
One approach concerning teaching methods about 
diffraction and scattering of X-ray and visible light  

Masaru Matsuo

Dalian University of Technology, 
Department of Polymer Science and Materials,

Dalian 116024, China

Polychar 25 Kuala Lumpur October 9 – 13, 2017

The subjects in this note have been developed as one of the 
teaching programs to study polymer materials by X-ray 
together with Prof. Bin at Dalian University of Technology

1Copyright © 2017 by Masaru Matsuo



This note is concerned with diffraction and scattering
for X-ray beam and visible light beam. 
The wavelength of X-ray beam is much shorter than that 
of visible light beam and then the particle nature is 
predominant in comparison with wave nature. Hence 
X-ray beam and visible light beam provide different 
characteristics. (Short course, POLYCHAR 24)

Difference between the two is related to the different 
fluctuations of system dependent upon the absolute values 
of scattered intensity. That is, X-ray scattering intensity 
is due to mean square value of electron density 
fluctuation, while light scattering intensity, mean square 
value of refractive index. The both scattered intensities 
are given by Fourier transform of these fluctuations.
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The wavelengths ( ) of X-ray beam generated from Cu and 
Mo targets are 0.154 and 0.06198 nm, respectively, while the 
wavelength of He-Ne gas laser is ca. 650 nm. The large difference 
is photon energy ( ) between the two given generally by

λ

ε

ν
λ

ε hhc
==

(c: velocity of light, : frequency, h : Planck’s constant) 

When an incident X-ray beam is entered, the electrons 
in atoms behave as free electrons because of high photon 
energy. 

On the other hand, when visible light is entered, electrons 
in atom cause vibration on bottom of the potential box. 
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Considering vibrating dipole, the potential field is not isotropic 
and electrons move easily along C-C polymer main chain axis
in comparison with the direction perpendicular to the C-C axis, 
when an incident wave interact with electrons belonging to C-C 
covalent bonds in main chains. That is, for an incident beam, 
the vibrating dipole moment along C-C axis becomes larger 
than that perpendicular to the C-C axis. Accordingly, scattered 
wave is sensitive to polarization condition of an incident beam. 
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This short course is concerned with the difference 
between X-ray and visible light. The different points 
for fundamental equations between diffraction and 
scattering are not pointed out in their text books. 

Because, each chapter for the diffraction and 
scattering have been written by different authors in 
most of textbooks. The unified understanding above 
concept is very important as the user.

First Chapter
X-ray scattering from atoms and the application 
to one polymeric molecule
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For scattering of X-ray and visible light, the scattered intensity I is given 
by EE*, in which E is the scattering amplitude and E* is the conjugate 
complex. Of course, the X-ray diffraction intensity is given by the 
same equation I = EE*. 
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( ) θλπ sin4== hh

( ) ( )[ ] ( ) hhkjiss o h==−−−=−− θλπµθµθθλπλπ sin4cos2sinsin2sin2cos12)')(/2(

[ ] hvvkji ===−− hθλπµθµθθθλπ sin)/4(coscossincossinsin)/4(

scattering angle 

µ azimuthal angle
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within a particle 

without a particle

θ2
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( ) sso ρσρρρ +−= )()( rr 0=sρ

drk is micro-volume element at position vector rk. ∫ kdr ： volume integral
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N is the number of particles.

( ) 1exp =kRihScattering from an isolated particle reveals that Rk becomes 0 and

( ) ( ) ( ) rrhrrhrrhrr kkk diKdiKdiKE oiso ∫∫∫ •=•== expexp)(exp)( ρρρ

General description about scattering for X-ray and visible light.
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For visible light beam, electrons of atom cause vibration on bottom of 
the potential box. Considering vibrating dipole, the potential field is not 
isotropic and electrons move easily along C-C main chain axis of polymer 
in comparison with the direction perpendicular to the C-C axis, when 
incident wave interact with electrons along C-C covalent bonds in main 
chains. That is, for incident beam, the vibrating dipole moment along 
C-C axis becomes larger than that perpendicular to the C-C axis.
Accordingly, scattered wave is sensitive to polarization 
condition of an incident beam. 

oρ is not constant.

where Mｋ is dipole moment induced by k-th scattering element, and 
O is unit vector along polarization direction of analyzer.

