation.

Note 2: In general, a specification is added of the type of nuclear radiation (e.g. neutron, photon), the energy of the incident radiation (e.g. thermal, epithermal, fast (See: neutron energy)) and the type of interaction of reaction (e.g. activation, fission, scattering).

Example: The capture cross section of 10B for slow neutrons is 200 barn.

38. daughter product

Nuclide which follows a specified _radionuclide_ in a _decay chain_.

Source:[3] p 2517.

39. dead time correction of a radiation counter
dead time correction
resolving time correction

Correction to be applied to the observed number of _counts_ in order to take into account the number of counts lost during the resolving or _dead time of a radiation counter_.

Note: If the measured number of counts is N_m and the true number of counts is N_{true} then for measurements at time t with dead time t_d,

$$N_{\text{true}} = \frac{N_m}{1 - t_d/t}.$$

Source: Adapted from [3] p 2518.

40. dead time of a radiation counter, t_d
down time

Time taken for charged particles to reach an electrode in a _radiation counter_, during which time particles are not counted.

Example: The dead time of a _Geiger-Müller counter_ is 100 to 400 μs.

41. decay chain
radioactive chain
radioactive series

Series of _radionuclides_ in which each radionuclide transforms into the next through _nuclear decay_ until a stable _nuclide_ has been formed.

Source: Adapted from [3] p 2518.
42. decay constant of a radionuclide, λ, k
decay rate constant of a radionuclide
disintegration constant of a radionuclide
disintegration rate constant of a radionuclide

Proportionality constant between the activity (A) of a specified radionuclide and the number of decaying entities (N₀). \(A = \lambda N₀ \).

Note 1: The decay constant is related to the half life of a radionuclide (\(t_{1/2} \)) by
\[t_{1/2} = \frac{\ln 2}{\lambda} \approx 0.693/\lambda. \]

Note 2: Synonyms ‘disintegration constant of a radionuclide’ and ‘disintegration rate constant of a radionuclide’ are not recommended.

43. decay curve
Graph of the activity of a radionuclide against time after a specified reference time.

44. decay fraction

See: branching ratio.

45. decay probability

See: branching ratio.

46. decay rate

See: activity of a radioactive substance.

47. decay rate constant of a radionuclide

See: decay constant of a radionuclide.

48. delayed-neutron activation analysis, (DNAA)
delayed-neutron analysis, (DNA)
delayed-neutron counting, (DNC)

Neutron activation analysis where neutrons are counted after a delay to allow interfering species to decay.

49. delayed-neutron analysis, (DNA)

See: delayed-neutron activation analysis.
50. delayed-neutron counting, (DNC)

See: delayed-neutron activation analysis.

51. destructive activation analysis

See: radiochemical activation analysis.

52. direct isotope dilution analysis

See: isotope dilution analysis.

53. directly-ionizing radiation

Beam of particles capable of removing one or more orbital electrons in a single quantum event from a specified atom resulting in an ion.

Note 1: To have sufficient energy for direct ionization most ionizing particles are electrically charged, for example, alpha particles, beta particles, electrons, positrons, protons. Photons can ionize atoms directly through the photoelectric effect or the Compton effect.

Note 2: When considering health effects of radiation, the distinction may be made between multiple ionizations by charged particles as they move through a material (called ‘direct ionization’), and a single event of ionization caused by a photon.

See also: indirectly-ionizing radiation.

Reference: [22] p 11.

54. disintegration constant of a radionuclide

See: decay constant of a radionuclide.

55. disintegration rate constant of a radionuclide

See: decay constant of a radionuclide.

56. down time

See: dead time of a radiation counter.

57. effective cadmium cut-off energy

In a given experimental configuration, the energy value determined by the condition that the radiation detector response would be unchanged if the cadmium cover surrounding the detector was replaced by a cover opaque to neutrons with energy below this value and transparent to neutrons with energy above this value.

Note: Typically, the thickness of this cadmium cover is taken to be 1 mm.
58. **effective thermal cross section**
Westcott cross section

A calculated cross-section for a specified reaction, which, when multiplied by the 2200-metre-per-second particle (or photon) flux density, gives the correct reaction rate for *thermal neutrons*.

Source: Adapted from [3] p 2517.

59. **energy flux density, J_E**

Energy of radiation traversing unit area perpendicular to the direction of the energy flow per unit time.

Note: The SI unit of energy flux density is $J \, s^{-1} \, m^{-2} = W \, m^{-2}$

Source: Adapted from [3] p 2519.

60. **energy resolution**

For a given energy, the smallest difference between the energies of two particles or photons capable of being distinguished by a *radiation counter*.

Note: The energy resolution is often expressed as the Full Width at Half Maximum (FWHM) of the counter’s *indication* [VIM 4.1] at a given energy of radiation.

61. **energy threshold**

Limiting kinetic energy of an incident particle or energy of an incident photon below which a specified *nuclear reaction* is not detectable.

62. **energy-dispersive X-ray analysis, (EDXA)**

See: *energy-dispersive X-ray fluorescence analysis*.

63. **energy-dispersive X-ray fluorescence analysis, (EDX)**
energy-dispersive X-ray analysis, (EDXA)
energy-dispersive X-ray spectroscopy, (EDS, EDXS)

Measurement method [VIM 2.5] of *X-ray fluorescence analysis* in which the energies and intensities of *characteristic X-radiation* are used to measure amounts of elements.
Note: EDX is often coupled with scanning electron microscopy, or proton-induced X-ray emission.

Source: [24].

64. energy-dispersive X-ray spectroscopy, (EDS, EDXS)

See: energy-dispersive X-ray fluorescence analysis.

65. epicadmium neutron

Neutron of kinetic energy greater than the effective cadmium cut-off energy.

66. epithermal neutron

Neutron of kinetic energy greater than that of thermal agitation.

Note 1: The term ‘epithermal’ is often restricted to energies just above thermal. See also: neutron energy.

Note 2: ‘Epithermal neutron’ is often used interchangeably with epicadmium neutron.

67. extended X-ray absorption fine structure, (EXAFS)

Measurement method [VIM 2.5] of X-ray absorption analysis in which the fine structure of the adsorption spectrum in the range 30 eV to 1 keV above the adsorption edge is used to measure the number and species of neighbouring atoms, their distance from the selected atom, and the thermal or structural disorder of their positions.

Note 1: In the EXAFS region interference between the wave functions of the core and neighbouring atoms gives a periodic pattern which contains information characterizing the arrangement of atoms, including number and type of neighbouring atoms and their distance to the absorbing atom.

Note 2: The method uses synchrotron radiation.

Source: [25, 26]. See also: X-ray absorption near edge structure.

68. external standardization for quenching correction

Measurement method [VIM 2.5] to obtain a quenching correction by use of a gamma-radiation source to generate a spectrum of Compton electrons within the sample vial.
69. **fluence, \(F, H \)**

Energy per area delivered in a given time interval.
\[
\dot{F} = \int I \, dt = \int \left(\frac{dP}{dA} \right) dt
\]
where \(I \) is intensity, \(P \) is power and \(A \) is area.

Note: The SI unit of fluence is J m\(^{-2}\).

Source: Adapted from [12] p 35.

70. **fluorescence**

Prompt (within about \(10^{-8} \) s) emission of electromagnetic radiation caused by de-excitation of atoms in a material following the initial excitation of these atoms by absorption of energy from incident radiation or particles.

Note: Fluorescence is often specified by the type of incident radiation, such as X-ray fluorescence.

