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This note iIs concerned with diffraction and scattering
for X-ray beam and visible light beam.
The wavelength of X-ray beam is much shorter than that
of visible light beam and then the particle nature is
predominant in comparison with wave nature. Hence
X-ray beam and visible light beam provide different
characteristics. (Short course, POLYCHAR 24)

Difference between the two is related to the different
fluctuations of system dependent upon the absolute values
of scattered intensity. That is, X-ray scattering intensity
IS due to mean square value of electron density
fluctuation, while light scattering intensity, mean square
value of refractive index. The both scattered intensities
are given by Fourier transform of these fluctuations.
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The wavelengths (1) of X-ray beam generated from Cu and

Mo targets are 0.154 and 0.06198 nm, respectively, while the
wavelength of He-Ne gas laser is ca. 650 nm. The large difference
IS photon energy (€ ) between the two given generally by

_hc _
A
(c: velocity of light, : frequency, h : Planck’s constant)

£ hy

When an incident X-ray beam is entered, the electrons
In atoms behave as free electrons because of high photon
energy.

On the other hand, when visible light is entered, electrons
In atom cause vibration on bottom of the potential box.
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Considering vibrating dipole, the potential field is not isotropic
and electrons move easily along C-C polymer main chain axis
In comparison with the direction perpendicular to the C-C axis,
when an incident wave interact with electrons belonging to C-C
covalent bonds in main chains. That is, for an incident beam,
the vibrating dipole moment along C-C axis becomes larger
than that perpendicular to the C-C axis. Accordingly, scattered
wave Is sensitive to polarization condition of an incident beam.
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Polarized light scattering (Hv pattern)
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This short course Is concerned with the difference
between X-ray and visible light. The different points
for fundamental equations between diffraction and
scattering are not pointed out Iin their text books.

Because, each chapter for the diffraction and
scattering have been written by different authors in
most of textbooks. The unified understanding above
concept iIs very important as the user.

First Chapter

X-ray scattering from atoms and the application
to one polymeric molecule
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For scattering of X-ray and visible light, the scattered intensity | is given
by EE*, in which E is the scattering amplitude and E* is the conjugate
complex. Of course, the X-ray diffraction intensity is given by the
same equation | = EE*.

/ :x\ incident beam
" B S .ll
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scatte rea‘b‘éém
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‘:“ h=27(s"-s,)

E, = ZK: E, exp[27i(s'=s,)/A e (r, +R,)|=exp(ine R, ZE exp(iner,)
= K exp(ih e RK)j « P(r ) exp(iner, )dr,
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of scintillation counter

h=|h|=(47/2)sin@

260 scattering angle

H  azimuthal angle

— (271 2)(s-s,) = (27/2)(1- cos 20)i —sin 20sin wj—sin 20 cos pk | = (4z/1)sin 6h = hh
(4701 2)sin 6|sin @ — cos @sin pj — cos 6 cos yk | = (4z/ A)sin&v = hv = h

p(r) = (p, = p, Jo(r) + p;

o(r)=1 within a particle

H\% e — o(r)=0 without a particle
-uB_.-"
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General description about scattering for X-ray and visible light.
p(r) =(p, — p,Jo(r) + p, p. =0

E, (h) = Kexp(ih e Ry )[ i, o(r ) explih e r, Tdr,
= Kexp(iheR, )| p, explih e, Jdr, = Kexp(ihe R, )[ o, exp(ih e r)dr

dr, is micro-volume element at position vector r,. jdrk : volume integral
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N is the number of particles.

Scattering from an isolated particle reveals that R, becomes 0 and exp(ihR, ) =1

E. = K_[,o(rk)exp(ihrk dr, = ij(r) exp(iher)dr = Kpojexp(ih or)r
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For visible light beam, electrons of atom cause vibration on bottom of
the potential box. Considering vibrating dipole, the potential field is not
Isotropic and electrons move easily along C-C main chain axis of polymer
In comparison with the direction perpendicular to the C-C axis, when
incident wave interact with electrons along C-C covalent bonds in main
chains. That is, for incident beam, the vibrating dipole moment along
C-C axis becomes larger than that perpendicular to the C-C axis.
Accordingly, scattered wave is sensitive to polarization —

- 4
—r

condition of an incident beam. &
Po is not constant. Syl

el o

E = ZK: E, exp[27i(s'=s, )/1 e (r, + R, )] =exp(ine R )IZK; E. exp(iher,) %,

= Kexp(iheR, )jp(l’) expliher, dr, = Kexp(ihe Rk)j(Mk ¢ O)exp(in e rk.jdrk
= Kexp(ih e Rk)j(l\/l e O)exp(iner)dr

where M, is dipole moment induced by k-th scattering element, and
O is unit vector along polarization direction of analyzer.
For scattering from an isolated particle, it can be written as follows:

E_ = K_[,o(rk)exp(ihrk)drk = Kfp(r) exp(ih e r)r = Kpo_[exp(ih er)r
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X-ray scattering from atoms and the application to one polymeric molecule

X-ray diffraction is associated with the reflection from atomic arrangement
plates termed as crystal planes. A particle corresponds to a crystallite
constructing crystal units and the scattering element corresponds to one electron.
Hence the mathematical treatment in wide angle range can neglect interference
effect due to a plurality of crystallites and then the coordinate for theoretical
calculation can be limited to atomic arrangement within a particle. Before then,
we shall start the scattering from an isolated atom as primitive phenomenon
before starting diffraction from crystal

units within a crystallite. Automatically, Atom 4 Atomn 1
the representation for R, is neglected
and Figure shall be replaced as
n I
ri
Atom 3 _*".j'—’-_ Atom 2
ry

' ucleus of atom 3
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Atom 4

E= 2 E, exp[27(s'-s, )/ A o1y | = 2 E, expliher, |

z 2 z 2z
=1 E exp[ih . rijl = IeZZexp{ih o(ri —rj)}
i=1 i=1 j=1
Z Z
= I{Z +ZZexp[ih . rij]}
[E2
z 1° z ,
=1, Z+]D fi| =) [fil
K i=1 i=1
fi =] pi(r) exp(her)dv i (r) : density distribution of the i-th electron
f; : electric structure factor, do: volume element
The average density distribution within an atom with atomic number Z is postulated as
p(r)=p(N)+p,(N+-——————- + p,(r)

z f i1s termed as atomic structure factor for
f = Z f, = jp(r) exp(her)dv  an atom with electron number Z.
i=1 Summation of electric structure factor f;
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|:|G(Z+\f\2_jfifj
i=1