For scattering from an isolated particle, it can be written as follows:
( ) ( ) ( ) rrhrrhrrhrr kkk diKdiKdiKE oiso ∫∫∫ •=•== expexp)(exp)( ρρρ
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X-ray scattering from atoms and the application to one polymeric molecule
X-ray diffraction is associated with the reflection from atomic arrangement

plates termed as crystal planes. A particle corresponds to a crystallite 
constructing crystal units and the scattering element corresponds to one electron. 
Hence the mathematical treatment in wide angle range can neglect interference 
effect due to a plurality of crystallites and then the coordinate for theoretical 
calculation can be limited to atomic arrangement within a particle. Before then, 
we shall start the scattering from an isolated atom as primitive phenomenon 
before starting diffraction from crystal 
units within a crystallite. Automatically, 
the representation for Rk is neglected 
and Figure shall be replaced as 

11Copyright © 2017 by Masaru Matsuo



( )[ ] [ ]ijijo rhrss' •=•−= ∑∑
==

iEiEE
Z

i
i

Z

i
i exp2exp

11
λπ

[ ] ( ){ }

[ ]







•+=

−•=•=

∑∑

∑∑∑

≠

= ==

Z

i

Z

j
e

Z

i

Z

j
e

Z

i
ie

iZI

iIiEII

ji

jiij

rh

rrhrh

exp

expexp
1 1

2

1











−+= ∑∑

==

Z

i

Z

i
e fifiZII

1

2
2

1

( )∫ •= υρ df ii rhr exp)(

fi : electric structure factor, d : volume elementυ
: density distribution of the i-th electron)(riρ
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The average density distribution within an atom with atomic number Z is postulated as 
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f  is termed as atomic structure factor for 
an atom with electron number Z. 
Summation of electric structure factor fi

12Copyright © 2017 by Masaru Matsuo











−+= ∑

=

Z

i
ie ffZII

1

22

When the electron density distribution is uniform within the atom, 
2

1
∑

=

Z

i
ie fI

is equal to IeZ denoting the summation of scattered intensity from Z electrons. 
2fII e=

To discuss scattering from scale larger than an atom, the scattering from 
one molecule with multi-atoms shall be described. As like the scattered 
intensity from one atom with the atomic structure factor f, the scattered 
intensity Im from one polyatomic molecule with the structure factor Fm
in gas is given by neglecting molecular interference as follows:
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Electron density of the N-th atom with ZN electrons 
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The structural factor of one polymeric molecule Fm is given by

Each integration part corresponds to each atomic structure 
factor given by for the i-th atom with Zi electrons. 
Thus, Fm is rewritten as
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The calculation of Im must be carried out in two considerations: 
1) interference effect between atoms exited in the molecule, and 
2) the equal existing probability in three-dimensional space. 

Hence, 
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Let’s represent the concrete example 
for isolated carbon tetrachloride
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II-3.  X-ray diffraction from crystallites

Let’s consider X-ray diffraction by using Eq. (II-22) concretely. 
For X-ray diffraction, a particle can be replaced with a crystallite and a 
crystallite consists of crystal units and the crystal units with regularity are 
arranged as shown in Figure 4. Then the probability function to find other 
units within the crystallite is defined to be unity and the intensity from 
a crystal unit becomes simple summation for intensities from atoms in the 
unit by neglecting the interference effect.  

ri = Rio + rio = n1a + n2b + n3c + xia + yib + zic
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where L* is complex conjugate of L.
At N1, N2, N3 >>1, the above eq. becomes a periodic function termed as Laue 
function, when the following eq. is satisfied, in which h, k, are well-known as 
Miller index. These are very important conditions to raise X-ray diffraction. 
The following eq. is also termed as Laue conditions,
which is indispensable rule different from usual scattering.

,h=• aS k=• bS =• cS (h, k, : integer)

Many text books explain the reason why the above relationship 
is dispensable for X-ray diffraction.
However, LL* is one of the special cases of X-ray scattering 
represented by the fundamental eq. generally.



