
Determination of Thermodynamic and Structural 

Properties of Polymers by Scattering Techniques

09.10.2017 / Kuala Lumpur

Volker Abetz1,2

1University of Hamburg, Institute of Physical Chemistry, 

Martin-Luther-King-Platz 6, 

20146 Hamburg, Germany
2Helmholtz-Zentrum Geesthacht, Institute of Polymer Research, 

Max-Planck-Str. 1, 

21502 Geesthacht, Germany

Copyright © 2017 by Volker Abetz



Where to find more Informations…

Literature used for this course:

• Gert Strobl, 

The Physics of Polymers: Concepts for Understanding their Structures and Behavior, 

Springer-Verlag, Berlin Heidelberg New York 1996 (ISBN 3-540-60768-4)

• Michael Rubinstein and Ralph Colby,

Polymer Physics,

Oxford University Press, Oxford 2014 (ISBN 978-0-198-52059-7)

• Charles C. Han and A. Ziya Akcasu, 

Scattering and Dynamics of Polymers: Seeking Order in Disordered Systems,

John Wiley & Sons (Asia) Pte Ltd 2011 (ISBN 978-0-470-82482-5)

• Paul C. Hiemenz and Timothy P. Lodge, 

Polymer Chemistry,

CRC Press Taylor & Francis Group, Boca Raton 2007 (ISBN 978-1-574-44779-8)

2Copyright © 2017 by Volker Abetz



Introduction

Absolute homogeneous system: particle is not distinguishable from matrix →  no scattering

Prerequite for scattering: contrast

Different mechanisms, depending on the probe (photons, X-ray photons, neutrons, electrons,… )

and depending on interactions (i.e. elastic (Rayleigh scattering), inelastic (i.e. Raman scattering)…)

Here we consider only elastic scattering

Relevant physical properties for different scattering techniques:

• Light scattering: polarizability (which relates to refractive index)

• X-ray scattering: electron density

• Neutron scattering: scattering length of nuclei

Primary beam Transmitted and forward scattered beam

scattered beam
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Light Scattering in Nature
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Concentration Fluctuations in 

Dilute Polymer Solutions
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Concentration Fluctuations

f0: average volume fraction

6

න

𝑉

𝛿𝜙𝑑𝑉 = 0

Space coordinate

Free energy/enthalpy is…

…no function of space …a function of space as the composition is

a function of space!
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Scattering Geometry

2

incident beam, ki:

waves are in phase

scattered beam, kf :

phase relation (interference) of the waves

depends on distance of scatterers and

angle of observation

Polymer in dilute solution

𝒒:= 𝒌𝒇 − 𝒌𝒊Scattering vector:

𝒌𝒇 ≈ 𝒌𝒊 =
2𝜋

𝜆
Elastic scattering:

𝑞 = 𝒒 =
4𝜋

𝜆
𝑠𝑖𝑛𝜃

Scattering angle:    2Q
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Some Definitions

Differential scattering cross-section per unit volume of the sample: Σ 𝒒 :=
1

𝑉

𝑑𝜎

𝑑Ω
=
1

𝑉

𝐼(𝒒)𝐴2

𝐼0

Scattering function, scattering law: 𝑆 𝒒 :=
𝐼(𝒒)

𝐼𝑚𝒩𝑚

Σ 𝒒 = 𝑐𝑚
𝑑𝜎

𝑑Ω
𝑚

𝑆(𝒒)

𝑐𝑚 =
𝒩𝑚

𝑉

V: Volume

I0: Intensity of incident beam

A: distance between scatterer and detetctor

I(q): scattering intensity at q

Im:   scattering intensity of one particle or monomer
Nm: total umber of particles or monomers in sample

<cm>: mean number density of particles / monomers

𝑑𝜎

𝑑Ω 𝑚
: Differential scattering cross section

per particle/monomer

Σ 𝒒 ≡ 𝑅𝜃 „Rayleigh Ratio“
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From Scattering Amplitude to

Structure Function

𝑆 𝒒 =
1

𝒩𝑚
𝐶 𝒒 2

𝐶(𝒒) =

𝑖=1

𝒩𝑚

𝑒𝑥𝑝 𝑖𝒒𝒓𝒊

𝑆 𝒒 =
1

𝒩𝑚


𝑖,𝑗=1

𝒩𝑚

𝑒𝑥𝑝 𝑖𝒒(𝒓𝒊 − 𝒓𝒋)