Z

When the electron density distribution is uniform within the atom, 1.>|f;|

Is equal to leZ denoting the summation of scattered intensity from Z electrons.
2
| =1,|f]

To discuss scattering from scale larger than an atom, the scattering from
one molecule with multi-atoms shall be described. As like the scattered
intensity from one atom with the atomic structure factor f, the scattered

intensity 1., from one polyatomic molecule with the structure factor F
In gas is given by neglecting molecular interference as follows:

2

5 Atom 4 Atom 1
m — Ie“:m‘ .\ *
Z, Z, 1
pmol(r):Zpl(r_ri)+zp2(r_ri)+ _____ +Z,ON(T' I’) Atom 3 -'u L
i=1 i=1

I " Mucleus of atom 3

Z,Ol(r —T;) Electron density of 1st atom with Z, electrons

i=1

ZPN (r—r;) Electron density of the N-th atom with Z electrons
i=1
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The structural factor of one polymeric molecule Fm is given by

Fo =jexp[ih-r]{ipl<r—ri>dul +ip2<r—ri>duz Fom +_ZZNpN (r—n)duN}
~ Y expliher, ]{j {ipl(r—ri)exp[ih o(r—r)ldo, +Zip2(r— r.)explih e (r—r, )ldv, +
i1 1 fat i=1 fzat
———+ZpN (r —r,)exp[ine (r—r)]duN}
f at

Then the scattered intensity I, from one polyatomic molecule is given by
Fn = Z f* exp[i (her, )] = Z f," eXp[27zi (S'_So )/}b * ri]

Each integration part corresponds to each atomic structure
factor given by T for the i-th atom with Z; electrons.
Thus, F, is rewritten as

a= LR = 1F F > =1 szatfatexp['h(-—r)]
— | ZZfatfatexph(horu)]_l ZZfa‘fa‘exp[Zm s'-S, /ﬂ,ol’u]
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I, = 1|F.| _|FF*_IZZfatfatexp[lh( r )]
— | ZZfatfatexph(h ru)]—l ZZfatfatexp[Zm (s'-s, //lor]

The calculation of 1, must be carried out in two considerations:

1) interference effect between atoms exited in the molecule, and

2) the equal existing probability in three-dimensional space.
Hence,

Ct
h
=1 {|Fm) =1, ZZfa‘f“S'nh( )
i ct— C— (4
Let’s represent the concrete example (i

for isolated carbon tetrachloride
sin[hr(C - C/)] sin[hr(C/ —C/)]
+12f
hr(C —CY/) cl hr(C/ —CY)

| =S +4f2 +8f_ 1,
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11-3. X-ray diffraction from crystallites

Let’s consider X-ray diffraction by using Eq. (11-22) concretely.

For X-ray diffraction, a particle can be replaced with a crystallite and a
crystallite consists of crystal units and the crystal units with regularity are
arranged as shown in Figure 4. Then the probability function to find other
units within the crystallite is defined to be unity and the intensity from

a crystal unit becomes simple summation for intensities from atoms in the
unit by neglecting the interference effect.

n=R,+r,=na+n,b+n;c+xa+yb+zc
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2= LR =1 F F* =1 ZZfatf"’“eXp[lh( -1,
— szatfatexp[|(h.ru)]—| ZZfatf"’“exp[Zm (s'-s, //Ioru]

| = IG{Z f exp27i(s'=s,)/Aer, ]}2 = IE{Z f*expliher, ]}2 = 1[R[’

2

| = Ie{zi: f.exp[27(s'-s, )/ A er, ]}2 = IE{Z fexpliher, ]} = 1[R[

=R, +r,=n@a+nb+n,c+xa+yb+zc

N,—1 N,—INg-1 i
| =1 {Z > > explih(na+n,b +n,c)] Zf explh(xa+y,b+zc)]}

0 n,=0n;=0
2
= 1,LL*]> f explih(xa+ y,b +z,c)] = 1,LL*|F(S)
N;—1 N,~1N5-1 N;—1 N,—1N5-1
L= Z > Zexp ih(na+n,b+ngc)=> > > exp[27i(s'=s, )/ 1 e(na+n,b+nc)
=0 n,=0n3=0 n-=0n,=0n3=0

F($)=>1, explih(x.a+y,b+zc)|= 2.1 exp[27iS(xa+yb+zc) h =245
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N,—1 N,—1N;-1

L=> Y > exp[27i(n,a+n,b+n,c)s]

n,_=0n,=0n;=0

= Nfexp[Zyzi n(ae S)]sz_llexp[Zﬂin2 (be S)]Nfexp[zm n,(ceS)]
= iexp[Zninlh]iexp[Zdnzk]iexp[Zﬂinsﬂ] |_aue condition
sin? (7N, h)sin® (aN,k)sin* (2N, /) .
LL* — 1 2 3
sin (zh) sin? (7k)sin? () Laue function

where L* is complex conjugate of L.
At N;, N,, N; >>1, the above eq. becomes a periodic function termed as Laue

function, when the following eq. is satisfied, in which h, k, are well-known as
Miller index. These are very important conditions to raise X—?ay diffraction.
The following eq. is also termed as L aue conditions,

which is indispensable rule different from usual scattering.

Sea=h, Seb=k Sec=/ (h, k, ¢ : integer)

Many text books explain the reason why the above relationship
Is dispensable for X-ray diffraction.
However, LL* is one of the special cases of X-ray scattering

represented by the fundamental eq. generally.
Copyright © 2017 by Masaru Matsuo 18




The X-ray diffraction intensity is given by the same equation | = EE*.

incident beam —_

=

1
L

.' .:.... -.-.- " I
% -.scattered beam !
W Tt O_;-XI
.-.-. 5 -"- '-_(
----' .-'-. ._-"-- Ht""l
k -

Ny .--"'"-.- (Rk,)
OM-NK=r,(s'~s))=r.s "“ h=2z(s"-s,)

Fundamental equtation

E, = ZK: E, exp[27i(s'-s, )/A e (r, + R)]=exp(ine R, )ZK: E, exp(iher,)

= Kexp(iheR )J‘ « P )expliher, )dr,
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Laue function LL* in WAXD is in connection to crystal size and is also
discontinuous part in X-ray scattering.
One dimensional case

L, ()L, *(h) = LZ (h) =sin?(zN,h)/sin? ()

L;*(h)
H H H
-1 -;014(_ 1 2 sin® Fde gin !’J}
VE 1(20) = KC—=
L sin? ‘;idsim !'J']
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2
F(S)F *(S) =|F(S)|
Crystal structural factor is related to the scattering from the total atoms
In a crystal unit. To satisfy Laue conditions, (s'—s )//1 _g
(0]

must be represented by must be

represented by reciprocal lattice vector a*, b* and c* in a crystal unit,
which is given by

2sing 1 (h, k, ¢ :integer)
A d

Very important Eq. to pursue the mathematical treatment for WAXD

S'-S,

=S=ha*+kb*+/c* S=[5=

where
bxc cxa c*:aXb

a* = b* =
V Vv v
V is the volume of a crystal unit.