Laue function

Laue condition
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The X-ray diffraction intensity is given by the same equation I = EE*. 

incident beam

scattered beam
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Laue function LL* in WAXD is in connection to crystal size and is also 
discontinuous part in X-ray scattering. 
One dimensional case

)(sin)(sin)()(*)( 2
1

22
111 hhNhLhLhL ππ==
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Zn0.2Fe2.8O4
particles
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2)()(*)( SFSFSF =

Crystal structural factor is related to the scattering from the total atoms 
in a crystal unit. To satisfy Laue conditions,
must be represented by must be
represented by reciprocal lattice vector a*, b* and c* in a crystal unit, 
which is given by 

Very important Eq.  to pursue the mathematical treatment for WAXD
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where

V
cba* ×

=

, 

V
acb ×

=*

, 

V
bac ×

=* (aa* = bb* = cc* = 1, the others, zero) 

V is the volume of a crystal unit.
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( ) Sss' o =− λ d
S 1sin2

===
λ

θS

Bragg equation representing X-ray 
diffraction in real space 

Ewald sphere representing Laue
condition in reciprocal space. 

λ : 0.1542 nm for X-ray generated from Cu target 

λθ nd B =sin2 (n = 1, 2------) 
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If there exist N atoms in a crystal unit, the coordinate of each atom can be given by:
Atom    1           2        3    -------- N

Coordinate   x1,y1,z1 x2,y2,z2 x3,y3,z3 xN,yN,zN
Atomic scattering
factor         f1 f2 f3 fN

Thus, we have 
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Here every crystal plane is not related to the X-ray diffraction. Some 
crystal planes contribute to the reflection, but some do not contribute 
on the basis of extinction rule. The above Eq. is the fourth important 
thing to pursue the mathematical treatment for WAXD.
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As the concrete examples, 
Primitive lattice or simple lattice (Fig. III-7a)
1/8 atom x 8 = 1 atom
The center of coordinate  0, 0, 0

[ ] fifF == )0(2exp π 22 fF =
(a) Primitive lattice

Base centered lattice (Fig. III-7b)                                            
Atom number in unit cell                    
1/8 atom x 8 + 1/2 atom x 2 = 2 atom
The center of coordinate  0, 0, 0   1/2, 1/2, 0 

(b) Base centered lattice

[ ] { }[ ]
( )[ ]{ }khif

khififF
++=

++=
π

ππ
exp1

2/2/2exp)0(2exp

h+k even,   F = 2f F2 = 4f 2

h or k even or odd   
h+ k   odd   F = 0      Extinction rule
As for（1 1 1） (1 1 2)   (1 1 3)   (0 2 1)    (0 2 0)   (0 2 3) F values are the same.
As for (0 1 1)   (0 1 2)   (0 1 3)   (1 0 1) F = 0    Extinction rule 
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A number of textbooks refer to the calculation procedures of
concerning simple cubic lattice, base-centered orthorhombic
lattice, body-centered cubic lattice and face-centered cubic lattice 
and then this paper does not describe the commentary. The example 
is shown for             unit.NaC

2
hkF
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Practice problem
Describe the structural factor of            unit and discuss extinction rule NaC

Answer
The coordinate Na+ and        are as follows:−C

Na+
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For example

diffraction from the (111) plane 

diffraction from the (220) planeKC
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IV  Understandable explanation about SAXS

[ ]
( )[ ] ( ) ( ) ( ) kkkkkkk

o

rrhrRhrRrhr

rrhrrrssr

diiKdiK

diKdiKhE

k

kthk

••=+=

•=•−=

∫∫
∫∫

expexpexp)(

]exp[)()'(2exp)()(

ρρ

ρλπρ

First of all, we shall consider N particles in 
the irradiated volume. Among N particles, 
we shall spot the K-th particle. As described 
already, the scattered intensity from K-th 
particle can be evaluated by using the above 
Eq. For SAXS, the Eq. is rewritten as follows: 
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FK(h) is structural amplitude of K-particle and exp            is the phase 
factor for the center OK in K-particle based on the origin of the 
coordinate. Assuming that scattering wave is coherent, the total 
scattering amplitude Es of the entire system is given by
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Putting RKJ = RJ – RK, the scattered intensity I(h) becomes