71. **fluorescence yield**

For a given transition from an excited state of a specified atom, the number of excited atoms which emit a photon divided by the total number of excited atoms.

Source: Adapted from [3] p 2526. See also: [28].

72. **flux depression**

Reduction of particle (or photon) flux density in the neighbourhood of an object due to absorption and/or scattering of these particles (or photons) in the object.

Source: Adapted from [3] p 2519. See also: [29].

73. **flux monitor**

* Radiation detector to measure energy flux density.*

Note: A flux monitor may be a known amount of material irradiated together with a sample; the induced radioactivity is used to measure the flux density during the irradiation.

74. **flux perturbation**

Change of energy flux density or energy distribution of particles or photons in an object as a result of effects such as flux depression and/or self-shielding.
75. **gamma-ray spectrometry**
obsolete: gamma-ray spectroscopy

Measurement principle [VIM 2.4] of the quantitative study of the energy spectra of gamma-ray sources.

Source: [31].

76. **Geiger-Müller counter**

Gas-filled X-ray detector in which gas amplification reaches saturation and proportionality no longer exists. The output signal does not depend on the incident energy.

Note 1: Radiation detected includes alpha particles, beta particles and gamma rays using the ionization effect produced in a Geiger–Müller tube; which gives its name to the instrument [32].

Note 2: Geiger-Müller counters are in wide use as a hand-held radiation survey instrument.

Note 3: The time taken for the counter to recover from saturation is called *dead time*.

Adapted from [33] p 1754.

77. **geometry factor**

Average solid angle in steradians at a source subtended by the aperture or sensitive volume of the radiation detector, divided by 4π.

78. **half life of a radionuclide**, $t_{1/2}$, $T_{1/2}$

Time for a number of decaying entities (N_B) to be reduced to one half of that value. $N_B(t_{1/2}) = N_B(0)/2$.

Note: Half life is related to the decay constant of a radionuclide λ by $t_{1/2} = (\ln 2)/\lambda$.

79. **half thickness**

See: *half-value thickness*.
80. **half-value thickness**

half thickness

half-value layer thickness

Thickness of a specified material which, when introduced into the path of a given beam of *radiation*, reduces the intensity of a specified radiation by one half.

Source: [3] p 2520. See also: [35].

81. **hot atom**

Atom in an excited energy state or having kinetic energy above the ambient thermal level, usually as a result of nuclear processes.

Source: [3] p 2520. See also: [36].

82. **hot cell**

Heavily shielded enclosure for highly *radioactive* materials.

Note: A hot cell may be used for handling or processing highly radioactive materials by remote means or for their storage.

Source: Adapted from [3] p 2520.

83. **indirectly-ionizing radiation**

Beam of electrically neutral particles that cause *ionization* by interaction with atoms in a material producing electrically-charged particles that subsequently cause direct ionization (See: *directly-ionizing radiation*) in the material.

Examples: Gamma-rays and X-rays which produce electrons, and neutrons which produce alpha and beta particles.

Reference: [22] p 11.

84. **instrumental activation analysis**

non-destructive activation analysis

Measurement method [VIM 2.5] of activation analysis in which the amounts of elements in a material are measured using a *measurement model [VIM 2.48]* with known nuclear constants, *irradiation* and *radiation* measurement parameters and the use of a *calibrator* with known property values, without the use of chemical processing after the *irradiation*.

Source: [7] p 1569. See also: [37].

85. **intrinsic counting efficiency**

See: *counting efficiency*.
86. **in-vivo neutron activation analysis**

Measurement method [VIM 2.5] of neutron activation analysis in which a living organism is exposed to neutrons for measuring the concentrations of elements in that living organism.

Note 1: The neutrons are typically provided by a neutron beam.

Note 2: Often *prompt gamma-ray analysis* is used to measure half-value thickness, rather than the *activity* of neutrons produced.

Source: [7] p 1567. See also: [38].

87. **ion beam analysis, (IBA)**

Measurement principle [VIM 2.4] in which elementary particles resulting from *nuclear reactions* of charged particles with nuclei in a material are applied for the measurement of the amount and depth distribution of elements in materials.

88. **ionizing radiation**

Radiation with sufficient *energy* to liberate electrons from atoms or molecules, thereby ionizing them.

Note: Radiation may be termed *directly-ionizing radiation* or *indirectly-ionizing radiation*.

Source: Adapted from [3] p 2520.

89. **irradiation**

Exposure to *radiation*.

Source: Adapted from [3] p 2520.

90. **isotope dilution**

Mixing of a given *nuclide* with one or more of its *isotopes*.

91. **isotope dilution analysis, (IDA)**

direct isotope dilution analysis
radioisotope dilution analysis

Measurement principle [VIM 2.4] in which the amount of an element in a substance is measured by adding to that substance a known amount of a *radionuclide* of that element and mixing it with a stable *isotope* of this element in
the substance, and subsequent measurement of the activity of that radionuclide in a subsample taken from the mixture.

Note: IDA may be classified in terms of (i) the manner of introducing radioactivity into the system; (ii) the method of measuring the activity; (iii) number of dilution steps; (iv) relative masses of sample and diluent.

92. isotope effect
isotopic effect

Effect on the rate constant or equilibrium constant of two reactions that differ only in the isotopic composition of one or more of their otherwise chemically identical components is referred to as a kinetic isotope effect or a thermodynamic (or equilibrium) isotope effect, respectively. (See: isotopes).

Source: Adapted with minor change from [42] p 1130. See also: [43, 44].

93. isotope exchange

See: isotopic exchange.

94. isotopes
isotopic nuclides

Nuclides having the same atomic number but different mass numbers.

Examples: 12C and 13C; 1H, 2H and 3H.

Note 1: If no left superscript is added denoting the mass number an element symbol is read as including all isotopes in natural abundance.

Source: Adapted from [12] p 49.

Note 2: The use of the singular term ‘isotope’ should always relate to a particular element (e.g. deuterium is an isotope of hydrogen). When used in a general sense, the term nuclide is preferred (e.g. radionuclides are used in the treatment of cancer).

See also: radioisotope.
95. **isotopic carrier**

Excess of a substance, differing only in isotopic composition from an *isotopic tracer*, which will carry the tracer through a chemical or physical process, preventing the tracer from undergoing non-specific processes due to its low concentration.

Source: Adapted from [3] p 2516.

96. **isotopic effect**

See: *isotope effect*.

97. **isotopic enrichment**

Any process by which the isotopic abundance of a specified isotope in a mixture of *isotopes* of an element is increased.

Note: When the specified isotope is stable, the process is termed ‘stable isotopic enrichment’.

98. **isotopic exchange**

isotope exchange

Exchange of places between *isotopes* of atoms in different chemical or physical states or positions.

99. **isotopic exchange analysis**

Measurement principle [VIM 2.4] based on *isotopic exchange* to measure the amount of the corresponding element.

100. **isotopic label**

Radioactive or stable *isotope of a specified element* distinguishable by the observer but not by the system used to identify an *isotopic tracer*.

Note 1: ‘Isotopic labelling’ is the incorporation of an isotopic label in a substance. It may be qualified by the manner of introduction of the label, e.g. exchange labelling, conjugation labelling, recoil labelling.

Example: Deuterium (‘*isotopic label’*) that is substituted for protium in a-*the illegal* drug molecule-*methamphetamine*, for use in analysis by mass spectrometry. *Methamphetamine incorporating deuterium is the ‘*isotopic tracer’*.*
Note 2: In general usage ‘label’ and ‘tracer’ are used synonymously. See: [46] 4.1.12.