F(S)=F(hk ()= f expi2zi(ha*+kb*+ic*fxa+yb+zc)f

(aa* = bb* = cc* = 1, the others, zero)

|
(aa* = bb* = cc* = 1, the others, zero)

F(h,k,¢) = Zf exp|27(hx, +ky, +7z.)]

Copyright © 2017 by Masaru Matsuo
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(s'-s,)/A =S S =9

A : 0.1542 nm for X-ray generated from Cu target

Ewald sphere representing Laue Bragg equation representing X-ray
condition in reciprocal space. diffraction in real space

2dsind; =nA  (n=1,2--)
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If there exist N atoms in a crystal unit, the coordinate of each atom can be given by:

Atom 1 2 3 - N
Coordinate X1,Y1:Z4 X,Y2,Z5 X3:Y3:23 XNsYNZN
Atomic scattering
factor f, f, f3 fn

Thus, we have

F(hk,0)=F,, = f exp{2z(hx, +ky, + £z, )} + f, exp{2zi(hx, + ky, + ¢z,)}

+ f, exp{2zi(hx, + Ky, + 0z, )} + ——————— + f exp{27(hx, +ky, + ¢z, )}
2 * | oc ‘F ‘2

‘Fhkz‘ - Fhkthkz ke

Here every crystal plane is not related to the X-ray diffraction. Some

crystal planes contribute to the reflection, but some do not contribute

on the basis of extinction rule. The above Eq. is the fourth important
thing to pursue the mathematical treatment for WAXD.

sin® (7N h)sin? (zN,k)sin® (7N ,¢)
sin? (zh)sin® (zk) sin® (z¢)
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As the concrete examples,

Primitive lattice or simple lattice (Fig. 111-7a)
1/8 atom x 8 = 1 atom

The center of coordinate 0, 0,0

F = f exp[27(0)] = f F2=f?

Base centered lattice (Fig. 111-7b)

Atom number in unit cell

1/8 atom x 8 + 1/2 atom x 2 = 2 atom

The center of coordinate 0,0,0 1/2,1/2,0

F = f exp[27(0)]+ f exp[27i{h/2+k/2}]
= f {1+ explx(h+k)]|}
h+k even, F=2f F2=4f2

h or k even or odd
h+k odd F=0 Extinction rule

i 20
? 0
| Ch
.-".T'—-]
|_} o .
(I
(a) Primitive lattice
ol @
o &8
th B Hh,_b 4

(b) Base centered lattice

Asfor(111) (112) (113) (021) (020) (023) F valuesare the same.

Asfor(011) (012) (013) (101)

F =0 Extinction rule
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Extinction rule

Bravais latfice Eeflection Mo reflection
Primmtive all non
Base centered A k. all odd h, & hor kodd (or even)
or all even
body centered (A+i+{) even (h+k+ 10 odd
face centered h k, £ all odd hkt Ak £ odd(oreven)
or all even

A number of textbooks refer to the calculation procedures of \FW

‘ 2

concerning simple cubic lattice, base-centered orthorhombic
lattice, body-centered cubic lattice and face-centered cubic lattice

and then this paper does not describe the commentary. The example
Is shown for NaC/ unit.
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Practice problem
Describe the structural factor of NaC/ unit and discuss extinction rule

O Na*
@ C- > 0 Answer
s The coordinate Na* and c¢- are as follows:
Na*
[ 1 1 1 1 1 1
Ct” S

F(hke) = (f . ){L+explzi(k + £)]+expli(h + ¢)]+ exp|i(h + k)]}
+(f_, )exp(ai(h+k+ ¢){L+exp[— 7i(k + £)]+exp|—zi(h + £)]+ exp[- 7 (h + k) ]}

Copyright © 2017 by Masaru Matsuo
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( ) I h £, allev
af  +f_) even

F(hk,0)=<4(f . —f_) kb £, allodd

Ik A £, even and odd mixming

Vo

kO J

For example
diffraction from the (111) plane 4(]‘Na+ — f - )
diffraction from the«(220) plane 4(fNa+ + f - )

As supplementary explanation, let's consider the F(h.k.£) for EC¥

with close atomic number A(19) and C¥ (18). Different from NaC¥ .

the difference between f . and [, are very small since the number of
electrons for K™ and that for C £7 are the same 18.

Copyright © 2017 by Masaru Matsuo
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E, (h) =K j « p(r)exp[27(s—s,)/Aer|dr = K j o(r)exp[ih e ridr
= ij(rk)exp[ih(rk +R, )ldr, = Kexp(iheR, )I p(rJexp(ih e r, )dr,
IV Understandable explanation about SAXS

First of all, we shall consider N particles in / v\ _
. ; . rh__.r.:f{;-ﬁa__._ S
the irradiated volume. Among N particles, / ok "

4'._ 1z
.