The first term means the total scattered intensity from each particle 
and the second term is related to inter-particle interference in the entire 
system. Here there is no orientation correlation between isotropic particles 
in the position of center of each particles, Eq. can be written as follows:
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Generally, each particle is not spherically symmetry and then 
termed as diffuse scattering is not zero. As shown in the previous Eq. , 
the significant term for SAXS is due to inter-particle interference effect. 
This effect is unnecessary to consider for WAXD as described in Session II.
Now, let’s focus assembly of single 
atom as shown in Figure 12.
The existing possibility of other atom 
in        separated with distance r from 
the center is dP(r). In the volume V of 
the whole specimen, there exist N
atoms. The average volume occupied 
by one atom becomes                .
In this case, the possibility to find the 
first atom in         is           . When the 
atoms are separated at enough distance
each other, the finding possibility for 
the second atom at the pointed tip of r              N particles in volume V.
becomes always            .

22 FF −

υd

1/ υ=NV

υd 1/υυd

1/υυd
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However, in dense atomic assembly as like liquid, the possibility at the 
small r region is dependent upon r by inter-atomic interaction and it 
can describe as                               . Accordingly, when two atoms are 
connected or r is shorter than twice distance of atom radius, P(r) becomes 
zero. When r is much far than twice distance of atom radius, P(r) become 
unity. If r is in the middle region, P(r) becomes a function with fluctuation 
around unity. If                        has the fluctuation, the double summation 
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Let’s consider RKJ as continuous scale in statistical group, the integration 
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When the system is isotropic and all the particles are the same shape with 
the same volume,             is equal to .2F 2F

Also, the density at R is                         and the average density is .   VrPr /)()( =ρ Vo /1=ρ
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Weak inter-chain force

o0=α

o0=κ

o90=κ

o90=α
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Radial distribution function associated with electron 
density distribution for a PPEK fiber

The most probable distance r between adjacent chains 
0.486 nm at α= 0o,      0.473 nm at α= 90o

×1.0 r (nm).
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Plotting I(q) against q, many sharp 
peaks reflecting intra-particle effect 
appear in high range of q.
The decrease of peak top of I(q) shows 
asymptotical behavior of q-4, which is 
termed as - 4 rule (Porod rule). 
Such many peaks can be observed in 
the system where the isolated uniform 
spheres with the same radius are 
dispersed in solution but the peaks 
become duller for the particles with 
different radius.

Of course, the many scattered peaks of I(h) are independent 
of X-ray diffraction from crystal planes, even if the sphere 
composed of crystallites. The angle range concerning 
diffraction peaks is much wider than the small angle range 
discussed above. 
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Guinier law
Now, let’s consider Guinier law, since the law is very important for 
SAXS. For SAXS measurements for uniform dilute polymer solution or 
uniform particle dispersion, Guinier plots have been used to determine 
radius of inertia of polymer chain or that of particle in the dilute solution. 
Guinier plots can be induced by series expansion (Maclaurin) of sin(hr) 
around hr = 0 for the above Eq.
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D is the point at P(R) = 0 and corresponds to the diameter for sphere. Here,
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The overlapped particles K and K+1 are separated and the separation 
for two spheres is shown below figure. 
For a sphere with radius a, the 
correlation function Q(r) can be 
induced as follows: 
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Sphere with radius a
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This section is focused on the reason why the X-ray profile is strongly 
affected by the distance fluctuation between adjacent particles (lattices) 
and the intensity profile broadness is considerable as the fluctuation increases.
Let’s consider statistical treatment about inter-particle interference effect.
As shown in Fig. , there exist lattice points a1, a2, a3, ------, 
When existence probability of a1 at the tip of vector y from origin O is H1(y), 
the possibility of a2 at the tip of vector z from a1 is H1(y)H1(z). In this case, 
the possibility of a2 at the tip of vector x (= y + z) from O is not H1(y) H1(z) 
but 

Evaluation of inter-particle interference effect by convolution

∫ − yyxy dHH )()( 11

The lattice points a1, a2, a3,------ exist on vector x
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That is, the existence possibility of the tip of vector x at a2 is given by