𝜑𝑖 = 𝑞𝑟𝑖 Phase of the scattered wave by particle i

𝐼 𝒒 ∝ 𝐶 𝒒 2

𝐶(𝒒) = න

𝑉

𝑒𝑥𝑝 𝑖𝒒𝒓 ∙ 𝑐𝑚 𝒓 − 𝑐𝑚 𝑑3𝒓

𝑆(𝒒) =
1

𝒩𝑚
ඵ

𝑉 𝑉

𝑒𝑥𝑝 𝑖𝒒(𝒓′ − 𝒓′′ ∙ 𝑐𝑚 𝒓′ − 𝑐𝑚 ∙ 𝑐𝑚 𝒓′′ − 𝑐𝑚 𝑑3𝒓′𝑑3𝒓′′

Scattering amplitude

from discrete positions

to

Continuum by introduction of particle number

density distribution function cm(r)
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From Pair Correlation Function to

Structure Function

𝑐𝑚 𝒓′ 𝑐𝑚 𝒓′′ = 𝑐𝑚 𝒓′ − 𝒓′′ 𝑐𝑚 0

𝒓 = 𝒓′ − 𝒓′′

𝑆(𝒒) =
1

𝑐𝑚
න

𝑉

𝑒𝑥𝑝 𝑖𝒒𝒓 ∙ 𝑐𝑚 𝒓 𝑐𝑚(0) − 𝑐𝑚
2 𝑑3𝒓

𝑔(𝒓)𝑑3𝒓

𝑔 𝒓 = 𝛿 𝒓 + 𝑔′(𝒓)

𝑔 𝒓 → ∞ → 𝑐𝑚 𝑐𝑚 𝒓 𝑐𝑚(0) = 𝑐𝑚 ∙ 𝑔(𝒓)

𝑆(𝒒) = න

𝑉

𝑒𝑥𝑝 𝑖𝒒𝒓 ∙ 𝑔(𝒓) − 𝑐𝑚 𝑑3𝒓

Pair correlation function g(r)

Probability, starting from a particle to find itself or another particle in a distance r in the volume element d3r

Structure function is the FT of pair correlation function

d(r): Self-contribution

g‘(r): contributions of other particles or monomers

𝑆 𝒒 → ∞ → 1 (only self-contribution contributes)
10

Structure function is the FT of space

dependent correlation function of particle

number density
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Pair correlation function and scattering function for isotropic systems

𝑔 𝒓 = 𝑔 𝒓 ≔ 𝑔 𝑟

𝑆 𝒒 = 𝑆 𝒒 ≔ 𝑆 𝑞

𝑆(𝑞) = න

𝑟=0

∞
𝑠𝑖𝑛𝑞𝑟

𝑞𝑟
4𝜋𝑟2∙ 𝑔(𝑟) − 𝑐𝑚 𝑑𝑟

11

From Pair Correlation Function to

Structure Function
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Guinier‘s Law

𝒩𝑚 = 𝑁 ∙ 𝒩𝑝

𝑆 𝒒 =
1

𝒩𝑚


𝑖,𝑗=1

𝒩𝑚

𝑒𝑥𝑝 𝑖𝒒(𝒓𝒊 − 𝒓𝒋)

=
1

𝒩𝑝𝑁
𝒩𝑝 

𝑖,𝑗=1

𝑁

𝑒𝑥𝑝 𝑖𝒒(𝒓𝒊 − 𝒓𝒋)

Series expansion for low q omitting higher than quadratic terms leads to:

𝑆 𝒒 ≈
1

𝑁


𝑖,𝑗=1

𝑁

1 − 𝑖𝒒(𝒓𝒊 − 𝒓𝒋) +
1

2
𝒒(𝒓𝒊 − 𝒓𝒋)

2

For isotropic systems: linear terms vanishes:

𝒒(𝒓𝒊 − 𝒓𝒋)
2
=
1

3
𝑞2 𝒓𝒊 − 𝒓𝒋

2 𝑆(𝒒) ≈
1

𝑁
𝑁2 −

𝑞2

6


𝑖,𝑗=1

𝑁

𝒓𝒊 − 𝒓𝒋
2

System contains Nm monomers distributed on Np particles/polymers with N monomers (degree of polymerization):

in dilute solution interference between particles negligible

12Copyright © 2017 by Volker Abetz



Guinier‘s Law

𝑅𝑔
2 =

1

2𝑁2 

𝑖,𝑗=1

𝑁

𝒓𝒊 − 𝒓𝒋
2
=
1

𝑁


𝑖=1

𝑁

𝒓𝒊 − 𝒓𝒄
2

𝑆 𝒒 ≈ 𝑁 1 −
𝑞2𝑅𝑔

2

3
+⋯ = 𝑁𝑃(𝒒)