0, M [l
we shall spot the K-th particle. As described | oA
already, the scattered intensity from K-th RN H N
particle can be evaluated by using the above N

Eq. For SAXS, the Eq. is rewtitten as follows:
E, (h) = E, exp(ih e R, )| p(r ) expli(h e r, ) Jdr, = E.F, () exp(ih e R, )

Fe (0) = [ p(r)explither)ldr,  E_correspondstoK and I, = EZ,
F«(h) is structural amplitude of K-particle and exp(iheR)is the phase
factor for the center OK in K-particle based on the origin of the
coordinate. Assuming that scattering wave is coherent, the total
scattering amplitude Es of the entire system is given by
N N

E,(h)=> E () =E,> Fc(h)exp(iheR,)
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Putting R, ;= R; — Ry, the scattered intensity 1(h) becomes

S Fo (W)F: (W) explih e Ry Jexp(—ih o R, )

1J=1

F (MF; (h)exp(-iheR,;)

Mz

I(h)=1.
1Ly
e{iF +iiFK(h>F;<h>exp(—ih-RKJ)}

K=1 K#

-~ - Mz'f

The first term means the total scattered intensity from each particle
and the second term is related to inter-particle interference in the entire
system. Here there Is no orientation correlation between isotropic particles
In the position of center of each particles, Eg. can be written as follows:

1(h) = IQ{N<F2>+<F>ZZN:ZN:GXP(—ih’ Ry, )}

Kz J

- IeN[<F2>—<F>2]+ Ie<F>2{N +ZN:ZN:exp(—ih° Ry, )}

Kz J
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Generally, each particle is not spherically symmetry and then <F2> —<F>2
termed as diffuse scattering is not zero. As shown in the previous Eq. ,
the significant term for SAXS is due to inter-particle interference effect.
This effect is unnecessary to consider for WAXD as described in Session I1.
Now, let’s focus assembly of single

. dv
atom as shown in Figure 12. i
The existing possibility of other atom
in dUseparated with distance r from
the center is dP(r). In the volume V of
the whole specimen, there exist N
atoms. The average volume occupied
by one atom becomes V/N =v,
In this case, the possibility to find the
firstatomin dp is do/v, When the
atoms are separated at enough distance
each other, the finding possibility for
the second atom at the pointed tip of r N particles in volume V.
becomes always dy Jv, -

¥V

N particles

dv,
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However, in dense atomic assembly as like liquid, the possibility at the
small r region is dependent upon r by inter-atomic interaction and it

can describe as dP(r) = P(r)dv /v, . Accordingly, when two atoms are
connected or r is shorter than twice distance of atom radius, P(r) becomes
zero. When r is much far than twice distance of atom radius, P(r) become
unity. If r is in the middle region, P(r) becomes a function with fluctuation
around unity. If {P(r) -1} has the fluctuation, the double summation
In the below Eqg. cannot be carried out by the same weight for pair of each
two-atoms and the summation must be represented by weight i{P(r) ~1}.

1(h) = IQ{N<F2>+<F>2%Z?:eXp(—ihoRKJ )}
= |eN[<F2>_<F>2]+ Ie<F>2{N +%Z:|:exp(—iho Ry )}

Let’s consider RKJ as continuous scale in statistical group, the integration
can be done in stead of summation of

Y Y epl-iheRy,)- j {P(Ry,) - Liexp(-ih e Ry, )dv

U,

4 sin(hR
— Uﬂ {P(RKJ) 1} (h KJ)RKJdRKJ
1

Copyright © 2017 by Masaru Matsuo
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1 (h) = |e|\|[<|:2>—<|:>2]+ Ie<F>2{N +ZN:Z:|:exp(—ih R, )}

=IeN:<F2>—<F>2:+Ie<F>2 N+4—”j {P(Rq) - 1}Sin(:RKJ)RKJdRKJ}

U,

= N[EE) (R e, (RY? N+ 22 [ P(R) - 1}Si”(th) RdR}

U,

:IeN:<F2>_<|:>2:+|eN<F> {1+£\1/—ﬂj {P(R) - 1}Sin(th) RdR}

When the system is isotropic and all the particles are the same shape with
the same volume, <F2> is equal to <F>2.

Also, the density at R is p(r) = P(r)/V and the average density is p, =1/V.
I(h) = |eN<F>2[1+ ax] 1p(R) - p, |PNIR) deR}
Here, the above equation can be rewritten by using p(R) = p(R) - p,

I(h) = 1,N(F) [1+4;zj P(R)Sm(gR)RZdR} P(R) : radial distribution function
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sm(hR) sin(hR)

dR

1(h) = I,N(F) [1+47zj P(R)
1(h)—1,

0

In most of textbooks, R is written by r.

I(h)—l

RZdR}: I, +1,] 42R°P(R)

1" (h) = sin(hR) 4R

:j:47zR2P(R)

sm(hr)

I'(h) = = | 4r*P(r) dr

By Fourier transform

47RP(r) = Z j: hi'(h)sin(hr)dh
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Crientation of polyethylene crystallites

inter-chain force
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Radial distribution function associated with electron
density distribution for a PPEK fiber

The most probable distance r between adjacent chains
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Fe (h) = [ p(r)explith e r,)Jdr,
Let’s consider for a sphere with radius a. From

p(r)=p, r<a/2
p(r)=0 r>a/2

F(h) = jp(r) expli(her)]dr = p, jOZ” _[0” _[Oa r? cos|hr cos a [sin edrdad ¢
=3V (sinU —U cosU)/U"

|(h) = 1.p,F ()]’
1(h) =91_p V*(sinU —U cosU)*/U®° = 1(q)

U =ha=(47ra/1)sind =2xqa V =4’ /3
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Plotting 1(g) against ¢, many sharp
peaks reflecting intra-particle effect
appear in high range of g.

The decrease of peak top of 1(g) shows
asymptotical behavior of g-4, which is
termed as - 4 rule (Porod rule).

Such many peaks can be observed in
the system where the isolated uniform
spheres with the same radius are
dispersed in solution but the peaks
become duller for the particles with
different radius.