Hence the possibility for the n-th lattice point is as follows:

−−−=−−−= ∩∩∩∩∩∩ HHHHHHH k 111)(x (convolution of (n -1) times)

H(x) is probability function between x and              , when x is the closest distance
between two points. Of course, H(x) must be normalized as follows:

dxx +

∫
∞

=
0

1)( xx dH

The lattice points a1, a2, a3,------ exist on vector x and then H(x) may be 
replaced on scalar H(x).  The average value     for the closest distance isa

∫
∞

=
0 1 )( dxxxHa

Similarly, when H2(x) is the probability for finding the second closest distance,

dxxHxa )(2 20∫
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=

∫ ∩=−= HHdHHH yyxyx )()()(2
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When the origin of coordinate corresponds to the center of the coordinate, the
summation in the positive and negative directions can be represented easily. In 
one-dimensional case, statistical distance z(x) concerning the existence possibility 
of the point distances along the disordered point sequence is given by 

)()()0()(
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n
n

n −++−= ∑∑
∞

=

∞
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δ

Considering Fourier transformation Z(X) of z(x), Z(X) becomes diffraction 
intensity from point sequence corresponding to one-dimensional disordered 
lattice factor.By using mathematical treatment that Fourier transformation of 
convolution becomes product of each Fourier transformation, Fourier 
transformations                 of   Hn(x)  and                  of                are given by[ ]nXF )( [ ]nXF )(* )( xH n −
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As described above, Z(X) is Fourier transformation of z(x) and is given as follows:
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When lattice points a1, a2, a3 ---- are set on vector h,     is written as vector.             a
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The above Eq. is scattered (or diffraction) intensity profile from lattice factors 
along point sequence.                            
Assuming H(x) to be Gauss function at the center a
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By using variable                    denoting the fluctuation and reciprocal space 
coordinate X representing as
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Hence Z(h) can be represented as follows:
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Fig. shows that the scattered peaks (or diffraction peaks) becomes smaller 
and broader as the fluctuation g becomes larger. 

The diffraction intensity as a function of p at the indicated fluctuation given as g.
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The above concept for lattice sequence in one-dimensional direction can be 
applied to particle sequence. The application shall be induced by using more 
reasonable treatment. Returning to the following Eq. , the lattice points
a1, a2, a3 --- an in Fig. can be replaced by the center of gravity of each scattering 
element. Hence the last term in Eq. is given by 
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As one example, numerical calculation by using Eq. is carried out for 
carbon fiber (CF) with ellipsoidal voids on the basis of Babinet’s 
reciprocity theorem. This example indicates that the scattering from voids 
provides SAXS patterns with intensity maxima like scattering from particles. 
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The calculation was carried out in accordance 
with Babonet’s reciprocity theorem. 

)()()()( rrr σρρσρρρ soos =+−=

0=oρ
To analyze SAXS pattern from ellipsoidal voids.

d :  the average distance

The ellipsoidal void shape is related to b/a, in 
which b and a are the long and short axes of 
the void, respectively. The center of gravity of 
each void is arranged in the one direction 
(j-axis) and the distance between adjacent voids 
was given as like di-1, di, di+1. 

In Case I,  b/a (= P) is variable
( = Q)  is constant

In Case II,     P is constant
Q is vaiable

λa

( )βσβ β
22 sinexp)( −=p
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The reasonable approach to analyze SAXS intensity distribution is that 
the electron density fluctuation must be evaluated on the average density 
of the specimen.
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Understandable explanation about small angle light 
scattering (SALS) under polarization

As described in Introduction, the different characteristics between X-ray 
beam and visible light beam are due to the different wavelengths associated 
with the difference of photon energy. Therefore the electrons in atoms by 
an incident X-ray beam behave as free electrons because of high photon 
energy, while electrons of atom by visible light cause vibration on bottom 
of the potential box. Surely, polarized incident X-ray surely provides strong 
intensity. The scattered X-ray beam, however, is independent of the 
polarization direction of the beam. On the other hand, the scattered visible 
light intensity strongly depends on the polarization direction of the incident 
beam.
Figs. 21(a) and (b) show the arrangement of polarizer and analyzer 
under Hv and Vv scatterings, respectively.  