𝒓𝒄 =
1

𝑁


𝑖=1

𝑁

𝒓𝒊

low q region, or more precisely qRg << 1, gives information about molecular weight ( N) and size (radius of gyration)

of the diluted colloids/polymers

rc: space vector of center of gravity

P(q): Form factor, describes intraparticular interferences
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P() for random coils in THF and 0 = 680 nm
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Intraparticular Interference: 

Form factor P() or P(q)



incident light:

waves are in phase

scattered light:

phase relation (interference) of the waves

depends on distance of scatterers and 

angle of observation
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S(0)-1

0

S(q)-1

Isothermal and Osmotic Compressibilities

from Forward Scattering

𝑆 𝑞 → 0 =
1

𝒩𝑚
න

𝑉

𝑒𝑥𝑝 𝑖𝑞𝑟 ∙ 𝑔 𝑟 − 𝑐𝑚 𝑑3𝑟

2

=
𝒩𝑚 − 𝒩𝑚

2

𝒩𝑚
=

𝒩𝑚
2 − 𝒩𝑚

2

𝒩𝑚

Fluctuation theory relates particle fluctuations to isothermal compressibility kT:

𝜅𝑇 =
𝜕 𝑐𝑚
𝜕𝑝

𝑇

𝒩𝑚
2 − 𝒩𝑚

2

𝒩𝑚
= 𝑘𝑇𝜅𝑇

𝑆(𝑞 → 0) = 𝑘𝑇𝜅𝑇

𝑆(𝑞 → 0) = 𝑘𝑇𝜅𝑜𝑠𝑚

General valid for single component systems, independent of the state of order

(gas, liquid, solid (amorphous, crystalline)

Analogous for (polymer) solutions: forward scattering is related to the osmotic compressibility kosm.

𝜅𝑜𝑠𝑚 =
𝜕 𝑐𝑚
𝜕Π

𝑇

q2

16
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How to Get the Structure Function

from Measured Scattering Intensities

Differential scattering cross-section per unit volume of the sample: Σ 𝒒 =
1

𝑉

𝑑𝜎

𝑑Ω
=
1

𝑉

𝐼(𝒒)𝐴2

𝐼0

Scattering function, scattering law: 𝑆 𝒒 =
𝐼(𝒒)

𝐼𝑚𝒩𝑚

Σ 𝒒 = 𝑐𝑚
𝑑𝜎

𝑑Ω
𝑚

𝑆(𝒒)

𝑑𝜎

𝑑Ω 𝑚
:  ?    „contrast“

In light scattering: „Rayleigh Ratio“

17Copyright © 2017 by Volker Abetz



Contrast Factor for Light Scattering

𝑑𝜎

𝑑Ω
𝑚

=
𝜋2

𝜆0
4

𝑛2 − 𝑛𝑠
2 2

𝑐𝑚
2

𝑐𝑚𝛿𝛼 = 𝜀0 𝑛2 − 𝑛𝑠
2

𝑑𝜎

𝑑Ω
𝑚

=
𝜋2(𝛿𝛼)2

𝜀0
2𝜆0

4

𝑛2 − 𝑛𝑠
2 ≈

𝑑𝑛2

𝑑𝑐𝑚
𝑐𝑚 = 2𝑛𝑠

𝑑𝑛

𝑑𝑐𝑚
𝑐𝑚

𝑑𝜎

𝑑Ω
𝑚

=
4𝜋2𝑛𝑠

2

𝜆0
4

𝑑𝑛

𝑑𝑐𝑚

2

Σ(𝒒) =
4𝜋2𝑛𝑠

2

𝜆0
4 𝑐𝑚

𝑑𝑛

𝑑𝑐𝑚

2

𝑆(𝒒)

d: difference between polarizabilities of monomer/particle and matrix

e0: dielectric permitivity in vacuum

0: wavelength of light in vacuum

n: referactive index of particle or monomer

ns: refractive index of matrix (solvent)
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Contrast Factor for Light Scattering