=3
10°
F

10
0.01

“ q/nm”

Of course, the many scattered peaks of I(h) are independent
of X-ray diffraction from crystal planes, even if the sphere
composed of crystallites. The angle range concerning
diffraction peaks is much wider than the small angle range

discussed above.
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sm(hr) dr

I'(h) =

1(h)—1,
|

0

= | 4ar?P(r)

Guinier law

Now, let’s consider Guinier law, since the law is very important for
SAXS. For SAXS measurements for uniform dilute polymer solution or
uniform particle dispersion, Guinier plots have been used to determine
radius of inertia of polymer chain or that of particle in the dilute solution.
Guinier plots can be induced by series expansion (Maclaurin) of sin(hr)

around hr = 0 for the above Eq. : 5 4
. S _ X X
I'(h) = '(hi‘ l, =j0°"4;zR2P(R)S'”(hR)dR X 6 120
= 4rx _[DP(R)deR—h—Z_[ P(R)R dR+£_[ P(R)RdR———————
0 6 120 o

e — D —
2| [ P(R)R*dR
:47szP(R)R2dR<1— h JOD TR >

’ 3 zjo P(R)R%dR
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D is the point at P(R) = 0 and corresponds to the diameter for sphere. Here,
D 4
2 zijo P(R)R*dR

D
10)=4z[ P(R)R’r R .
. 2
2_[0 P(R)R"dR e =14 X 42X X e
( 2 2m 2 2 6
1'(h) = I(O)<1—ER2+l ER2 — = 1(0)exp —h i
B 3 ¢ 2(3 ) [ 3
27ZS 2R2 . . .
1'(s) = 10) exp( A Z ; R, is termed as radius gyration.
A B
100 . 4.5
? e 0 MNaCl
: e 0.5MNaCl R, 5.52 nm
10;— e 1MNaCl sl i
Q 1f s, 35
b i -
n RehE ©
= J4 a4 77%%00.5M
- & R, 5.02nm o M
e e e e T
S [nm"] s? [nm7]

SAXS scattering profilesgf thgfidlengihnaciewaiabl protein in solution
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The overlapped particles K and K+1 are separated and the separation
for two spheres is shown below figure.

For a sphere with radius a, the
correlation function Q(r) can be
Induced as follows:

X2_|_y2:a2

e

(x-a)*+y* =a” P
Evaluation for volume V of revolution along x is given by  °

V = 27[(\/a2 — X2 )de r—>R Q)= p? 4 {1—3R L (Rj } P(R)

r/2 3 4a 16
2a
, 1 |, QRIR‘®R 1], QRIR'AR 1 2955 352 ER
2["QRIR*R 2 ["Q(RIR*dR 2a%3 5 ?\5

v r F

A
|
ri2 '
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Radius gyration (R,) for several particles

Particle shape, size radius gyration (R )
K
Sphere with radius a (gj a
. 5 %
Spheroid (a, a, va) a(zw j
S
R? H?)”
Cylinder (2H: height, R: radius) ( >t ]
Very thin disk (R: radi R
ery thin dis > radius —
y ( ) \/E
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Evaluation of inter-particle interference effect by convolution

This section is focused on the reason why the X-ray profile is strongly
affected by the distance fluctuation between adjacent particles (lattices)

and the intensity profile broadness is considerable as the fluctuation increases.
Let’s consider statistical treatment about inter-particle interference effect.

As shown in Fig. , there exist lattice points a,, a,, a5, ------ ,

When existence probability of a, at the tip of vector y from origin O is H,(y),
the possibility of a, at the tip of vector z from a, is H,(y)H(z). In this case,

the possibility of a, at the tip of vector x (=y + z) from O is not H,(y) H,(2)

P [ H, () H, (x—y)dy =9

3oy
W #
ra
~ -
-"'I—-l-rr
' o— Lo ol > X

et 0 a 2a 3a
HIHIHI — x2=x -

) re—X-) —>

The lattice points a,, a,, a,------ exist on vector x
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That is, the existence possibility of the tip of vector x at a, is given by

H,(x) = [H(y)H(x-y)dy =H"H

Hence the possibility for the n-th lattice point is as follows:
H (X)=H,”"H,"H," ——=H"H"H" ——— (convolution of (n -1) times)

H(x) is probability function between x and X+ 0dX, when x is the closest distance
between two points. Of course, H(x) must be normalized as follows:

j: H (x)dx =1

The lattice points a,, a,, a3,------ exist on vector x and then H(x) may be
replaced on scalar H(x). The average value a for the closest distance is

a = J'OOO XH , (x)dx

Similarly, when H,(x) is the probability for finding the second closest distance,

2a = _[: XH , (x)dx
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When the origin of coordinate corresponds to the center of the coordinate, the
summation in the positive and negative directions can be represented easily. In
one-dimensional case, statistical distance z(x) concerning the existence possibility
of the point distances along the disordered point sequence is given by

2(x) = 5(x—0)+ Y H, () + > H, (=x)

Considering Fourier transformation Z(X) of z(x), Z(X) becomes diffraction
intensity from point sequence corresponding to one-dimensional disordered
lattice factor.By using mathematical treatment that Fourier transformation of
convolution becomes product of each Fourier transformation, Fourier
transformations [F(X)]" of H,(x) and [F*(X)]" of H,(-X) are given by

F(X)= [ Hoexplihexidx  [FOOT = ["H, (x)explin » x]dx
F*(X)= jo°° H(-x)exp[-ihex]dx  [F*(X)]" = j: H_(~x)exp[ih e x]dx

1= [ 5(x~0)exp[ih o x]dx
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As described above, Z(X) is Fourier transformation of z(x) and is given as follows:

Z(X)=1+F(X)+F*(X)+—————~- +F*(X)+[F*(X)f +--—-
L FOO L FrX) :R{HF(X)}: 1-|F[
1-F(X) 1-F*(X)  [1-F(X)] 1+|F|" -2F|cos(hea)

When lattice points a,, a,, a, ---- are set on vector h, ais written as vector.
F(X) =|F|cos(h e@) =|F|cos(ha)

The above Eq. is scattered (or diffraction) intensity profile from lattice factors
along point sequence. (n — o)
Assuming H(x) to be Gauss function at the center a

H (x) = —21 exp{— (x-a) a)}

20°

F(X) = exp[2zixa][” H (x)exp[27iX (x - @)Hx = exp[27iXa Jexp|- 272X 262

By using variable g(= o /a) denoting the fluctuation and reciprocal space
coordinate X representing as X (= p/a)

F| =exp|l- 272X 202 |= exp|- 22292 p?
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Hence Z(h) can be represented as follows:

7(h) l—exp[—47z2g2p2]

242 82

) [1—exp{—2772g2p2}]2 +4sin2(7zp)exp{—27z g°p }

Fig. shows that the scattered peaks (or diffraction peaks) becomes smaller
and broader as the fluctuation g becomes larger.