Source: Adapted from [3] p 2521.

101. isotopic nuclides

See: isotopes.

102. isotopic tracer

Isotopically labelled molecule (See: isotopic label) used to measure certain properties of a system.

Source: Adapted from [3] p 2526. See also: isotopic enrichment.

Example: Deuterium (‘isotopic label’) that is substituted for protium in the illegal drug methylamphetamine, for use in analysis by mass spectrometry. Methylamphetamine incorporating deuterium is the ‘isotopic tracer’.

Note: In general usage label and tracer are often used synonymously. See: [46] 4.1.12.

103. lifetime of a radionuclide

See: mean life of a radionuclide.

104. liquid scintillation detector

Scintillation detector in which the sample is mixed with a liquid scintillator.

105. live time

Time interval during which a radiation detector is capable of processing events.

Note 1: Live time equals the clock time minus the integrated resolving or dead time.

Note 2: Live time should not be confused with ‘lifetime’ of a radioactive species.

Source: Adapted from [3] p 2522 and [47].

106. macroscopic cross section

Cross section per unit volume of a given material for a specified process.
Note: For a pure nuclide, it is the product of the microscopic cross section and the number of target nuclei per unit volume; for a mixture of radionuclides, it is the sum of such products.

Source: Adapted from [3] p 2517 and [21].

107. mean life of a radionuclide, τ

average life of a radionuclide

lifetime of a radionuclide

Reciprocal of the decay constant of a radionuclide (λ). $\tau = 1/\lambda$.

Note: The average mean life is greater than the half life of a radionuclide by the factor $1/\ln 2 \approx 1.44$; the difference arises because of the weight given in the averaging process to the fraction of atoms that by chance survives for a long time.

Source: Adapted from [12] p 24.

108. microscopic cross section

See: cross section (in radiation chemistry).

109. moderator

Material used to reduce the energy of a neutron by scattering without appreciable capture.

110. molar activity of a radionuclide, $A_m(R)$

molar activity

Activity of a specified radionuclide (R) in a material per unit amount of substance of the specified radionuclide.

Note 1: The SI unit of molar activity is Bq mol$^{-1}$. Also used is Ci mmol$^{-1}$. (Curie, symbol Ci, is a former unit of activity equal to exactly 3.7×10^{10} Bq.)

Note 2: If the term “molar activity” is used without qualification it should be made clear whether it is of a material or of a radionuclide. See: molar activity of a radionuclide in a material.

Replaces: [3] p 2515. See also specific activity of a radionuclide.

111. molar activity of a radionuclide in a material, $A_m(R,M)$

molar activity
Activity of a specified radionuclide (R) in a material (M) divided by amount of substance of that material.

Note 1: The SI unit of molar activity is Bq mol\(^{-1}\), but molar activity is often expressed in unit Ci mmol\(^{-1}\). (Curie, symbol Ci, is a former unit of activity equal to exactly \(3.7 \times 10^{10}\) Bq.)

Note 2: If the term “molar activity” is used without qualification it should be made clear whether it is of a material or of a radionuclide. See: molar activity of a radionuclide.

Example: The certificate of analysis of adenosine 5'-triphosphate containing the isotopic label \(^{33}\)P (called \(^{33}\)P-gamma-ATP) quotes the activity as 3000 Ci mmol\(^{-1}\) [48].

Using the recommended symbol, \(A_m^{(33\text{P},\text{ATP})} = 3000\) Ci mmol\(^{-1}\).

Replaces: [3] p 2515. See also: specific activity of a radionuclide in a material.

112. monoisotopic element

Chemical element having only one stable nuclide.

Note 1: There are 26 elements that follow the definition: \(^9\text{Be}, \text{19F}, \text{23Na}, \text{27Al}, \text{31P}, \text{45Sc}, \text{51V}, \text{55Mn}, \text{59Co}, \text{75As}, \text{85Rb}, \text{89Y}, \text{93Nb}, \text{103Rh}, \text{113In}, \text{127I}, \text{133Cs}, \text{139La}, \text{141Pr}, \text{153Eu}, \text{159Tb}, \text{165Ho}, \text{175Lu}, \text{185Re}, \text{197Au}.

Note 2: General usage of the term "monoisotopic" refers to the 21 elements with one isotope determining their relative atomic masses, i.e. \(^9\text{Be}, \text{19F}, \text{23Na}, \text{27Al}, \text{31P}, \text{45Sc}, \text{55Mn}, \text{59Co}, \text{75As}, \text{89Y}, \text{93Nb}, \text{103Rh}, \text{127I}, \text{133Cs}, \text{141Pr}, \text{159Tb}, \text{165Ho}, \text{175Lu}, \text{185Re}, \text{197Au}, \text{209Bi}, \text{231Pa}.

Reference: [49].

113. Mössbauer spectrometry

Measurement method [VIM 2.5] in which recoil-less resonance gamma ray scattering and absorption in solids is applied to measure the nuclear environment of atoms of elements in a material.

Source: [50]. See also: [51].

114. muon induced X-ray emission analysis

Measurement method [VIM 2.5] of X-ray analysis in which characteristic X-radiation emitted upon irradiation of a material with a beam of muons of certain energy is used to measure the chemical composition and chemical state of an element.
115. near edge X-ray absorption fine structure, (NEXAFS)

Measurement method [VIM 2.5] of X-ray absorption analysis similar to X-ray absorption near edge structure, but usually reserved for soft X-rays with photon energy less than 1 keV.

Note: NEXAFS is generally used in surface and molecular science.

116. neutron activation analysis, (NAA)

Activation analysis using neutrons as the incident particles.

117. neutron density

Number of free neutrons divided by their containing volume.

Note: Partial densities may be defined for neutrons characterized by such parameters as neutron energy and direction.

Source: [52].

118. neutron depth profiling, (NDP)

Measurement method [VIM 2.5] of activation analysis for near-surface-depth light elements in which a thermal neutron or cold neutron (see: neutron energy) beam passes through a material with target nuclei that emit monoenergetic charged particles upon neutron absorption. The reduction of the energy of an emitted charged particle measures the depth of the target nuclei in a material.

Source: [53].

119. neutron diffraction analysis

Measurement method [VIM 2.5] in which the diffraction of neutrons is applied to measure parameters of the atomic and/or magnetic structure of a material.

Source: [54, 55].

120. neutron energy

Kinetic energy of a free neutron.

Note 1: Neutron energy is usually given with unit electronvolt (eV). 1 eV = 1.602 176 634 × 10⁻¹⁹ J.

Note 2: Neutrons are classified according to their energies as follows:

<table>
<thead>
<tr>
<th>Neutron energy range (in eV)</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 to 0.025</td>
<td>cold neutron</td>
</tr>
</tbody>
</table>
0.025 (corresponding to 295 K) | thermal neutron
0.025 to 0.4 | epithermal neutron
0.4 to 0.6 | cadmium neutron
0.6 to 1 | epicadmium neutron
1 to 10^7 | slow neutron
10 to 300 | resonance neutron
300 to 1×10^6 | intermediate neutron
(1 to 20)$\times10^6$ | fast neutron
$> 20\times10^6$ | ultrafast neutron

* Slow neutron also may be defined as any neutron below a threshold which may vary over a wide range and depends on the application. In reactor physics, the threshold value is frequently chosen to be 1 eV; in dosimetry, the effective cadmium cut-off is used. See: [2] p1547.