𝑐𝑚 = 𝑐
𝑁𝐿
𝑀𝑚

Σ 𝒒 = 𝐾𝑙𝑀𝑚𝑐𝑆(𝒒)

𝐾𝑙 =
4𝜋2𝑛𝑠

2

𝜆0
4𝑁𝐿

𝑑𝑛

𝑑𝑐

2

: 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑙𝑖𝑔ℎ𝑡 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔

c: concentration by weight (mass)

Mm: mass of particle or monomer
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Contrast Factor for X-ray Scattering

𝑑𝜎

𝑑Ω
𝑚

= 𝑟𝑒
2(Δ𝑍)2

𝑟𝑒 = 2.81 ∙ 10−15𝑚

∆𝑍 2 = 𝜌𝑒,𝑚 − 𝜌𝑒,𝑠
2
𝑣𝑚
2

Σ 𝒒 = 𝐾𝑥𝑀𝑚𝑐𝑆(𝒒)

𝐾𝑥 = 𝑟𝑒
2 𝜌𝑒,𝑚 − 𝜌𝑒,𝑠

2
𝑣𝑚
2
𝑁𝐿

𝑀𝑚
2 : 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑋 − 𝑟𝑎𝑦 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔

Electron radius

DZ: difference between number of electrons in particle or monomer 

and displaced matrix

e,m: electron density of particle or monomer

e,s: electron density of matrix or solvent
vm: volume of monomer or particle
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Electron Density Distribution Function

in X-ray Scattering

𝑍𝑚𝑐𝑚 𝒓 = 𝜌𝑒(𝒓)

Σ 𝒒 = 𝑟𝑒
2න

𝑉

exp(𝑖𝒒𝒓) ∙ 𝜌𝑒 𝒓 𝜌𝑒 0 − 𝜌𝑒
2 𝑑3𝒓

𝑆 𝒒 =
1

𝑐𝑚
න

𝑉

exp(𝑖𝒒𝒓) ∙ 𝑐𝑚 𝒓 𝑐𝑚 0 − 𝑐𝑚
2 𝑑3𝒓

𝑑𝜎

𝑑Ω
𝑚

= 𝑍𝑚
2 𝑟𝑒

2
For single component system

This is analogous to

21Copyright © 2017 by Volker Abetz



Contrast Factor for Neutron Scattering

𝑑𝜎

𝑑Ω
𝑚

= 

𝑖

𝑏𝑖

2

Σ 𝒒 = 𝐾𝑛𝑀𝑚𝑐𝑆(𝒒)

𝐾𝑛 = 

𝑖

𝑏𝑖 −

𝑗

𝑏𝑗

2
𝑁𝐿

𝑀𝑚
2 : 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑛𝑒𝑢𝑡𝑟𝑜𝑛 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔

Σ 𝒒 = න

𝑉

exp(𝑖𝒒𝒓) ∙ 𝜌𝑛 𝒓 𝜌𝑛 0 − 𝜌𝑛
2 𝑑3𝒓

n(r) : „scattering length density“ (for coherent part of neutron scattering)

bi: scattering length of atom i in the monomer
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Kuhn‘s „square root law“ for a „random walk“ polymer

𝑅𝑔
2 =

1

6
𝑁𝑙2

𝑅𝑔 ∝ 𝑁 = 𝑁1/2

„poor solvent condition“                   „Theta condition“                           „good solvent condition“

𝑅𝑔 ∝ 𝑁3/5

„Flory Radius“

( ) FeF aNbvNR 5351253 

–condition: chain shows unperturbed dimensions, 

excluded volume interactions are screened

chain segments „feel“ excluded

volume interactions
23

swell in

good solvent

deswell in

poor solvent

𝑅𝑔 ∝ 𝑁1/3

Copyright © 2017 by Volker Abetz



Scaling Relation between Radius of

Gyration and Molecular Weight

0.5 (Theta-Solvent (Q-Solvent))

>0.5 (good solvent)

Polystyrene in different solvents

24
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Excluded volume ve: volume, into which no other segment can penetrate

Excluded volume can be associated with a potential: me

e

m ckTv

melt

solution

-150 -100 -50 0 50 100 150

0.0

0.5

1.0

s
e
g
m

e
n
t 
d
e
n
s
ity

 [
a
.u

.]

space coordinate [a.u.]