52Copyright © 2017 by Masaru Matsuo



(a) Hv scattering                                          (b) Vv scattering    

polarizer-vertical and analyzer-horizontal     Hv
polarizer-vertical and analyzer-vertical       Vv
polarizer-horizontal and analyzer-horizontal   Hh
polarizer-horizontal and analyzer-vertical     Vh 

Scattering angle for PALS is represented as     in stead of for SXAS. θ2θ
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Different from X-ray scattering, visible light scattering is associated 
with refractive index fluctuation. The total scattering amplitude from 
scattering elements is given by
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s'ss o −= λπ /2=k )2/sin(2 θks =

For polymers, the refractive index difference between spherulite (or rod) 
index and the medium index is much less than unity and the phase shift of 
light passed through particles and medium becomes generally very small. The 
normal spherulite and rod sizes are less than 100 times in comparison with 
wavelength of He-Ne gas laser, which allows the evaluation for the scattering 
pattern by Rayleigh-Gans scattering. According to the concept by Rayleigh-
Gans, scattered intensity for SALS is given by 
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Center of coordinate must be set in the center of particle. In this case, 
sin term disappears. 
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( )[ ] rsrOMO)(M
rji dkVKI •••= ∫ cos)(2

where r = rij = rj - ri and < >r is the average of the product of scattering 
elements with separation distance r, depending upon optical density, 
anisotropy and orientation fluctuation. V is an irradiated volume. 
Mi (dipole moment induced by i-th scattering element) is generally given by 

( ){ }pp taat itiiioi bEM )(+•= δ
where ai is the vector along the i-th optical axis and tp is unit vector 
denoting polarization direction of an incident beam,

( ) ( )iii ⊥−= ααδ // ( ) ( ) siitb αα −= ⊥

( )i⊥α

sα
and          polarizabilities parallel and perpendicular to optical axis 

(the unit vector ai), respectively. is the polarizability of the medium. 
tp depends on the polarization components of scattering light; tp = k 
for vertical polarization direction and tp = j for horizontal polarization 
direction. Normally, tp = k.

( )i//α
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SALS under polarization
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SAXS

Q(r) for isolated particles can be evaluated roughly by Guinier plots as 
discussed already. However, for polarized light scattering, it is impossible 
to pull out information directly from complicated                               .
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As for the observation of vertical and horizontal components of scattered 
intensity, OV = k and OH = j can be constructed approximately. Hence,
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The SALS profile provides 
X-type for rods and four-leaves
clover type for spherulites.
Many reports have been published.

What is the sharp streaks in 
addition to the four lobes?
The POM indicates the ordered
arrangement of rods.

For theoretical calculation, 
the emphasized point is due to the 
fact that the difference between 
inter-particle interference between 
SAXS and SALS can be represented 
easily, when the particles are 
arranged in the one-dimensional 
direction on the two-dimensional 
plane.
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The scattered intensity provides the 
same style as Eq. (IV-24) for SAXS. 
The variations of the length Lj, the 
width Dj and the adjacent distance Xi
between j-th and (j+1)-th rods have 
no correlation each other and are 
represented by the following 
symmetrical functions with the 
respective mean lengths, ,L D X
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γ is fixed to be
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Statistical approach model
This method is useful for the system where 

the morphology observed by polarized 
microscopy provides unclear and dark 
structure. The statistical approach has 
been adopted for scattering from gels and 
amorphous films When there exist many 
small assemblies with disordered chain 
arrangement in polymer film or gel, the 
assemblies can be considered as optical 
elements, In such case, Hv scattering 
pattern becomes very weak and the pattern 
could not be observed on the photo screen of 
frosted glass (see Fig.), since the very weak 
light scattered from the gels could not pass 
through the analyzer. The pattern was observed 
on the sample surface by the reflection from the 
analyzer, and then photographs were taken 
using a commercial camera. 
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n(I)