Note 3: Neutron temperature has unit kelvin, and the term should not be used for the neutron energy.

Source: [56, 57].

121. neutron scattering analysis

Measurement method [VIM 2.5] in which elastic or inelastic scattering of neutrons by the target nuclei is applied to study the composition and structure of a material.

Source: [58, 59].

122. neutron temperature

Temperature assigned to a population of neutrons when this population is approximated by a Maxwellian distribution.

Note: Neutron temperature (T) is related to the neutron energy (E) $T = 2E/3k$, where k is the Boltzmann constant.

Source: Adapted from [60].

123. no carrier added, (NCA)
carrier-free

Preparation of a radioactive isotope which is essentially free from stable isotopes of the element in question.

124. **non-destructive activation analysis**

See: *instrumental activation analysis*.

125. **non-radiative quenching**

Deactivation of an electronically-excited state by interaction with the external environment through a non-radiative process.

Note 1: Non-radiative quenching may lead to spectral shift or *counting losses*.

Note 2: The effects of quenching may be taken into account by a *quenching correction*.

126. **nuclear capture**

Process in which an atomic nucleus acquires an *elementary or charged additional* particle.

Note 1: The captured particle may be an *elementary particle* (See: [2] p 1547)
and may be charged or neutral.

Note 2: In general, a specification is added of the type of the captured particle or its energy.

Example: Gold-197 captures a neutron and emits a gamma ray:
\[^{197}\text{Au} + n \rightarrow ^{198}\text{Au} + \gamma, \text{or in short form} \quad ^{197}\text{Au}(n,\gamma)^{198}\text{Au}. \]

Source: Adapted from [3] p 2513. See also: *capture cross section*.

127. **nuclear chemistry**

Scientific discipline which deals with the study of nuclei, *nuclear decay*, nuclear reactions and nuclear processes using chemical methods.

128. **nuclear decay**

Spontaneous nuclear transformation.

129. **nuclear fission**

Exoergic division of a nucleus into two or more parts with masses of approximate equal order of magnitude, usually accompanied by the emission of neutrons, gamma radiation and, rarely, small charged nuclear fragments.
130. **nuclide**

Atom of specified atomic number (proton number) and mass number (nucleon number).

Note 1: A nuclide may be specified by attaching the mass number as a left superscript to the symbol for the element as in 14C or added with a hyphen after the name of the element as in carbon-14.

Note 2: Nuclide is the general term used when referring to all elements. The term ‘isotopes’ should only be used to describe nuclides of a particular element (i.e. same atomic number Z).

Note 3: The suffix ‘radio’ may be added to denote that the nuclide is radioactive. See: radionuclide, radioisotope.

Source: Adapted from [3] p 2519.

131. **nuclide precursor**

Radionuclide which precedes a nuclide in a decay chain.

Source: Adapted from [3] p 2523.

132. **particle (or photon) flux density, j**

obsolete: fluence rate

Number of particles (or photons) incident on a plane perpendicular to the incident radiation per unit time per unit area.

Note 1: Particle flux density is identical with the product of the particle density and the average speed of the particles.

Note 2: The SI unit of flux density is m$^{-2}$ s$^{-1}$.

Note 3: Often an indication of the type of incident particles is wrongly added to the unit of flux density, e.g., the neutron flux density is sometimes indicated as n cm$^{-2}$ s$^{-1}$. As ‘n’ is not a unit, it is metrologically unacceptable and therefore not recommended.

Replaces: [3] p 2519. See also: [12] at Note (26) at p 44 to the definition of diffusion coefficient on p 43.

133. **particle induced X-ray emission analysis, (PIXE)**

Measurement method [VIM 2.5] of X-ray analysis in which energies and intensities of characteristic X-radiation emitted by a test portion during irradiation.
with charged particles other than electrons are used to measure the amounts of elements in a material.

Note 1: The particle, inducing the X-radiation is sometimes explicitly mentioned, e.g. proton-induced X-ray emission analysis.

Note 2: Micro PIXE (μ-PIXE) uses highly collimated beams to analyse very small areas.

Source: [62].

134. particle-induced gamma-ray-emission analysis, (PIGE)

Measurement principle [VIM 2.4] in which the energies and intensities of characteristic prompt gamma-radiation emitted during nuclear reactions with charged particles other than electrons, is applied for measurement of amounts of elements in a material.

Note: The particle that induces gamma-rays may be explicitly mentioned, e.g. ‘proton-induced gamma-ray-emission analysis’.

Source: [63] p 546.

135. perturbed angular correlation spectrometry, (PAC)

perturbed directional correlation spectrometry

Measurement method [VIM 2.5] of gamma-ray spectrometry in which coincidence counting is used for measurement of parameters describing hyperfine interactions, with internal or external electrical or magnetic field gradients, of the spin of an intermediate level between two gamma-ray transitions in cascade emitted in the decay of a radionuclide.

Note 1: Perturbed angular correlation spectrometry is performed both in a time-differential (TDPAC) or time-integrated (TIPAC) mode of measurement.

Note 2: The parameters describing hyperfine interactions provide information on the chemical atomic environment of the decaying nucleus.

Source: [64] p 997.

136. perturbed directional correlation spectrometry

See: perturbed angular correlation spectrometry.

137. positron annihilation analysis, (PAA)

positron annihilation spectroscopy for chemical analysis, (PASCA)

Measurement principle [VIM 2.4] in which the annihilation of positrons is applied to study the microscopic structure of materials.
Note 1: Annihilation lifetime (See: positron lifetime spectrometry), Doppler broadening and angular correlation of annihilation radiation are measured in this technique.

Note 2: In the most common case of positron annihilation, two photons are created, each with energy equal to the rest energy of the electron or positron $(0.511 \text{ MeV} = 8.187 \times 10^{-14} \text{ J})$.

Note 3: Techniques based on PAA have been used particularly for the study of free volume in polymers.

Source: [65].

138. positron annihilation lifetime spectrometry, (PALS)

See: positron lifetime spectrometry.

139. positron annihilation spectroscopy for chemical analysis, (PASCA)

See: positron annihilation analysis.

140. positron emission tomography, (PET)

Imaging method based on the detection of pairs of gamma rays emitted indirectly by a positron-emitting isotopic tracer.

Note 1: A commonly used isotope nuclide is fluorine-18.

Note 2: Three-dimensional imaging is obtained using computed tomography.

Source: [66].

141. positron lifetime spectrometry, (PLS)

positron annihilation lifetime spectrometry, (PALS)

Measurement method [VIM 2.5] of positron annihilation analysis in which the time interval between the emission of positrons from a radioactive source and the detection of gamma rays due to annihilation of these positrons with electrons from the surrounding matter is the lifetime of the positron or positronium.

Source: [67] p 500.

142. prompt gamma radiation

Gamma radiation emitted during the de-excitation of a compound nucleus formed in a nuclear capture reaction.

143. prompt gamma-ray analysis, (PGA)

deprecated: prompt gamma activation analysis, (PGAA)
deprecated: prompt gamma neutron activation analysis, (PGNAA)
Measurement principle [VIM 2.4] in which gamma radiation emitted during the de-excitation of the compound nucleus formed by neutron capture is applied to measure the amounts of elements in a material.

