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Abstract

In attempt to pursue easy understanding 1) wide angle X-ray diffraction (WAXD), 2)
small angle X-ray scattering SAXS) and 3) small angle light scattering (SALS) under
polarization, teaching approaches about the three are focused on the different
developments from the unified explanation given by the fundamental equation EE* (E :
scattering amplitude, E* : the conjugate complex). The graduate students studying
material science can understand the different developments based on mathematical
knowledge in educational curriculum of undergraduate students. This approach refers to
two important points. The first is the different wave lengths between X-ray and visible
light associated with photon energy: When an incident X-ray beam is entered in the
polymer material, electrons in atoms behave as free electrons because of high photon
energy. On the other hand, when visible light with low photon energy is entered,
electrons of atom cause vibration on bottom of the potential box. These different
electron behaviors emphasize to provide the different scattering modes of X-ray and
visible light in terms ‘of photon energy. The second is the branch point associated with
the different developments concerning X-ray diffraction and scattering. This is
explained in terms of the focusing element scales. The diffraction and scattering in most
of the«textbooks have been described individually by different authors and then the
descriptions have been never focused on the branch point. In addition to the above
fundamental knowledge, serious defect for the recent instrument termed as simultaneous
SAXS and WAXD measuring instrument” is pointed out in terms of the problem on
evaluating radial distribution function of amorphous chains because of difficulty in
estimating the incoherent intensity up to wide angle 26 >120°.



Introduction

This paper is a short example to facilitate understanding of wide angle X-ray
diffraction (WAXD), small angle X-ray scattering (SAXS) and small angle light
scattering (SALS) systematically for graduate students studying polymer material
science. For the facile understanding, mathematical knowledge beyond educational
curriculum of undergraduate is unnecessary. A lot of efforts have been done to avoid
abstract description and to focus on the concrete analysis for experimental results.
Under the repeated teaching process, authors tried to the improvement.that most of
students can understand easily the morphology of polymer materials through WAXD,
SAXS and SALS results. The students who observed unusual experimental results, have
been obliged to pursue their analyses based on the well-known reports, while feeling the
uncertainty. If they understood slightly the fundamental knowledge about WAXD,
SAXS and SALS, they shall try to carry out the theoretical.caleulation in accordance
with their own concept coming into their mind.

This paper aims to support theorization of their thinking ideas constructed. The paper
focuses on three concepts; (1) Wavelength difference between X-ray and visible light;
(2) The branch point of the same fundamental equation about WAXD and SAXS.

The important point (1) is the fact that the wavelength of X-ray beam is much shorter
than that of visible light beam, and'then X-ray and visible light beams provide different
characteristics for polymer materials. (3) Fatal defect of recent X-ray machines termed
as “simultaneous measurement instrument of WAXD and SAXS.

The wavelengths (4).of X-ray beam generated from Cu and Mo targets are 0.154 and
0.06198 nm, respectively, while the wavelength of He-Ne gas laser is 650 nm. The large
difference is photon energy (&) between the two given by
— hC o
=7

When an incident X-ray beam is entered, the electrons in atoms behave as free
electrons-because of high photon energy. On the other hand, when visible light is
entered, electrons of atom cause vibration on bottom of the potential box. Considering
vibrating dipole, the potential field is not isotropic and electrons move easily along C-C
polymer main chain axis in comparison with the direction perpendicular to the C-C axis.

£ hyv  (I-1)  (c: velocity of light, v : frequency, h : Planck’s constant)

Hence incident wave interact with electrons belonging to C-C covalent bonds in main
chains and scattered wave is sensitive to polarization condition of an incident beam. The
basic concepts are described repeatedly in Il and IV.

The important point (2) is the different developments for the fundamental equation



EE* (E : scattering amplitude, E* : the conjugate complex) associated with X-ray
intensity. WAXD is unnecessary to consider the inter-particle interference effect
between crystallites, since the diffraction peaks associated with the distance between
crystal planes, the distance being generally much shorter than the distance between
crystallite gains, appear in wide angle (twice the Bragg angle 26, ) range beyond 5°. On
the other hand, for SAXS, the inter-particle interference between particles is important
in addition to the scattering from an isolated particle. Namely, the inter-particle effect
appeared in small angle region is hardly affected by atomic arrangement within each
particle appeared in wide angle region. The analyses are described in Il.and V. The
important point (3) is the fact that young scientists must notice a serious defect of recent
X-ray instrument termed as simultaneous measurement instrument. for. WAXD and
SAXS, since the sample stage of the instrument is fixed. The instrument by imaging
plate is certainly very effective to detect several SAXS peaks from ordered arrangement
of large particles. High brightness of X-ray improves the scattering intensity distribution
up to the high order peaks. However, the application of the instrument to WAXD
measurement contains serious problem because of-difficulty in evaluating inelastic
scattering enhanced at wide angle region of 26, and WAXD intensity from crystal
planes oriented parallel to the film surface. The detailed explanation is described in V.