κ

Change of at θ= 15o and Hv patterns with respect to time measured for
the 1.0 and 2.5%    -carrageenan aqueous solutions after quenching at 30oC. κ
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R.S. Stein; P.R. Wilson,                                M. Matsuo et al.  
J. Appl. Phys. 33, 1914 (1962)                     Phys. Rev. E 72, 041403 (2005) 
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Summary

In the course, the application examples for WAXD, SAXS and SALS were 
described in comparison with more detailed observed and theoretical results. 
When an incident X-ray beam is entered in the polymer material, electrons 
in atoms behave as free electrons because of high photon energy. On the 
other hand, when visible light with low photon energy is entered, electrons of 
atom cause vibration on bottom of the potential box. Accordingly, SAXS and 
SALS scattered intensity distributions are given by Fourier transform of 
mean square value of electron density fluctuation and mean square value of 
refractive index, respectively. The WAXD and SAXS are written by the same 
fundamental equation EE* (E : amplitude, E* : the conjugate complex). 
WAXD can neglect inter-particle interference effect between crystallites and 
then the probability function to find other unit within the crystallite is defined 
to be unity and the intensity from a crystal unit becomes simple summation 
for intensities from atoms in the unit. However, under calculation of the 
magnitude, Laue condition must be satisfied for crystal units in each 
crystallite. Except scattered intensity from isolated particles evaluating 
Guinier law, SAXS patterns from materials must be analyzed by considering 
inter-particle interference effect.
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(III-19) 

Inter-particle interference effect can be calculated exactly by using the following 
method. Compare with Eq. (III-19)

( ) ( )∑ ∑ ∑ ∑
=

−

= +=








•−+•−=•−

kj

N

j

j

k

N

jk
iii

, 1

1

1 1
expexp)exp( jkjkjk zhzhzh

67Copyright © 2017 by Masaru Matsuo



( ) ( )∑ ∑ ∑ ∑
=

−

= +=








•−+•−=•−

kj

N

j

j

k

N

jk
iii

, 1

1

1 1
expexp)exp( jkjkjk zhzhzh

( )∑
−

=

•−
1

1
exp

j

k
jki zh

( ) [ ]
( ){ } ( ){ } ( ){ } ( ){ }

( ){ }∏
−

=

−

−

•−=

•−−−−−−−−−•−•−•−=

+−−−−−−−−−−+++•−=•−

1

1

1321

1

exp

expexpexpexp

)(expexp

j

i

j

j

i

iiii
ii

i

1j321

dh

dhdhdhdh
ddddhzh

( ) [ ]
( ){ } ( ){ } ( ){ }

( ){ }∏
−

=

−

−

•−=

•−−−−−−−−−•−•−=

+−−−−−−−−−−++•−=•−

1

2

132

2

exp

expexpexp

)(expexp

j

i

j

j

i

iii
ii

i

1j32

dh

dhdhdh
dddhzh

k = 1

k = 2

68Copyright © 2017 by Masaru Matsuo



k= k

( ) [ ]
( ){ }∏

−

=

−+

•−=

+−−−−−−−−−−++•−=•−
1

1

exp

)(expexp
j

ki

kkjk

i

ii

i

1j

dh

dddhzh

( ){ } [ ] ∑∑∏∑ ∑∑∏∑
=

−

=

−

== =

−

=

−

=

−

=

=•−=







•−

N

j

j

k

j

ki

N

j

N

j

j

k

j

ki

j

k
Fii

1

1

1

1

1 1

1

1

11

1
)(expexp ijk dhzh

kj
j

ki

kj FFFFF −
−

=

−−− =−−−−−−−••=∏
1

)1(1

( )

F
FF

F
FF

F
FF

FFFF

FFFFFF

jjj

j

jjj
j

k

kj

−
−

=








−
−

=








−
−

=

+−−−−−−−−+++=

++−−−−−−−−+++=

−+−

−

−−−
−

=

−∑

11
1

1
1

1
112

22

2321
1

1

69Copyright © 2017 by Masaru Matsuo



∑
= −

−N

j

j

F
FF

1 1

{ }
( )