Note: The measurement method is often denoted as prompt gamma-ray neutron activation analysis (PGNAA) or prompt gamma-ray activation analysis (PGAA) though the measurement method is not in agreement with the definition of activation analysis. The term prompt gamma-ray analysis (PGA) is therefore to be preferred.

Source: [38, 68].

144. pulse pile-up

Processing by a radiation counter of pulses resulting from the simultaneous absorption of independent particles or photons in a radiation detector resulting in the counting as one single particle or photon with energy between the individual energies and the sum of these energies.

Source: [69] p 655.

145. quenching correction

Correction for errors due to different quenching in radiation detectors for standards and samples.

Note: When using liquid scintillation detectors, these corrections can be based e.g. on the standard addition or sample channels ratio method or the use of automated external standardization.

Source: Adapted from [3] p 2523.

146. quenching in radiation detectors

Process of inhibiting continuous or multiple discharges following a single ionizing event in certain types of radiation detectors, particularly in Geiger-Müller counters.

Source: [70]. See: quenching correction.

147. radiation

Emission of energy as electromagnetic waves or as fast-moving subatomic particles.

Note: In radioanalytical chemistry, the term usually refers to radiation used and emitted during nuclear processes (e.g., radioactive decay, nuclear decay, nuclear fission).

Source: Adapted from [3] p 2523. See also: ionizing radiation.
148. radiation chemistry

Sub-discipline of chemistry which deals with the chemical effects of ionizing radiation.

Note: Radiation chemistry is distinguished from photochemistry which is associated with visible and ultraviolet electromagnetic radiation.

149. radiation counter

counter

Measuring system [VIM 3.2] for measuring radiation comprising a radiation detector, in which events caused by interaction of the radiation with the radiation detector result in electrical pulses, and the associated equipment for processing and counting the pulses.

Note: Often an expression is added indicating the type of radiation detector (e.g. ionization, scintillation, semiconductor).

Source: Adapted from [3] p 2516.

150. radiation detector

Measuring system [VIM 3.2] or material for the conversion of radiation energy to a kind of energy which is suitable for indication and/or measurement.

Note: Detectors are usually named by the principle of detection or kind of material, e.g. scintillation detector, semiconductor detector

Source: Adapted from [2] p 1540.

151. radiation filter

Material interposed in the path of radiation to modify the energy distribution of the radiation.

Source: Adapted from [2] p 1542.

152. radioactive

Property of a nuclide undergoing spontaneous nuclear transformations with the emission of radiation.

Note 1: Such a nuclide may be termed radionuclide.

Note 2: ‘Radioactive’ is also used to describe a material that includes a radionuclide.
153. **radioactive chain**

See: *decay chain*.

154. **radioactive decay**

Radiation decay in which particles or electromagnetic radiation are emitted or the nucleus undergoes spontaneous fission or electron capture.

155. **radioactive equilibrium**

See: *radioactive steady state*.

156. **radioactive purity**

See: *radionuclide purity*.

157. **radioactive series**

See: *decay chain*.

158. **radioactive source**

Radioactive material which is intended for use as a source of ionizing radiation.

Source: Adapted from [3] p 2526.

159. **radioactive steady state**

radioactive equilibrium
secular equilibrium

Among the radionuclides of a decay chain, the state which prevails when the ratios between the activities of successive radionuclides remain constant.

Note: This is not equilibrium in the strict sense since radioactive decay is an irreversible process.

160. **radioactivity**

Phenomenon of nuclides undergoing radioactive decay.

Source: Adapted from [3] p 2513.

161. **radioanalytical chemistry**

analytical radiochemistry
That part of analytical chemistry in which the application of radioactivity is an essential step in the analytical procedures.

Note 1: Use is made of nuclear processes (e.g., nuclear decay, nuclear fission), nuclear effects, radiation, and nuclear facilities, and of radiochemical and nuclear measurement techniques.

Note 2: Radioanalytical chemistry is part of radiochemistry.

162. radiochemical activation analysis

destructive activation analysis

Measurement method [VIM 2.5] of activation analysis, in which concentrations or mass contents of elements in a material are measured using a measurement model [VIM 2.48] with known nuclear constants, irradiation and radiation measurement parameters and the use of a calibrator with known property values and in which chemical separation is applied after the irradiation.

Source: [7] p 1583. See also: [73].

163. radiochemical purity

For a material, the fraction of the stated radionuclide present in the stated chemical form.

Amount of an isotope in a stated chemical form in a material divided by the total amount of isotopes in that stated chemical form.

Note 1: The unit of radiochemical purity is mol/mol = 1.

Note 2: The medical literature often defines radiochemical purity as the fraction of the radioactivity of a material in a stated chemical form. (See: [74] p347, and radionuclide purity.)

Source: Adapted from [3] p 2523.

164. radiochemical recoil effect

See: Szilard-Chalmers effect.

165. radiochemical separation

Separation by a chemical means of radionuclide(s) of a specific element from a mixture of radionuclides of other chemical elements.

166. radiochemical yield

Activity of a specified radionuclide of a specified element after its radiochemical separation divided by its activity originally present in the substance undergoing radiochemical separation.

Source: Adapted from [3] p 2526.

167. radiochemistry

Part of chemistry which deals with radioactive materials.

Note: Radiochemistry includes the production of radionuclides and their compounds by processing irradiated materials or naturally occurring radioactive materials, the application of chemical techniques to nuclear studies, and the application of radioactivity to the investigation of chemical, biochemical or any other problems.

168. radioenzymatic assay

Measurement principle [VIM 2.4] in which a radioactive substrate is applied to measure the catalytic activity of an enzyme.

169. radiograph

Visual representation of an object produced by placing the object between a source of ionizing radiation and a photographic plate, film or detector.

Source: Adapted from [3] p 2524.

Note: Radiographs are used in medicine and dentistry.

170. radiogravimetric analysis

Measurement principle [VIM 2.4] in which the activity of a precipitate is applied to measure its mass.

Source: Adapted from [3] p 2524.

171. radioiodination

Incorporation of a radionuclide of iodine into substance, or of covalently linking a radioiodinated substance to a substance.

Note: Commonly used radionuclides of iodine are 129I, 131I and 123I.

Source: Adapted from [3] p 2524.
172. **radioisotope**

A radioactive isotope (See: isotopes) of a specified element.

173. **radioisotope dilution analysis**

See: isotope dilution analysis.

174. **radioisotope induced X-ray emission analysis**

Measurement method [VIM 2.5] of X-ray analysis in which a radioactive source is used for irradiation of the sample.

Source: [19].

175. **radiolysis**

Chemical decomposition of materials by ionizing radiation.

176. **radiometric analysis**

Measurement principle [VIM 2.4] in which the activity of a radioactive component with known specific activity is applied for measurement of the amount of an element in a material.

177. **radiometric titration**

Titration in which a radioactive indicator is used to monitor the end-point of the titration.

178. **radionuclide**

Nuclide that is radioactive.

Note: When an element is specified the radionuclide is termed a radioisotope.

179. **radionuclide purity**

radionuclidic purity
radioactive purity
Activity of a stated radionuclide, including daughter products, in a material divided by the total activity of the material.

Source: Adapted from [3] p 2523.

Note 1: The SI unit of radionuclide purity is Bq/Bq = 1.

Note 2: Radionuclide purity is important for calibrators, isotopic tracers, and in pharmaceutical uses.

Example: Activity of 99mTc from a Mo generator with impurities 99Mo, 95Nb, 188Re, 198Au, etc. (Note that 99Tc is generated as a daughter product from 99Mo, directly or via 99mTc.)