I1. Better understanding among fundamental WAXD, SAXS and SALS concepts
11-1. General description about scattering for X-ray and visible light.

For scattering of X-ray and visible light, the scattered intensity | is given by EE*, in
which E is the scattering amplitude and E* is the conjugate complex. [1-3] Of course,
the X-ray diffraction intensity is given by the same equation | = EE*.

As shown. in Figure 1, scattering amplitude from the k-th particle with K electrons, for
example,is given in textbooks as follows:

B = ZK: E, exp[27i(s's, )/ A o (r + R)]=exp(ih e R, )i E exp(iher,) -
- = II-1
=K exp(ih *Ry )j kth p(rK)eXp(ih or, )dI‘K

where A is the wavelength in vacuum. In Eq. (I1-2), s, and s’ are the unit vectors along
an incident beam and a scattered beam, respectively. h is2z(s'-s,)/ 4.



Figure 1. Geometrical arrangement to describe the fundamental equation for diffraction
and scattering, in which Oy, is neighbor particle. When Oy, is not neighbor particles,
the center is represented as O, as described later (IV).

For example, exp(ihery) in Eqg. (I1-1) means the phase of k-th scattering element
against the original coordinate for' SAXS. That is, OxM - NK =r k(S = So) = rxes.
The optical coordinate for the scattering system is shown in Figure 2.

h=(2z/A)s"s,)=(27/2)s | h=|n|=(4z/A)sin6

where

(271 2)(s'-53)=(272/ 2)|(1- cos 20)i —sin 20sin uj —sin 20 cos 1k | = (47/1)sin ¢h = hh
— (47 1.2)sin@[sin 6 — cos Osin zj — cos&cos uk | = (471 A)sinv =hv =h
v = —[sin6i ~Cos @sin 1j — cos O cos uk]

(11-2)
InEq. (11-2), 26 is scattering angle and  is azimuthal angle.
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Figure 2. General representation of optical coordinate. The scattering angle is given as
260, for WAXD, 26 for SAXSand & for SALS customarily. , isazimuthal angle.

To carry out theoretical calculation for SAXS:and SALS patterns, the vector h (= s’ -
So) In Eq. (11-2) can be selected as a reference axis in random system, while the vector v
must be selected in non-random system. Studies on this treatment are important for
students. In Eq. (11-2), 26 is scattering angle and x is azimuthal angle.

In Eqg. (11-1), a uniform particle with electron density p exists in a medium with
uniform density p, and p(r)is given by using shape function o(r)

p(r) =(p, = py)o(r) + p, (11-3)

Generally, it'may. be described as o(r) =1 within a particle and o(r) =0 without a
particle. Accordingly, at Eq. (11-3), p, =0. Hence Eqg. (I1-1) is given by

E, (h) = K[ p(r)exp[27i(s—s,) /A e r]dr = K[, p(r)exp[ih e ridr

= ij(rk)exp[ih(rk +Ry )]drk =K eXp(ih R, )_[P(rk )eXp(ih or, )drk (11-4)

dri is micro-volume element at position vector ry. jdrk denotes volume integral.

Sincer =r, + R, inEq. (1I-2), dr =dr, assuming that R is constant.
N

N
Of course, E =) E,and E*=> E,*, where N is the number of particles.
k=1

k=1



Eq. (11-4) is general representation about scattering and diffraction for X-ray and light
beams. However, the different representation between X-ray and visible light scattering
magnitudes is attributed to the different physical meanings of p(r).

As discussed above, the intensity for X-ray is related to mean square value of electron
density fluctuation. When the electron density within each particle is uniform, p(r) is
given by p, . The scattering from an isolated particle reveals Rx= 0 and exp(ith):l.

Then,
E_= KIp(rk)exp(ihrk)drk = KJ'p(r) exp(iher)r = Kpojexp(ih erjr " (1l-5)

For visible light beam, electrons of atom cause vibration on bottom of the potential
box. Considering vibrating dipole, the potential field is not isotropic and electrons move
easily along C-C main chain axis of polymer in comparison with the direction
perpendicular to the C-C axis, when incident wave interact with electrons along C-C
covalent bonds. That is, for incident beam, the vibrating dipole moment along C-C axis
becomes larger than that perpendicular to the C-C axis. Accordingly, scattered wave is
sensitive to polarization condition of an incident beam. Hence, p, is not constant.