Excluded Volume

00

0






x

e

m

x

m

xd

d

xd

dc

>0 : chain contraction

(bad solvent)

=0 : Q- condition

<0 : chain expansion

(good solvent)

00 



xd

d

xd

dc e

mm Q- condition
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Chain in Good Solvent

Excluded volume interactions lead to chain expansion:

3

2

3 R

N
kTv

R

N
NkTvcNkTvNE eeme

e

m 

Chain expansion leads to reduction of conformational entropy (cf. Entropy elasticity)

)(ln RpkS 

Gauß: 
2
0

2

2

32
3

2

02

3
)(

R

R

e
R

Rp



















Reference state: ideal chain

const
Nb

R
kconst

R

R
kS 

2

2

2

0

2

2

3

2

3
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Chain adopts an end-to-end distance where the Free Energy F is minimal:

TSEF 

24

2

330
Nb

R
kT

R

N
kTv

R

F
e 





2355 bvNRR eF 

Flory-radius: ( ) FeF aNbvNR 5351253 

aF: effective segment length

Chain in Good Solvent
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Effect of excluded volume and repulsive forces very large

but: independent of chain extension

(average monomer density homogeneous)

 Random-coil model with                           well obeyed.

(Confirmed by neutron scattering with deuterated chains)

Concentrated Solutions and 

Polymer Melts
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Small Angle Neutron Scattering

Deuterium-Labelling

„Viscibility“ of a Polymer Chain in Bulk

29

0                   1                      2   q(1/nm)

0.001
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0                   1                      2   q(1/nm)
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What we can learn from the

Contrast Factor …

Σ 𝒒 = 𝐾𝑙,𝑥,𝑛𝑀𝑚𝑐𝑆(𝒒)

Σ 𝒒 =
1

𝑉

𝑑𝜎

𝑑Ω
=
1

𝑉

𝐼(𝒒)𝐴2

𝐼0

Kl,x,n always contains a difference (fluctuation) between the corresponding

scattering properties of the particle and the matrix

The fluctuation of polarisability d, or refeactive index dn, electron density DZ, scattering length DSb,…

can be related to the fluctuation of density d or concentration dc.

Density and concentration fluctuations are somehow related to fluctuations of

the free energy dF and free enthalpy dG.

As an example, we choose static light scattering….
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Clausius-Mosotti-Equation and Lorenz-Lorentz-Equation relate microscopic property (polarisability ) with 

macroscopic properties (relative dielectric constant e, refractive index n):




e
M

N
n L411 2  for ee  2n Maxwell

: density

M: molecular weight

: polarisability

: magnetic permeability number (1 for organics)

e: relative dielectric constant

n: refractive index

nnn ddded 22  ( ) ( )2
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2
2 d


d 










d

dn
n

Average of squared density fluctuations

Fluctuation Theory (Einstein, Debye)
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Fluctuation Theory (Einstein, Debye)
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p,T: constant
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Fluctuation theory for solutions

Replacement of density  by concentration c

only concentration fluctuations are relevant to the scattering of interest:
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p,T: constant

Fluctuation Theory (Einstein, Debye)
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dilute solution

(virial expansion of c): 
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d 2211 VnVndV 

n1, V1: mole number, volume of solvent

n2, V2: mole number, volume of solute

dV: incremental volume of the fluctuation

: chemical potential

Fluctuation Theory (Einstein, Debye)

p,T: constant
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Contrast factor

Rayleigh Ratio

Fluctuation Theory (Einstein, Debye)

𝐾𝑙𝑐

𝑅𝜃
𝑐 → 0 =

1

𝑀
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for x << 1:  1/(1-x)  1+x: 

Zimm-Equation

3
1

)(

1
22 qR

qP

g


2
2

2

1
2 1

3
g

w

Kc q
A c R

R M

  
     
  

Zimm-Equation can be used in principle for different scattering techniques

Most often used in light scattering

Σ 𝒒 = 𝑅𝜃 = 𝐾𝑙𝑀𝑚𝑐𝑆 𝒒 = 𝐾𝑙𝑀𝑚𝑐𝑁𝑃 𝒒 = 𝐾𝑙𝑀𝑐𝑃 𝒒

)(

11

qPMR

cK l 


𝐾𝑙𝑐

𝑅𝜃
𝑞 → 0 =

1

𝑀

Fluctuation Theory (Einstein, Debye)
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Zimm-Plot of Polystyrene in Toluene

Polystyrene, Mw = 3 .105 g/mol in toluene at 25 °C and λ0 = 632 nm.

A2 = 3.8.10-4 cm3mol/g; <Rg
2>z = 50 nm; 

q2 in cm-2; c in g/cm3. 