180. radionuclidic purity

See: radionuclide purity.

181. radioreceptor assay

Measurement principle [VIM 2.4] in which labelled (See: isotopic label) and unlabelled molecules, assumed to bind to a receptor at random, are applied to measure the amount of an analyte by exposing a mixture of the sample and a known amount of the radiolabelled substance to a measured amount of receptors for the analyte.

Note: The analyte is typically a hormone.

Source: [79].

182. recoil

Nuclear phenomenon in which an atom or a particle undergoes a movement through a collision with, or the emission of, another particle or electromagnetic radiation.

Source: Adapted from [3] p 2524.

183. recoil effect

See: Szilard-Chalmers effect.

184. recovery time of a radiation counter

Period of time after the dead time of a radiation counter during which the output pulses are smaller than the original.

Note: Depending on the sensitivity of the counter some pulses in this period will not be counted.
185. **relative counting**

Measurement method [VIM 2.5] in which the *activity* of a sample is measured from the *counting rate* of the sample divided by the counting rate of a *radioactive source* of known activity.

Source: Adapted from [3] p 2525.

186. **relative counting efficiency**

Absolute counting efficiency of a given *radiation counter* divided by the absolute counting efficiency of a reference radiation counter.

187. **resolving time correction**

See: *dead time correction of a radiation counter*.

188. **resolving time of a radiation counter, τ**

Smallest time interval which elapses between the occurrence of two consecutive ionizing events, in order that the *radiation counter* can be capable of fulfilling its function for each of the two occurrences separately.

189. **resonance energy**

Minimum *energy* of a particle entering a *nuclear reaction*, required to form reaction products in one of their excited states.

Source: Adapted from [3] p 2525.

190. **resonance integral, I_X**

Integral, over all or some specified portion of the *resonance energy* range, of the *cross section* divided by the energy of a *radiation*.

\[
I_X = \int_{E_c}^{\infty} \sigma_X(E) \frac{dE}{E}
\]

where X is the nature of the radiation (*X = n* denotes neutron, *X = fis* denotes neutron induced fission), \(\sigma_X\) the cross section, and \(E_c\) the lower limit of energy (e.g. *effective cadmium cut-off energy*).

Note: In *radioanalytical chemistry*, the resonance integral *range* coincides with the definition of the *epithermal neutron* energy range.

191. **resonance neutron**

Neutron, the energy of which, corresponds to the *resonance energy* of a specified *nuclide* or element.

Note: If the nuclide is not specified, the term refers to a resonance neutron of ^{238}U.

192. **reversed isotope dilution analysis**

Isotope dilution analysis in which the amount of an *isotopic carrier* in a solution of a *radionuclide* is measured by addition of one of its stable isotopes.

Source: [41] p 122-124.

193. **saturation (in radiation chemistry)**

Of an irradiated element For for a specified *radionuclide*, the steady state reached when the *decay rate* of the nuclide formed is equal to its production rate.

Source: Adapted from [3] p 2525.

194. **saturation activity, A_s**

For a specified *radionuclide*, the maximum activity at saturation, $A_s = \sigma \times \Phi$ where σ is the *cross section* and Φ the *particle flux density*.

195. **scanning proton microscopy, (SPM)**

Measurement method [VIM 2.5] of *X-ray fluorescence analysis* in which protons are focused and collimated to form a micro beam to obtain an image of a surface.

196. **scavenging of radionuclides**

scavenging

In *radiochemistry*, the use of a precipitate to remove from solution by absorption or co-precipitation, a large fraction of one or more *radionuclides*.

Note: In *radiation chemistry* the term scavenging is used to denote binding of radicals or free electrons with a receptive (or reactive) material.

Source: Adapted from [3] p 2525.

197. **scintillation**

Burst of luminescence caused by an individual energetic particle.

Source: Adapted from [3] p 2525.
198. scintillation detector

Kind of radiation detector having a scintillator to measure ionizing radiation.

199. scintillator

Material in which scintillation occurs.

Note: A scintillator may be a solid or a liquid (See: liquid scintillation detector). See: scintillation detector.

200. secular equilibrium

See: radioactive steady state.

201. selectively-labelled isotopic tracer

An isotopically labelled compound is designated as selectively labelled when a mixture of isotopically substituted compounds is formally added to the analogous isotopically unmodified compound in such a way that the position(s) but not necessarily the number of each labelling nuclide is defined.

Note: A selectively labelled compound may be considered as a mixture of specifically-labelled isotopic tracers.

Source: [82] p 1893.

202. self-absorption factor

source efficiency

Intensity of radiation emitted by a source divided by intensity of radiation produced by radionuclides present in the source.

203. self-absorption of radiation

Absorption of radiation by the emitting source.

204. self-shielding

Decrease of particle flux density in the inner part of an object due to interactions in its outer layers.

Source: Adapted from [3] p 2525.
204.205. **semiconductor detector**

Kind of *radiation detector* using a semiconductor material, in which free electric charge carriers are produced along the path of incident *ionizing radiation*, in combination with a high voltage and electrodes for collection of these charge carriers.

206. **sensitive volume of a radiation detector**

That volume of a *radiation detector* where an incident radiant power produces a measurable output.

Source: [33] p 1751.

205.207. **solid phase antibody radioimmunoassay**

Measurement method [VIM 2.5] of *radioimmunoassay* employing an antibody, made into an *isotopic tracer* by labelling with a *radionuclide*, bound to a solid phase.

206.208. **source efficiency**

See: *self-absorption factor*.

207.209. **specific activity of a radionuclide, $A_s(R)$**

specific activity

$Activity$ of a specified *radionuclide* (R) per unit mass of that nuclide.

Note 1: It is implicitly assumed that the various isotopes (stable and radioactive ones) are present in the same chemical and physical form, and thus will behave fully identically in radiochemical processing and a radionuclide application, i.e. nuclidic exchange with other chemical forms is prohibited or at least very slow compared to the duration of the experiment.

Note 2: If the term “specific activity” is used without qualification it should be made clear whether it is of a material or of a radionuclide. See: *specific activity of a radionuclide in a material*.

Example: Specific activity of tritium (^3H) is $3.57 \times 10^{17} \text{ Bq kg}^{-1}$ (9.65 Ci mg^{-1}) [85].

specific activity of a radionuclide in a material, \(A_s(R,M) \)

Activity of a specified radionuclide \(R \) in a material \(M \) divided by the mass of that material.

Note 1: It is implicitly assumed that the various isotopes (stable and radioactive ones) are present in the same chemical and physical form, and thus will behave fully identically in radiochemical processing and a radionuclide application, i.e. nuclidic exchange with other chemical forms is prohibited or at least very slow compared to the duration of the experiment.

Note 2: The SI unit of specific activity is Bq kg\(^{-1}\), but specific activity is often expressed in unit s\(^{-1}\) g\(^{-1}\) or Ci mg\(^{-1}\). (Curie, symbol Ci, is a former unit of activity equal to exactly \(3.7 \times 10^{10} \) Bq.)

Note 3: Commercial preparations of isotopically-labelled molecules often quote ‘specific activity’ in Ci mmol\(^{-1}\). The correct term is molar activity of a radionuclide in a material.

Note 4: If the term “specific activity” is used without qualification it should be made clear whether it is of a material or of a radionuclide. See: specific activity of a radionuclide.