E, = ZK: E, exp[27i(s'-=s, )/ 2 o (r, + R, )] = exp(ie R, )ZK: E,exp(iher,)

i=1 i=1

= Kexp(ihe R, )J.P(r) explih er, Jdr, = Kexp(ih e Rk)J'(I\/Ik eO)exp(iher, )dr, (11-6)
= Kexp(ihe Rk)J'(M o O)exp(iner)dr

where M, is dipole.moment induced by k-th scattering element, and O is unit vector
along polarization direction of analyzer.
For scattering fram anisolated particle (Rx = 0), it can be written as follows:

_K'[ ¢ O)exp(iher)r aI1-7)

11-2 X-ray scattering from atoms and the application to one polymeric molecule

X-ray diffraction is associated with the reflection from atomic arrangement plates
termed as crystal planes. A particle corresponds to a crystallite constructing crystal units
and the scattering element corresponds to one electron. The mathematical treatment in
wide angle range can neglect interference effect due to a plurality of crystallites and
then the coordinate for theoretical calculation can be limited to atomic arrangement
within a particle.



Before then, we shall start the scattering from an isolated atom as primitive
phenomenon before starting diffraction from crystal units within a crystallite.
Automatically, the representation for R is neglected and Figure 1 shall be replaced as
Figure 3 simply. In Figure 3(a), the center Oy of the coordinate is represented as O by
abbreviating suffix k.

Figure 3. (a) Optical coordinate to calculate scattered intensity from an atom using the
phase difference between i-th and j-th electrons. (b) Simple coordinate to calculate
scattered intensity from atoms, in which four atoms (Atom 1 ~ Atom 4) are shown as an
example. The center of each'atom is position of nucleus and existing probability of
electrons is shown by blue'zone around the each nucleus (red ink).

The X-ray scattering intensity is attributed to square of the amplitude from one atom
with Z electrons- (atomic number Z), in which interference effect (phase relation)
between each' scattered waves must be considered. From the phase difference

[ im—ni.=1(s'=s,) e r;; ] of scattered waves between i and j electrons in Figure 3(a), Eq.

(11-1) can-be written as follows:

E= .Z: E, exp[27i(s'=s, )/ A o1, ]= 2‘ E, expliher,]

(11-8)
E*= zZ: E, exp|- 27i(s'=s, )/ A e, | = i E, expl-iher;]]

The scattered intensity is give by



| =EE*=1,3 Yexplihe(r, -, )}= |e[z +i ZJ exp[ihorij]} (11-9)

i=1 j=1
where I is the scattered intensity from one electron. Under no polarization, I is given

by [1]

2 \2 2
|| 1 e 1+cos® 20
¢ mc?

°R? 2

I, is intensity of incident beam in which c is speed of light, m is electron mass and e IS
electron density, respectively. e/mc? corresponds to radius of Bohr’s classical model. I,
corresponds to K®given as general description in Eq. (I1-1). Considering polarization
factor represented by (1+cos®26)/2, le becomes maximum at #=0°. Then, the
polarized X-ray is useful only to increase l.. Based on Eq. (11-9),.the intensity from an
atom with Z electrons is written as follows:

|:|e[2+

where

f,=[ pi(rexp(her)do (11-11)

Z
3 fi
i=1

_ipﬂ (11-10)

where f; is termed as electric structure factor, and volume element is represented as
do in stead of dr (in Eqgs. I-4'~11-7). p,(r) is density distribution of the i-th electron.

The average density.-distribution within an atom with atomic number Z is postulated as

pr)=p ()t p, (N +-—-———- +p,(r)  (1I-12)
where
f = i fr= [ p(r)exp(her)do (11-13)

f is termed as atomic structure factor for an atom with electron number Z. Thus, Eq.
(11-10) is rewritten as follows:

I:IE(Z+|f|2—i|fi|2j (11-14)

Z
When the electron density distribution is uniform within the atom, 1,>°|f;| is equal to
i=1

leZ denoting the summation of scattered intensity from Z electrons, and then Eq. (11-14)
IS rewritten as



I =1|f[° (11-15)

Incidentally, Eq. (11-10) represents the elastic scattering based on the assumption that
the wave length of incident beam is equal to that of scattered beam.