2A2

2

3

g

w

R

M
1/Mw

c = 0

0            1             2            3            4            5            6            7             8            9     10

12

10

8

6

4

2

1010 q2/3 + 500 c/(gcm3)

106 Kc/R(q)

 = 0

c = 0.0015

c = 0.0030

c = 0.0045

c = 0.0060

c = 0.0075 = 90°

 = 180°
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Structure Factor of Polymer Blends
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Σ 𝑞 = 𝐾𝑙𝑀𝑚𝑐𝑆 𝑞

𝜕2𝐺

𝜕𝑐2
= 𝑓(𝑐, 𝑞, … )

Volume fraction : 𝜙𝐴 =
𝑛𝐴𝑉𝐴
σ𝑖 𝑛𝑖𝑉𝑖

=
𝑛𝐴𝑉𝐴
𝑉

=
𝑛𝐴𝑀𝐴

𝜌𝐴𝑉
=
𝑐𝐴
𝜌𝐴

≡
𝑐

𝜌
= 𝜙

cA: concentration in the mixture, blend

A: bulk density of the pure component

The free enthalpy of a mixture is considered for subvolumes vsub of the total volume in such a way that these

subvolumes are still large enough for statistical thermodynamic considerations, but their composition may

deviate from the average. In this way, the total free enthalpy of a mixture with local compositional fluctuations

can be described.

Note, it is these fluctuations which can be observed by scattering! They are related with local deviations of the

Free enthalpy from the mean free enthalpy of a nonfluctuating system.

So next we look at an expression for the free enthalpy of a mixture. We use a lattice theory and replace

concentration by volume fraction:

and also c is dependent on r (and therefore q), 
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Flory-Huggins-Staverman

Free Enthalpy of Mixing

Mixture of low molecular liquids (NA=NB=1):
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Polymer solution:

ffffff BABBAA  lnln

Flory-Huggins-Staverman segmental interaction parameter

: molar fractionx
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Free Enthalpy for a System with

Fluctuations

𝐺 𝜙𝑖 =

𝑖

𝑣𝑠𝑢𝑏𝑔(𝜙𝑖)

𝑔 𝜙𝑖 ≡ 𝑔 𝜙 = 𝜙𝑔𝐴 + (1 − 𝜙)𝑔𝐵 +
𝑘𝑇

𝑣𝑐

𝜙

𝑁𝐴
𝑙𝑛𝜙 +

1 − 𝜙

𝑁𝐵
ln 1 − 𝜙 + 𝜒𝜙 1 − 𝜙

Free enthalpy density

Free enthalpy density

of pure component A

Free enthalpy density

of pure component B

Volume of lattice site

Also the „interface“ between the different subvolumes contributes to the free enthalpy by an interfacial

energy contribution. As the mixture is weakly fluctuating, this contribution resulting from a concentration

gradient can be expressed by a  quadratic term (it cannot be linear, as the sign of the gradient has no

influence on the free enthalpy.

𝐺 𝜙𝑖 =

𝑖

𝑣𝑠𝑢𝑏𝑔(𝜙𝑖) +

𝑖,𝑗

𝛽 𝜙𝑖 − 𝜙𝑗
2
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Free Enthalpy for a System with

Fluctuations

𝐺 𝜙𝑖 =

𝑖

𝑣𝑠𝑢𝑏𝑔(𝜙𝑖) +

𝑖,𝑗

𝛽 𝜙𝑖 − 𝜙𝑗
2

Replacing the sum by integral leads to:

𝐺 𝜙(𝒓) = න 𝑔(𝜙(𝒓)) + 𝛽′ 𝛻𝜙 2 𝑑3𝒓 𝛽′ ≔ 𝛽𝑣𝑠𝑢𝑏
−1/3

with

𝜙 𝒓 = 𝑐𝑜𝑛𝑠𝑡 ≔ 𝜙

𝛿𝜙 𝒓 := 𝜙 𝒓 − 𝜙 𝛿𝐺 ≔ 𝐺 − 𝐺𝑚𝑖𝑛

for the free enthalpy is minimal, Gmin

Fluctuations lead to deviation of the free enthalpy from the minimum

Expansion of the free enthalpy density up to second order (we consider only small fluctuations!)