Example: Specific activity of tritium \((^3H) \) is \(3.57 \times 10^{17} \) Bq kg\(^{-1}\) (9.65 Ci mg\(^{-1}\)). [85]

Example: Certificate of analysis of adenosine 5'-triphosphate solution isotopically-labelled with \[^\gamma-33\text{P}] \) gives “Specific activity 370 MBq/g”

specifically-labelled isotopic tracer

Isotopic tracer in which the isotopic label is present in a specified position in the molecule.

Source: Adapted from [3] p 2526. See also: selectively-labelled isotopic tracer.

Note: The name of a specifically labelled compound is formed by inserting in square brackets the nuclide symbol(s), preceded by any necessary locant(s) (letters and/or numerals), before the name or preferably before the name for that part of the compound that is isotopically modified. Immediately after the brackets there is neither space nor hyphen, except that when the name, or a part of the name, requires a preceding locant, a hyphen is inserted.
Example: H^{36}Cl, hydrogen $\text{^{36}Cl}$chloride. $\text{Ge}^{2}\text{H}_{2}\text{F}_{2}$, difluoro$^{2}\text{H}_{2}$germane. $^{15}\text{N}\text{H}_{2}^{2}\text{H}_{2}$, $^{2}\text{H}_{1}^{15}\text{N}$ammonia.

Source: [82] p 1892.

240.212. stereospecifically-labelled isotopic tracer

Isotopic tracer in which the isotopic label is present in a stereo-specific position in the molecule.

Source: Adapted from [3] p 2526.

241.213. substoichiometric isotope dilution analysis

Isotope dilution analysis in which a substoichiometric amount of a radionuclide of the element to be measured is added to both a sample and to a calibrator and subsequently, after mixing, the specific activities of that radionuclide are measured in equal amounts of the sample and calibrator.

Source: [41] p 122-124.

242.214. synchrotron radiation induced X-ray fluorescence analysis

Measurement method [VIM 2.5] of X-ray fluorescence analysis in which synchrotron X- radiation is used to irradiate the substance.

Source: [87].

243.215. Szilard-Chalmers effect

Radiochemical recoil effect recoil effect

Rupture of the chemical bond between an atom and the molecule of which the atom is a part, as a result of nuclear reaction of that atom.

Source: Adapted from [3] p 2525. See also: [88] p 240.

244.216. thermal neutron

Neutron in thermal equilibrium with the medium in which it exists.

Note: Thermal neutrons have an average energy of approximately 0.025 eV and an average speed of 2200 m s$^{-1}$.

215.217. total reflection X-ray fluorescence analysis, (TXRF)

Measurement method [VIM 2.5] of X-ray fluorescence analysis in which a collimated X-ray flux impinges on a smooth surface under a grazing angle rendering total reflection is used to excite atoms in the top layers of the material for measurement of the amounts of elements.

Note: The method is highly sensitive because interfering X-rays of higher energies are refracted or adsorbed. Mass fractions of 10^{-12} (ng kg$^{-1}$) may be measured.

Source: [89].

216.218. two-site immunoradiometric assay

See: *two-site radioimmunoassay*.

217.219. two-site radioimmunoassay
two-site immunoradiometric assay

Radioimmunoassay in which two sets of antibodies, one of which is isotopically labelled (See: *isotopic label*), combine with different immunoreactive sites of an antigen molecule.

Source: [90]. See also: See also: [46] 4.1.12.

218.220. uniformly-labelled isotopic tracer

Isotopic tracer in which the *isotopic label* is uniformly distributed over its possible positions in a molecule.

219.221. wavelength-dispersive X-ray fluorescence analysis

Measurement method [VIM 2.5] of X-ray fluorescence analysis in which the wavelength spectrum of the emitted *radiation* is used to measure the amounts of elements.

Note: A diffraction grating, or crystal is used to obtain the spectrum.

Source: [91].

220.222. Westcott cross section

See: *effective thermal cross section*.

221.223. Wilzbach labelling

Isotopic labelling (See: *isotopic label*) of a substance by exposing it to tritium gas.
222.224. X-ray absorption analysis, (XAA)
X-ray absorption spectroscopy, (XAS)

Measurement principle [VIM 2.4] of X-ray analysis in which the absorption spectrum is used to measure the number of atoms, species and other parameters of chemical elements.

Note 1: XAS measures changes in the linear absorption coefficient of an element in a sample as a function of incident photon energy.

Note 2: XAS requires a highly monochromatic (with $\Delta E/E \approx 10^{-4}$ to 10^{-5}), high flux X-ray beam.

Source: [25, 26]. See also: X-ray absorption near edge structure,

223.225. X-ray absorption edge
absorption edge

Increase in X-ray absorption observed at the energy at which a strongly bound electron is released.

Source: [92].

224.226. X-ray absorption near edge fine structure

See: X-ray absorption near edge structure.

225.227. X-ray absorption near edge structure, (XANES)
X-ray absorption near edge fine structure

Measurement method [VIM 2.5] of X-ray absorption analysis in which the fine structure of the adsorption spectrum in the range 30 below to 50 eV above the adsorption edge is used to measure parameters describing the chemical state, coordination environment, and local geometry distortion for the X-ray absorbing atom.

Note 1: The method uses synchrotron radiation.

Note 2: The wavelength of the emitted photoelectrons is longer than the interatomic distances between the absorbing atom and its nearest neighbours.

Source: [25, 92]. See also: near edge X-ray absorption fine structure, extended X-ray absorption fine structure.

226.228. X-ray absorption spectroscopy, (XAS)

See: X-ray absorption analysis.
227.229. X-ray analysis

Measurement principle [VIM 2.4] in which characteristic X-radiation, produced upon irradiation of a material with elementary particles or photons, is applied to measure amounts of elements in a material.

Source: [62, 93].

228.230. X-ray computed micro-tomography, (XCMT) X-ray micro-tomography, (XMT)

Measurement method [VIM 2.5] based on the transmission of X-rays to obtain three-dimensional images of a sample.

Note: Spatial resolution is in the range 100 nm to 10 μm.

Source: [4].

229.231. X-ray diffraction analysis X-ray diffraction, (XRD)

Measurement method [VIM 2.5] using diffraction of X-radiation to obtain the spatial arrangement of atoms in a crystalline sample.

Note 1: Bragg reflection follows \(n\lambda = 2d \sin \theta \) where \(\lambda \) is the X-ray wavelength, \(d \) is the spacing between atomic planes and \(\theta \) is the angle of diffraction.

Note 2: Copper K-α radiation (\(\lambda = 0.15406 \) nm, \(E = 8.04 \) keV) is typically used for routine XRD.

230.232. X-ray diffraction, (XRD)

See: X-ray diffraction analysis.

231.233. X-ray fluorescence analysis X-ray fluorescence spectroscopy

Measurement method [VIM 2.5] of X-ray fluorescence used to measure amounts of elements in a material.

Note: Micro-XRF (μ-XRF) analysis uses highly brilliant X-ray sources (synchrotron source and spot size 100 nm to 2 μm) and microfocussing X-ray optics to give fg to ag detection limits [4].

Source: [94].
232.234. X-ray fluorescence microscopy, (XRM)

Measurement method [VIM 2.5] of X-ray fluorescence to obtain quantitative and spatial information of elements in a sample.

Note 1: X-ray beam energies of 5 to 25 keV excite core level vacancies and promote hard X-ray emission for which the fluorescence yield is high.

Note 2: Spatial resolution is typically in the range from 200 nm to 10 μm, but using specialised probes at synchrotron facilities the lower limit can be reduced to tens of nm [95].