Assuming that electron density distribution around the nucleus is spherically symmetry,
Eq. (11-15) can be given by

2 - 2
| = IEU"M [l p(r)Wr2 sin adrdadﬂ} - |e[47zj:p(r) s'”h(:") rzdr}
(11-16)

To discuss scattering from scale larger than an atom, the scattering from one molecule
with multi-atoms shall be described. As like the scattered intensity from one atom with
the atomic structure factor f, the scattered intensity Iy from-.one polyatomic molecule
with the structure factor Fn in gas is given by neglecting molecular interference as
follows:

= LIF["  (1-17)
where
Foo = [ o (N exp[27i(s'=5)/ A o T Tdv = [ p g (N explin e rldo  (11-18)

Figure 3(b) shows the optical coordinate as an example for four atoms in one molecule.
When one molecule consist of N number of atoms, the density of one molecule is
generally given by the summation of electron density around nucleus

pmol(r):Zpl(r_ri)+2p2(r_ri)+ _____ +ﬁpN (r-r) (1I-19)

Zl ZN
where.r; is the position of the i-th nucleus. > p,(r—r;) and > p,(r-r;) are the
i=1 i=1

electron density of 1% atom with Z; electrons and that of the N-th atom with Zy electrons,
respectively.

Substituting Eq. (11-19) into Eq. (11-18), the structural factor of one polymeric
molecule F, is given by



F, :jexp[ih-r]{ipl(r—ri)dul T N I — 3o (r—n)duN}

z Zexp[ih or Hj{iﬁl(r —r;)exp[ih e (I’ -1, )ldo, + Zzzpz (r—r,)exp[ihe (I’ —r;)ldv, +

i=1

i=1

Zn
___+ZPN (r—r,)exp[ih '(r - )]dUN }
(H-20)
Comparing with Eq. (11-13), each integration part in Eqg. (11-20) corresponds te each

atomic structure factor given by f* for the i-th atom with Z; electrons. Thus, Fp, is

rewritten as
Fo=2 fiexplither)]=3 £ expl2i(s'=s, )/ 2 o1;] (11-21)

Then the scattered intensity I, from one polyatomic molecule is given by

L= LR = LR R =1, £ £ explin(r—r, )]
i

= |eZZ fe e exp[i(h or; )]: 'ezz fi £ exp[27zi (s=s,)/2 e rij]

(11-22)

The I, must be evaluated by considering: 1) interference effect between atoms in the
molecule, and 2) the equal existing probability in three-dimensional space. Thus the
intensity from N atoms:in.irradiated volume is given by

sin(hr;)

2 N g at gt
o = L{JFm ) =123 1, S (1-29)

i=1 j=1 j
Let’srepresent the concrete example for isolated carbon tetrachloride (CC 7 4). [3]

sin[hr(C —C/)] 12f sin[hr(C¢ —C/)]

. (11-24)
hr(C - C/) " hr(Cl¢—Cr)

| =f2+4f2 +8f_f

The intensity Iy, is usually given as a function of sin@/A (=h/4rx).

11-3.  X-ray diffraction from crystallites

Let’s consider X-ray diffraction intensity by using Eq. (11-22) concretely. For X-ray
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diffraction, a particle can be replaced with a crystallite and a crystallite consists of
crystal units and the crystal units are arranged regularly as shown in Figure 4. Then the
probability function to find other units within the crystallite is defined to be unity and
the intensity from a crystal unit becomes simple summation for intensities from atoms
in the unit by neglecting the interference effect. Accordingly, Eqg. (I1-22) can be
written as follows:

| = |{Z f. ™ exp[27i(s'—s, )/ Ao, ]}2 = |{Z f o expliher, ]}2 = 1|F|” «(11:25)

For X-ray diffraction, the atomic structure factors f,* is usually represented as f,,

since X-ray diffraction and scattering have been written by different.authors in most of
the textbooks.[1, 3] The values of the atomic structural factors as a function of

sing/A are given as table to calculate crystal structural factor. Replacing f* to f;, Eq.

(11-25) is rewritten as follows:

2

IZIQ{Z f, exp[27zi(s'—so)//10ri]}2:Ie{z f, exp[ihori]} =1,|F.|" (11-25)

(@) (b)

Figure 4. (a) Geometrical arrangement for the crystal units. (b) Atoms in the unit.[2]

Eq. (11-25) is the first important thing to pursue the mathematical treatment for WAXD.