𝛿𝐺 = න(𝛿𝑔(𝛿𝜙(𝒓)) + 𝛽′ 𝛻𝛿𝜙 2)𝑑3𝒓 =
𝜕𝑔

𝜕𝜙
න𝛿𝜙 𝒓 𝑑3𝒓 +

1

2

𝜕2𝑔

𝜕𝜙2න 𝛿𝜙 𝒓
2
𝑑3𝒓 + 𝛽′න 𝛻𝛿𝜙 2𝑑3𝒓
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Free Enthalpy for a System with

Fluctuations

න𝛿𝜙(𝒓)𝑑3𝒓 = 0 (because of conservation of mass)

𝛿𝐺 =
𝑅𝑇

2𝑣𝑐

1

𝑁𝐴𝜙
+

1

𝑁𝐵(1 − 𝜙)
− 2𝜒 න 𝛿𝜙 𝒓

2
𝑑3𝒓 + 𝛽′න 𝛻𝛿𝜙 2𝑑3𝒓

1

𝑁𝐴𝜙
+

1

𝑁𝐵(1 − 𝜙)
− 2𝜒 = 0Spinodal: (second derivative of the free enthalpy is 0 at spinodal)

Interaction parameter is T-dependent

For mixtures with upper miscibility gap, often 𝜒 ∝ Τ1 𝑇
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Phase Diagram of a Symmetric Blend

Nucleation & Growth Spinodal 

Decomposition

43

Composition x

Temperature T
Single phase region

P h a s e    s e p a r a t e d   r e g i o n

0 1

binodal

spinodal

unstable region

metastable region
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Nucleation and growth

(in metastable region)

Spinodal decomposition

(in unstable region)

Concentration Profiles in Phase Separation

f‘, f‘‘: volume fractions of coexisting phases in equilibrium

„down hill“ diffusion

„up hill“ diffusion

44

time time

time time

space coordinate

space coordinate
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Polymer Solvent Phase Diagram for a 

System with Theta-Temperature of 400 K

Spinodal

Binodal

Degree of polymerisation

45
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Free Enthalpy for a System with

Fluctuations

𝛿𝐺 =
𝑅𝑇

2𝑣𝑐

1

𝑁𝐴𝜙
+

1

𝑁𝐵(1 − 𝜙)
− 2𝜒 න 𝛿𝜙 𝒓

2
𝑑3𝒓 + 𝛽′න 𝛻𝛿𝜙 2𝑑3𝒓

𝛿𝜙 𝒓 =
1

𝑉


𝒌

𝑒𝑥𝑝𝑖𝒌𝒓 ∙ 𝜙𝒌
∗

Fourier description of fluctuation at r by a sum of fluctuation functions with wave vector k and

amplitude 𝜙𝑘
∗ in a finite volume V, for the wave functions apply periodic boundary conditions.

න 𝛿𝜙 𝒓
2
𝑑3𝒓 =

𝒌

𝜙𝒌
∗𝜙−𝒌

∗ =

𝒌

𝜙𝒌
2

න 𝛻𝛿𝜙 2𝑑3𝒓 =

𝒌

𝒌𝟐𝜙𝒌
∗𝜙−𝒌

∗ =

𝒌

𝒌𝟐𝜙𝒌
2

𝛿𝐺 =
𝑅𝑇

2𝑣𝑐


𝑘

1

𝑁𝐴𝜙
+

1

𝑁𝐵(1 − 𝜙)
− 2𝜒 + 𝛽′′𝑘2 𝜙𝒌

2

𝛽′′: =
2𝑣𝑐𝛽′

𝑅𝑇
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From Free Enthalpy of Mixing to

Structure Factor

Fourier amplitudes 𝜙𝑘 of fluctuation mode k contribute independently to 𝛿𝐺

Mean squred amplitude in thermal equilibrium

𝜙𝒌
2 =

𝜙𝒌
2𝑒𝑥𝑝 −

𝛿𝐺(𝜙𝒌)
𝑘𝑇

𝛿𝜙𝒌

 𝑒𝑥𝑝 −
𝛿𝐺(𝜙𝒌)
𝑘𝑇

𝛿𝜙𝒌

= 𝑣𝑐
1

𝑁𝐴𝜙
+

1

𝑁𝐵(1 − 𝜙)
− 2𝜒 + 𝛽′′𝑘2

−1

1

𝑁𝐴𝜙
+

1

𝑁𝐵(1 − 𝜙)
− 2𝜒 + 𝛽′′𝑘2 > 0Finite concentration fluctuations only for

𝑆𝑐 𝒒 ≔
1

𝒩𝑐
𝐶(𝒒) 2 =

1

𝑣𝑐
𝜙𝒌=𝒒
2 𝒩𝑐 : number of lattice sites (each with volume 𝑣𝑐) 