Z 1000 | 10F 10+
= = 2=0.01 2=0.1 2=0.2
§ 500F J\ 8| S|
= 100& L 6| 6L
=
& 4T 4 41
s [ - - —
2 2 21 \/\/\/2—
ESNES NN — ) | | —J | | |
0o 1 2 3 o0 1 2 3 0 1 2 3

The diffraction intensity as a function of p at the indicated fluctuation given as g.
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The above concept for lattice sequence in one-dimensional direction can be
applied to particle sequence. The application shall be induced by using more
reasonable treatment. Returning to the following Eq. , the lattice points
a,, 8,, 85 --- a, In Fig. can be replaced by the center of gravity of each scattering
element. Hence the last term in Eq. is given by

1 (h) = Ie{N<F2>+<F>ZZN:ZN:eXp(—ih- R, )} o

- IeN[<F2>—<F>2]+ Ie<F>2[N +%iexp(—lho R.,)
1(h) = IeN[<F2>—<F>2]+ Ie<F>2{N +Ki$exp(—|h-RKJ )}

o)y b e S S et iner)|

K#

_ |eN[<f2>—<f>2]+ leN<f>2EJ_F|E i 2|\IT((11—_IE)2)}

As one example, numerical calculation by using Eq. is carried out for

carbon fiber (CF) with ellipsoidal voids on the basis of Babinet’s

reciprocity theorem. This example indicates that the scattering from voids

provides SAXS patterns with intensity maxima like scattering from particles.
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The calculation was carried out in accordance k
with Babonet’s reciprocity theorem.

p(r)=(ps — p,)o(r)+ p, = p,o(r)

p, =0 d : the average distance

To analyze SAXS pattern from ellipsoidal voids.
The ellipsoidal void shape is related to b/a, In
which b and a are the long and short axes of

the void, respectively. The center of gravity of

each void is arranged in the one direction

(J-axis) and the distance between adjacent voids

was given as like di-1, di, di+1.

In Case I, b/a (=P) is variable
a/A (= Q) is constant

In Case Il, P iIs constant

Q Is vaiable p(IB) — exp(_ G; sin? IB) '

Copyright © 2017 by Masaru Matsuo
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Case |

exp{— (P=P) E)Z }

20;
N(P): 2P-1 (P—ﬁ)z
Sl

2P-1

(1o (), = NP, (h)

Observed SAXS pattern

Case Il

p(p) = exp(— o sin’ ,B)

Casell  q/a=05 .

q =2
(-
205

exp| —

N(q) = == =
431 (9 q)°

D exp| - 2
=1 q

451

(1), = 2N(@1, (")

B —— 3

= %

L :"'I .-_.-'
g |-|,.: - i 58

|':_3
old=20
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The reasonable approach to analyze SAXS intensity distribution is that

the electron density fluctuation must be evaluated on the average density D

of the specimen.

Electron density

Electron density

Xy
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Wiy

WFJUH T U'J‘JW
OO0 W W UU{

i

" W i
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Understandable explanation about small angle light
scattering (SALS) under polarization

As described in Introduction, the different characteristics between X-ray
beam and visible light beam are due to the different wavelengths associated
with the difference of photon energy. Therefore the electrons in atoms by
an incident X-ray beam behave as free electrons because of high photon
energy, while electrons of atom by visible light cause vibration on bottom
of the potential box. Surely, polarized incident X-ray surely provides strong
intensity. The scattered X-ray beam, however, is independent of the
polarization direction of the beam. On the other hand, the scattered visible
light intensity strongly depends on the polarization direction of the incident
beam.

Figs. 21(a) and (b) show the arrangement of polarizer and analyzer

under Hv and Vv scatterings, respectively.
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] polanzer -

. i .--':,. L | I. S
laser G analyzer ., h ""-"' ] o=
| e td =t . [z g
3 7 g"}__‘ = ﬁ'ﬁ,,ﬂﬂ polarizer T | | 7
sample W i3 ,!J" . W/ |
% . analyzer || |
hptn-pie. - .. - Photo-plate
(a) Hv scattering (b) Vv scattering

polarizer-vertical and analyzer-horizontal Hv
polarizer-vertical and analyzer-vertical Vv
polarizer-horizontal and analyzer-horizontal Hh
polarizer-horizontal and analyzer-vertical Vh

Scattering angle for PALS is represented as g in stead of 260 for SXAS.
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Different from X-ray scattering, visible light scattering is associated
with refractive index fluctuation. The total scattering amplitude from
scattering elements is given by

() = Y E, expli(h o )]
= (47°/R222) D (M, ¢ O)expli(h o 1,)] = K [ (M« O) explik(h o r)lir

For visible light. E; is the scattering amplitude given as E, = (47" /R A )M, siny, . in

which M. sin ¥ is the characteristic term of visible light different from X-ray. Mj is
induced dipole moment of i—th scattering element and ), is interior angle between M;
and K; vectors. Mj 1s given by @.E . in which @, is tensor for polarizability and E, is
electric vector. Accordingly, ¥, 15 dependent upon polarizability ellipsoid and the
ortentation. On observation of scattering beam through analyzer as shown m Figure 21,

the polarization direction of analyzer denoting as unit vector () can be detected among
the tangential component of M; for B;. Eventually. M siny is replaced as (M« 0).

dr; is micro-volume element at position vector r;. [::’r, denotes volume integral.
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S=s,—¢ k=271 s| = 2ksin(6/2)

For polymers, the refractive index difference between spherulite (or rod)
Index and the medium index is much less than unity and the phase shift of
light passed through particles and medium becomes generally very small. The
normal spherulite and rod sizes are less than 100 times in comparison with
wavelength of He-Ne gas laser, which allows the evaluation for the scattering
pattern by Rayleigh-Gans scattering. According to the concept by Rayleigh-
Gans, scattered intensity for SALS is given by

| = Kz_H.(Mi e O)(M, o O)exp[—ik(r; es)]explik(r, os)ldr,dr,
= K2[ [ (M, «0)(M; « O)exp|ik(,, +s)jdr;dr
= KZ::(Mi ¢ O)(M, ¢ O){cos|k(r es)|+isin[k(r es)]idr,dr

= KZ: (M, ¢ O)(M » O) cos[k(r e s)ldr,dr

— KZ:{[(Mi ¢ O)(M, ¢ O)dr, }cos[k(r os)ldr
= KAV [((M, « O)(M; «0)) coslk(res)dr = rj=r-r

Center of coordinate must be set in the center of particle. In this case,

sin term disappears.
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| =KV [{(M, O)(M «O)) cos[k(r es)ldr

wherer=r; =r;-r; and < > is the average of the product of scattering

elements with separation distance r, depending upon optical density,
anisotropy and orientation fluctuation. V is an irradiated volume.