( )2

12

32

1

1
1

11
1

11

1
11

1
1

1
1

1
1

11

F
FN

F
NF

F
F

F
F

F
NF

FF
F

F
F

NF
F

F
F
F

F
F

F
FF

F
FF

NN

N

NN

j

j

−
−

−
−

=








−
−

−
−

−
=

+−−−−−−−−−−−−+++
−

−
−

=

−
−

+−−−−−−−−−−+
−
−

+
−

−
+

−
−

=
−
−

−

=
∑

70Copyright © 2017 by Masaru Matsuo



( )∑
+=

•−
N

jk
i

1
exp jkzh

1+= jk ( ) { }jdihi •−=•− + expexp 1jjzh

2+= jk
( ) { } { } { }

{ }∏
+

=

+++

•−=

•−•−=+•−=•−
1

112

exp

expexp(expexp
j

ji
i

jjjj

dih

dihdihddihi jjzh

Nk =

( ) ( ){ }

{ }∏

∑
−

=

−++
+=

•−=

−−−−−−−−+++−=•−

1

121
1

exp

expexp

N

ji

Njjj

N

jk
N

i

ddddihi

i

j

dh

zh

*

1
2

1 1
*****)*(
F

FFFFFF
jN

jNjk
N

jk −
−

=+−−−−−−−−++=
+−

−−

+=
∑

{ } jk
k

ji

k

ji

FFi −
−

=

−

=
∏ ∏ ==•− **exp

1 1

idh

71Copyright © 2017 by Masaru Matsuo



{ }
( )

( )2

12

221

1

1

*1
*1

*1
*

*1
*1

*1
*

*1
*

***1
*1

*
*1

*
*1
*1

*1
*1

*1
*1

*1
**

*1
**

*1
*

F
FN

F
NF

F
F

F
F

F
NF

FFF
F

F
F

NF
F
F

F
F

F
F

F
FF

F
FF

F
FF

NN

N

NNN

j

NjN

−
−

−
−

=








−
−

−
−

−
=

+−−−−−−−−−−−−+++
−

−
−

=

−
−

+
−

−
+−−−−+

−
−

+
−
−

+
−
−

=
−
−

−

−−

=

+−

∑

72Copyright © 2017 by Masaru Matsuo



( )
( )2

1 1
1

11 F
FF

F
NF

F
FF NN

j

j

−
−

−
−

=
−
−∑

=

( )
( )2

1

1

*1
*1*

*1
*

*1
**

F
FF

F
NF

F
FF NN

j

jN

−
−

−
−

=
−

−∑
=

+−

Summation of real part

( ) ( )

( ) 








−
−

−
−

=










−
−

−
−

+
−
−

−
−

2

22

1
)1(

1
Re2

1
)1(

11
)1(

1
Re

F
FF

F
NF

F
FF

F
NF

F
FF

F
NF

N

NN

( )
( )









−

−
−





−
+

=

−
−

−
−

+

2

2

)1(
)1(2Re

1
)1(Re

1
12

1
2

F
FF

F
FN

F
FF

F
NFN

N

N

73Copyright © 2017 by Masaru Matsuo



{ }{ }
{ }{ }

( ) ( )
( ) ( ) 2

2

2

2

)cos(21

1

expexp1

expexp1

)exp(1)exp(1
)exp(1)exp(1

)exp(1
)exp(1

1
1

FF

F

FiFiF

FiFiF

FiF
FiF

iF
iF

F
F

+•−

−
=

−•−−+•−

−•+•−
=

•−•−−

•−•−+
=

•−−

•−+
=

−
+

dhdhdh

dhdh

dhdh
dhdh

dh
dh

( ) ( )[ ]{ } [ ] ( )[ ]
{ }22

212

2

)cos(21

)(1cos)(cos2)(1cos2)cos(12

)1(
)1(

FF

NFNFNFFFF

F
FF

NNN

N

+•−

•−−•+•+−−•+
=

−
−

++

dh

dhdhdhdh

Equation (III-19) by convolution method corresponds to Eq. (A-1-1). 
By normalization, they are independent of N.  On the other hand, 
Eq. (A-1-2) remains N and it is very important to smooth the intensity 
distribution.  For curve fitting between experimental and theoretical 
results, Eq. (A-1) is reasonable. 
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