𝑆𝑐 𝒒 =
1

𝑁𝐴𝜙
+

1

𝑁𝐵(1 − 𝜙)
− 2𝜒 + 𝛽′′𝑞2

−1
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From Free Enthalpy of Mixing to the

Structure Factor of a Blend

1

𝑆 𝒒
≡

1

𝑆𝑐 𝒒
=

1

𝑁𝐴𝜙
+

1

𝑁𝐵(1 − 𝜙)
− 2𝜒 + 𝛽′′𝑞2

What is 𝛽′′? 

𝜙 → 0:
1

𝑆 𝒒
≈

1

𝑁𝐴𝜙
+ 𝛽′′𝑞2

3
1

)(

1
22 qR

qP

g


Inverse form factor (Debye) of a random coil at low q, 
(1 − 𝜙) → 0:

1

𝑆 𝒒
≈

1

𝑁𝐵(1 − 𝜙)
+ 𝛽′′𝑞2

1

𝑆 𝒒
≈

1

𝑁𝐴𝜙
1 +

𝑅𝑔,𝐴
2 𝑞2

3

1

𝑆 𝒒
≈

1

𝑁𝐵(1 − 𝜙)
1 +

𝑅𝑔,𝐵
2 𝑞2

3

𝛽′′ =
𝑅𝑔,𝐴
2

3𝑁𝐴𝜙
+

𝑅𝑔,𝐵
2

3𝑁𝐵(1 − 𝜙)
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49

1

𝑆(𝑞)
=

1

𝜙𝑁𝐴𝑆𝐷(𝑅𝑔,𝐴
2 𝑞2)

+
1

1 − 𝜙 𝑁𝐵𝑆𝐷(𝑅𝑔,𝐵
2 𝑞2)

− 2𝜒

„clean“ derivation possible by using the „Random Phase Approxiamtion“ (De Gennes)

Generalization to all q, form factors rather than only radii of gyration are incorporated:   

SD: Debye form factor

1

𝑆 𝒒
≡

1

𝑆𝑐 𝒒
=

1

𝑁𝐴𝜙
+

1

𝑁𝐵(1 − 𝜙)
− 2𝜒 +

𝑅𝑔,𝐴
2

3𝑁𝐴𝜙
+

𝑅𝑔,𝐵
2

3𝑁𝐵(1 − 𝜙)
𝑞2

From Free Enthalpy of Mixing to the

Structure Factor of a Blend
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Detemining the Spinodal Temperature

in a Polymer Blend

S(q)-1

q2

Temperature -parameter

0

S(0)-1

0 1/T

1/Tspinodal

spinodal for 45.0;
2

 χN
N

NN ABA f
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Structure Factor of a Diblock Copolymer in the

WSL using Random Phase Approximation (RPA)
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Concentration Fluctuation

L. Leibler, Macromolecules 1980, 13, 1602 
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Structure Factor of a Diblock Copolymer in the

WSL using Random Phase Approximation (RPA)

873.3* 22*  gRquMaximum at
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N=10.495 :   1/S(q*)=0

spinodal point for symmetric diblock copolymer (𝜙 = 0.5)
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L. Leibler, Macromolecules 1980, 13, 1602 
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Detemining the Spinodal Temperature

in a Block Copolymer

S(q*)-1

0 1/T

1/Tspinodal

N=10.495 :   1/S(q*)=0spinodal point for symmetric diblock copolymer (𝜙 = 0.5) →
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Summary

Forward scattering:

• One component system: Isothermal compressibility, kT

• Dilute polymer solution: Molecular weight (weight average), M

• Polymer Blend: Osmotic compressibility, kosm,  -parameter,

Temperature dependent measurements enable extrapolation of spinodal temperature

Scattering peak (maximum):

• Block copolymer: temperature dependent measurements of 𝑆𝑞∗
−1 enable extrapolation of

spinodal temperature, Tspinodal

• Periodic length via Bragg‘slaw (several peaks can allow determination of crystal structure)

q-dependence of scattering:

• Shape of scattering particles, polymers, form factor, P(q)

• Radius of gyration (z-average), Rg

c-dependence of scattering:

• Second virial coefficient, A2, -parameter
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