M., (dipole moment induced by i-th scattering element) is generally given by

M, = E; 15 (t, ea; by + (b)) t,

where g; is the vector along the i-th optical axis and t; is unit vector
denoting polarization direction of an incident beam,

Gi=lay)—(a)  b)=la)-a
(e, ). @nd (a,), polarizabilities parallel and perpendicular to optical axis

(the unit vector a,), respectively. &

tp depends on the polarization components of scattering light; tp = k

for vertical polarization direction and tp = j for horizontal polarization
direction. Normally, tp = k.

S

Copyright © 2017 by Masaru Matsuo
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As for the observation of vertical and horizontal components of scattered
Intensity, O,, = k and O, = j can be constructed approximately. Hence,

(M 'O)HV =(M 'O)\/h =E,9, (aj .ani k)
(M ¢ O)vv =E, {5i (ai ¢ k)2 T (bt )u}
(M .O)Hh =E, {5i (ai ’j)2 +(bt ).}

SALS under polarization
| = KZVR(Mi ¢ O)(M, oO)>r cos[k(r es)ldr

SAXS
| oc|[F(h)[ = j Q(r)expli(h e r)ldr

Q(r)= [ plr; olr; —rr,

Q(r) for isolated particles can be evaluated roughly by Guinier plots as
discussed already. However, for polarized light scattering, it is impossible
to pull out information directly from complicated ((M; «O)(M «0))

r
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The SALS profile provides

X-type for rods and four-leaves
clover type for spherulites.

Many reports have been published.

What is the sharp streaks in
addition to the four lobes?

The POM indicates the ordered
arrangement of rods.

~ For theoretical calculation,

the emphasized point is due to the
fact that the difference between
Inter-particle interference between
SAXS and SALS can be represented
easily, when the particles are
arranged in the one-dimensional
direction on the two-dimensional
plane.
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The scattered intensity provides the
same style as Eq. (I'V-24) for SAXS.
The variations of the length L, the
width D; and the adjacent distance X;
between j-th and (j+1)-th rods have
no correlation each other and are
represented by the following
symmetrical functions with the
respective mean lengths, L, D X

the {j+1)=th mﬂ}g
|
i |
the j-throd o

=3

s

Xs

p(&) = expl-oZsin?(E-&,)] p(N)_eXp{( _} ZNZ;XP{ N)Z}

O\
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Y 1S fixed to be 10°.
a = 60°
5, =40°

(a :_60 +7/+900)

a =—60°
&, =40°

(05250 _7/_900)

+10°

Copyright © 2017 by Masaru Matsuo

60



Statistical approach model

This method is useful for the system where
the morphology observed by polarized photo, plate commercial camera
microscopy provides unclear and dark
structure. The statistical approach has
been adopted for scattering from gels and
amorphous films When there exist many
small assemblies with disordered chain

arrangement in polymer film or gel, the \ /
—
/
L

assemblies can be considered as optical
elements, In such case, Hv scattering
pattern becomes very weak and the pattern
could not be observed on the photo screen ¢
frosted glass (see Fig.), since the very weak
light scattered from the gels could not pass polarizer
through the analyzer. The pattern was obse
on the sample surface by the reflection fron ﬁ He-Ne gas laser [ﬂ
analyzer, and then photographs were taken (a) (b)
using a commercial camera.
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In(I)

Time / min

Change of at 6= 15° and Hv patterns with respect to time measured for
the 1.0 and 2.5% g--carrageenan aqueous solutions after quenching at 30°C.
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R.S. Stein; P.R. Wilson, K M. Matsuo et al.

J. Appl. Phys. 33, 1914 (1962) Phys. Rev. E 72, 041403 (2005)
1 sin(hr)

1. =—K&2[ wu(r)f(r
Hv 15 O'U()() hr

Iy, = K.[ow{<772>av7(r)+4i552 f (r)r” ,u[(r)}wﬁdr

4 »
l, — 3 ly, = K<772>av_[07/(r)

ridr

sinhr 2dr
hr
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=K [ [ 02 10 + 90 1(n)

x i(50034 o +30c0s’ —11)—icos2 Q(Scos“ o +6c0s% o —3)
720 144 2

+ %60054 gsin2 2y(35(:os4 a —30c0s’ a + 3)}} cos[hrcos aJr*sin adrda

g(r)=(2cos’ g, —1)r

o(r) = exp(— ;j
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Summary

In the course, the application examples for WAXD, SAXS and SALS were
described in comparison with more detailed observed and theoretical results.
When an incident X-ray beam is entered in the polymer material, electrons
In atoms behave as free electrons because of high photon energy. On the
other hand, when visible light with low photon energy is entered, electrons of
atom cause vibration on bottom of the potential box. Accordingly, SAXS and
SALS scattered intensity distributions are given by Fourier transform of
mean square value of electron density fluctuation and mean square value of
refractive index, respectively. The WAXD and SAXS are written by the same
fundamental equation EE* (E : amplitude, E* : the conjugate complex).
WAXD can neglect inter-particle interference effect between crystallites and
then the probability function to find other unit within the crystallite is defined
to be unity and the intensity from a crystal unit becomes simple summation
for intensities from atoms in the unit. However, under calculation of the
magnitude, Laue condition must be satisfied for crystal units in each
crystallite. Except scattered intensity from isolated particles evaluating
Guinier law, SAXS patterns from materials must be analyzed by considering
Inter-particle interference effect.
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Z(X)=1+F(X)+F*(X) + === —————~ A *(X) +[F* () +-——-

FX) |, F*(X) 1-|F(X)[ (I1I-19)
1-F(X) 1-F*(X) 1+|F(X)|" —2/F(X)|cos2zy

Inter-particle interference effect can be calculated exactly by using the following
method. Compare with Eq. (11I-19)

iy
:|"r o | gl .
(-1 & f Ao o
: o
¥ . r =
FER
i 4 ’ "{I‘.I" .|'.='
i v - .f} p - il
N j-1 N
> (exp(-ihez; )= Z<exp(—ihozjk)>+ Z<exp(—ihozjk)>
i,k j=1| k=1 k=j+1
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-1