Source: [4].

233.235. X-ray fluorescence spectroscopy

See: X-ray fluorescence analysis.

234.236. X-ray fluorescence, (XRF)

Emission of characteristic X-radiation by an atom after photoemission of inner-shell electrons and refilling of the vacated energy level by outer-shell electrons.

Note: X-ray fluorescence is the measurement principle [VIM 2.4] of X-ray fluorescence analysis and X-ray fluorescence microscopy.

Source: [96, 97].

235.237. X-ray micro-tomography, (XMT)

See: X-ray computed micro-tomography.

LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>decay constant of a radionuclide</td>
<td>42</td>
</tr>
<tr>
<td>σ</td>
<td>cross section (in radiation chemistry)</td>
<td>37</td>
</tr>
<tr>
<td>τ</td>
<td>mean life of a radionuclide</td>
<td>107</td>
</tr>
<tr>
<td>τ</td>
<td>resolving time of a radiation counter</td>
<td>188</td>
</tr>
<tr>
<td>A</td>
<td>activity of a radioactive substance</td>
<td>12</td>
</tr>
<tr>
<td>A_{m}(R)</td>
<td>molar activity of a radionuclide</td>
<td>110</td>
</tr>
<tr>
<td>A_{m}(R,M)</td>
<td>molar activity of a radionuclide in a material</td>
<td>111</td>
</tr>
<tr>
<td>A_{s}</td>
<td>saturation activity</td>
<td>194</td>
</tr>
<tr>
<td>A_{S}(R)</td>
<td>specific activity of a radionuclide</td>
<td>207</td>
</tr>
<tr>
<td>A_{S}(R,M)</td>
<td>specific activity of a radionuclide in a material</td>
<td>208</td>
</tr>
<tr>
<td>b</td>
<td>barn</td>
<td>18</td>
</tr>
<tr>
<td>F</td>
<td>fluence</td>
<td>69</td>
</tr>
<tr>
<td>H</td>
<td>fluence</td>
<td>69</td>
</tr>
<tr>
<td>I_{R}</td>
<td>resonance integral</td>
<td>190</td>
</tr>
<tr>
<td>j</td>
<td>particle (or photon) flux density</td>
<td>132</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>J_E</td>
<td>energy flux density</td>
<td>59</td>
</tr>
<tr>
<td>k</td>
<td>decay constant of a radionuclide</td>
<td>42</td>
</tr>
<tr>
<td>$t_{1/2}$</td>
<td>half life of a radionuclide</td>
<td>78</td>
</tr>
<tr>
<td>$T_{1/2}$</td>
<td>half life of a radionuclide</td>
<td>78</td>
</tr>
<tr>
<td>t_d</td>
<td>dead time of a radiation counter</td>
<td>40</td>
</tr>
<tr>
<td>AMS</td>
<td>accelerator mass spectrometry</td>
<td>7</td>
</tr>
<tr>
<td>DNAA</td>
<td>delayed-neutron activation analysis</td>
<td>48</td>
</tr>
<tr>
<td>DNA</td>
<td>delayed-neutron analysis</td>
<td>48</td>
</tr>
<tr>
<td>DNC</td>
<td>delayed-neutron counting</td>
<td>48</td>
</tr>
<tr>
<td>EDS</td>
<td>energy-dispersive X-ray spectroscopy</td>
<td>63</td>
</tr>
<tr>
<td>EDX</td>
<td>energy-dispersive X-ray fluorescence analysis</td>
<td>63</td>
</tr>
<tr>
<td>EDXA</td>
<td>energy-dispersive X-ray analysis</td>
<td>63</td>
</tr>
<tr>
<td>EDXS</td>
<td>energy-dispersive X-ray spectroscopy</td>
<td>63</td>
</tr>
<tr>
<td>EXAFS</td>
<td>extended X-ray absorption fine structure</td>
<td>67</td>
</tr>
<tr>
<td>IBA</td>
<td>ion beam analysis</td>
<td>87</td>
</tr>
<tr>
<td>IDA</td>
<td>isotope dilution analysis</td>
<td>91</td>
</tr>
<tr>
<td>NAA</td>
<td>neutron activation analysis</td>
<td>116</td>
</tr>
<tr>
<td>NCA</td>
<td>no carrier added</td>
<td>123</td>
</tr>
<tr>
<td>NDP</td>
<td>neutron depth profiling</td>
<td>118</td>
</tr>
<tr>
<td>NEXAFS</td>
<td>near edge X-ray absorption fine structure</td>
<td>115</td>
</tr>
<tr>
<td>PAA</td>
<td>positron annihilation analysis</td>
<td>137</td>
</tr>
<tr>
<td>PAC</td>
<td>perturbed angular correlation spectrometry</td>
<td>135</td>
</tr>
<tr>
<td>PALS</td>
<td>positron annihilation lifetime spectrometry</td>
<td>141</td>
</tr>
<tr>
<td>PASCA</td>
<td>positron annihilation spectroscopy for chemical analysis</td>
<td>137</td>
</tr>
<tr>
<td>PET</td>
<td>positron emission tomography</td>
<td>140</td>
</tr>
<tr>
<td>PIGE</td>
<td>particle-induced gamma-ray-emission analysis</td>
<td>134</td>
</tr>
<tr>
<td>PIXE</td>
<td>particle induced X-ray emission analysis</td>
<td>133</td>
</tr>
<tr>
<td>PGA</td>
<td>prompt gamma-ray analysis</td>
<td>143</td>
</tr>
<tr>
<td>PLX</td>
<td>positron lifetime spectrometry</td>
<td>141</td>
</tr>
<tr>
<td>SPM</td>
<td>scanning proton microscopy</td>
<td>195</td>
</tr>
<tr>
<td>TDPAC</td>
<td>time-differential perturbed angular correlation spectrometry</td>
<td>135</td>
</tr>
<tr>
<td>TIPAC</td>
<td>time-integrated perturbed angular correlation spectrometry</td>
<td>135</td>
</tr>
<tr>
<td>XAA</td>
<td>X-ray absorption analysis</td>
<td>222</td>
</tr>
<tr>
<td>XANES</td>
<td>X-ray absorption near edge structure</td>
<td>225</td>
</tr>
<tr>
<td>XCMS</td>
<td>X-ray computed micro-tomography</td>
<td>228</td>
</tr>
<tr>
<td>XAS</td>
<td>X-ray absorption spectroscopy</td>
<td>222</td>
</tr>
<tr>
<td>XMT</td>
<td>X-ray micro-tomography</td>
<td>228</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
<td>229</td>
</tr>
<tr>
<td>XRF</td>
<td>X-ray fluorescence</td>
<td>234</td>
</tr>
<tr>
<td>XRM</td>
<td>X-ray fluorescence microscopy</td>
<td>232</td>
</tr>
</tbody>
</table>

REFERENCES

Dear Jürgen

On behalf of my co-authors I have the pleasure in submitting Revision 3 of “Vocabulary of radioanalytical methods (IUPAC Recommendations 201x)”. I apologise for the mix-up in the submission of R2 over the reply to reviewers and version with track changes which were submitted but apparently did not make it to them. Our rebuttal and track change version are together in one manuscript submitted as "Author's Response to Reviewers" as instructed.

Yours sincerely

Emeritus Professor D Brynn Hibbert,
School of Chemistry
b.hibbert@unsw.edu.au
+61 23856774