(S

(exp(-ihez;)) = i

K =

< ( |hozjk)>

<exp(— ihe zjk)> + Zhj:fexp(— ine zjk)>

=1 k=j+

X

MH_

X

=1

k=1
exp(-ihez ,)=expl-ihe(d, +d, +d; +—————————~ +d, )]
= exp{-ihed, )jexp{-i(hed, lexp{-i(hedy)} -~~~ - expi-ithed, )
zljexp{—i(h d

k=2
exp(—ihozjz):expl_—ihO(dz+d3+ —————————— +dj—1)J
—exp{-i(hed,)lexp{-i(hed,)}———————— exp{— i(h °d;, )}

exol-ithed,)

=2
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k=K

I _ N j-1 j-1 N j-1 j-1
Z{ <exp{—|(hozjk)}>}=z expl-i(hed)]=) =
j=LL k=1 j=1 k=1 i=k =1 k=1 i=k
-1

F=-=FeFe——————— F i1k _ ik
1
1 |

Fl=F 4+ F P F P - +F?+F
k=1
=Fl+F+F? 4 - +F12)

_pJi-FT 1R F-F
| 1-F | | 1-F | 1-F
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N F—F
2F

=

NF-F' F-F 1-F° 1-F° 1-F"
Z = + + +—————————= +

o 1-F 1-F 1-F 1-F 1— F
N F {1+F+2+ ———————————— +|:N—1}

1-F 1-F

_NF F [1-F“] _NF N{-F")
1-F 1-F|1-F
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exp(-ihez;,))

j+1 <exp( ihe z”+1)>:<exp{—ihodj}>
] +2
exp(-ihez,,))=(expl-ihe(d, +d,,})=(exp{-ihed, [}(expi-ihed,,, )

ﬁ(exp{— ihed, )

Mz

k=j+1

—

|l

k=N
k-ZN,-;fexP(_ih‘sz ))=explin(d; +d;, +d, +———————- A}
=ﬁ<eXp —ihed,))
ﬁ<exp ihed, | > HF* =Sy
i-]
kZNj;l(F*)kJ _F*yF* oy LN F*l_f;zl_m

Copyright © 2017 by Masaru Matsuo

71



jéF*;FN*“__F*—F*N |:*—|:*N"1+1—F*N“2 1-F** 1-F~*
j=1

= + +———— +

m 1-FF 1-F* 1-F* 1-F* 1-F* 1-F*
* *

R e L Ea)

T1-F* 1-F*|1-F* |

_NF*  F* [1-F*"] NF* N{-F*")
_1—F* (1—F*)2
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ZN:F—FJ _NF F{-F")
= 1-F 1-F (1-F)

J:

' 1-F*  1-F* (1_F*y

o e i \| = = VY =y
$ )

Summation of real part

~ NF_FOA-FY) NF _F@-F")
1-F (@1-F) 1-F (@-F)

:ZR%:NF__FO—FN{
1-F (1-F)

2NF  2F(1-F")
_I_ —
1-F (1-F)

_ Re[|\|(1+ F)}_ Re{zm— FN)}
1-F (1-F)?

N
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1+F 1+|F|exp(-ihed) {L+|F|exp(-ihed)}iL-|F|exp(hed)|

1-F 1-|Flexp(-ihed) {L—|F|exp(-ih e d)jiL—|F|exp(h e d);

_ 1-|F|explihed)+|F|exp(ihed)-|F|" 1-|F|’
1—|F|exp(ih e d)+—|F|exp(~ih e d)-|F|*  1-2|F|cos(h e d)+|F|

ST F(h) = |F(h)|exp{-ih e d]

(1-F)°

2|F”{(1+|F|2 )cos(h e d)—2|F|-|F|" cos|(N +1)h .a)]}-i- 2|F|‘ - cos|N (hed)|~|F|"** cos|(N —1)h e d)]

- 2|F| cos(he d) +|F[*

Equation (I111-19) by convolution method corresponds to Eq. (A-1-1).
By normalization, they are independent of N. On the other hand,

Eqg. (A-1-2) remains N and it is very important to smooth the intensity
distribution. For curve fitting between experimental and theoretical
results, Eg. (A-1) is reasonable.
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Here, we have the average of exp(—ihez) in accordance with H-function
Introduced by Hoseman

(exp(-ih e 2))

1 . —(z-d)?
H.(z) = ex
) J272d? I p{ 2Ad,, }

where d is the average distance between adjacent particles and

d,, isthe standard deviation along z-axis.

<exp(—h e2))= [ H,(z)exp(-ihez)dz

= he
j { }exp{ i(hep)zldz 27[Ad2'[ ex{ 2Ad2

1/27[Ad2
00 2 1
_ exp{ZAl; }exp{— AU +d) fdu z—d =u

\/ZEAdZZZ )

expl-iA{u+d )} = cos{Au + d)}—isin{A(u + d)}

7

— cos Aucos Ad —sin Aucos Ad —isin Aucos Ad —icos Ausin Ad

= cos Aucos Ad —icos Ausin Ad
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w/27zAd : '[ {
1
\27Ad 2

1
\27Ad 2

(ol

1
\27Ad 2
|1

\27Ad 2

2
{cos Ad —isin Ad} exp - - |cos Audu
- 2Ad

1
) \27Ad 2

fcos Ad [ exp{

2

77

cosAd —i———

}cos Audu =

cos Ad J'_oo exp{ 2_Al:j a

sin Ad _[_OO exp{ Z_Alcjj a

}exp{ IA(u+d )}dz

2

}cos Audu

77

2

}cos Audu

77

2

— 00 _u
sin Ad ex
JzﬂAdg }jw p{ZAdi

}cos Audu

7

2

2Ad,, |

cos Audu

2 2 2
iexrk_ A $:2\/2Adzz exp _Adi
1 1 2 2
2 |-~ 4
2Ad2

2Ad?
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2 2 2 p2
_[ exp - — [cos Audu = 2= exps — A o= 2\/2Ad 2 EXp| — Ad, A
~ | 2Ad? ,[ 1 y ( 1 J 2 2

X
2Ad? 2Ad?

{cos Ad —isin Ad { }cos Audu = exp( iAd )) exp(— %Ad ° Azj

1
\27Ad 2
A:h.p:hz AZ:hZZ
—Aa:hopoa:hoa
L= 1, 2. >
exp(— ine d)exp(— > h,”Ad sz

F(h) = |F (h)|exp{-ih + ] F(h)exp{—thdz}
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