11



When the number of units along x, y and z directions is N, N, and Ns, respectively, the
total number of the units is N;N2Ns. As a simple example, the representation in Figure 4
is adopted as geometrical arrangement to determine the position i(u,v,w) of i-th atom in
a selected crystal unit, in which u=(4+xja, v=(3+y)b, w=(2+z)c. Considering
periodicity of the atomic arrangement, the vector r; is generally given by

rNn=Ric+ro=ma+nb+nsc+xa+yb+zic (ny,nyns: nteger) (I1-26)
Substituting Eq. (11-26) into Eq. (11-25), Eq. (11-25) can be written by

N, -1 Ny-1N;-1
| = I{ > Y > explin(na+n,b+nyc)[x > f explih(x,a+ y;b +z,c)]

n,_=0 n,=0n;=0 (”-27)

2

2

= I,LL* > f, explih(xa+ yb+z,c)] =1,LL*|F(S)"

where
N;—1 N,—-1N;-1 N;—1 N,<INg-1

L= > Yexplin(na+n,b+ngc)= 33D exp[27i(s'—s, )/ A e (na+n,b+nc)]
n_=0n,=0n;=0 n_=0 n,=0n;=0

(11-28)
and h is represented as 2zS for X-ray diffraction in many textbooks.

F(S)=2 fiexplib(xa+yb+zc)|=3 fiexpl2aS(xa+yb+zc)]  (11-29)

F(S) is termed as crystal structural factor and corresponds to the structural factor Fp, of
one polymeric malecule in Eq. (11-21), which is related to the scattered intensity I, from
one polyatomic molecule n g& nelecting nolecular interference.

Similar to.h used for scattering, S is used for X-ray diffraction routinely.

_ 2sin@
A

(s, ) A=S, S=]§ _4zsing

. h=h

=278|=225  (11-30)

Hence L is simplified as follows:

12



N;—1 N, —IN,-1

L= > > exp[27i(na+n,b+nyc)S]

n_=0n,=0n;=0

= N1Z_le><|o[27zi n(ae S)]NZZ_‘,lexp[Zdnz (be S)]Nfexp[zﬂi n,(ceS)] (11-31)

N, -1 N, -1 Nj-1
= Y exp[2zin;h] > exp[27in,k] D exp[27in,/]
n_ =0 n,=0 ns=0
Then,
_sin?(aN,h)sin? (7N k) sin? (2N ,¢)

LL* - - -
sin?(zh)sin?(zk)sin? ()

(11-32)

where L* is complex conjugate of L.

At Nj, N2, N3 >>1, Eq. (11-32) becomes a periodic function termed as Laue function,
when Eq. (11-33) is satisfied, in which h, k, ¢are well-known-as-Miller index. These are
very important conditions to raise X-ray diffraction. Eq. (11-33) is also termed as Laue
conditions, which is indispensable rule different from usual scattering.

Sea=h, Seb=k, Sec=/¢ "(h/k, 7: nteger) (11-33)

Many text books explain the reason why Eqg. (11-33) is indispensable for X-ray
diffraction.
However, Eq. (11-32) is one of the-special cases of X-ray scattering represented by Eq.
(11-1) generally.

Based on Eq. (11-33), Eq. (11-28) is rewritten as Eq. (11-31). Laue function LL* in
WAXD is in connection to crystal size and is also discontinuous part in X-ray scattering.
Eq. (11-33) is'the second important thing to induce Eq. (11-32) br WAXD.

As one-dimensional direction, L, (h)L, *(h) = L2 (h) =sin?(aN,h)/sin® (zh) is
shown in Figure 5. The result indicates that the diffraction peak becomes sharper and
higher as'N; increases. The maximum value is L2(h)=N? (h=0, 1,2, ---)

13



-1 0 1 2
-->|L<—
N,
Figure 5. Laue function in one-dimensional direction at. N3=100. [2]

On the other hand, F(S)F *(S) = |F(S)|2 termed as crystal structural factor is related

to the scattering from the total atoms in a crystal unit.
To satisfy Laue conditions in Eq. (11-33), (s'—so)//lzs must be represented by

reciprocal lattice vectors a*, b* and c* in a crystal unit, which is given by

S S0 _ g _ ha*+kb*+lc*. s:|s|:25'”‘9:§ (11-34) (hk, ¢ : integer)
where

bxc cxa axb _ e
a* = v b*= v c*= (aa* = bb* = cc* = 1, the others, zero)

V is the volume.of a crystal unit. Again, it must be noted that h in Egs. (11-31) ~ (11-34)
is integer-different from 47siné&/ A used in this paper. Eq. (11-34) is the third important
thing to pursue the mathematical treatment for WAXD.

The reciprocal space for Eq. (11-34) is represented as Ewald sphere with radius of 1/1
(A: 0.1542 nm for X-ray generated from Cu target) in Figure 6(a) and the
representation for real space 2dsind; =A corresponds to Bragg equation
2dsing; =ni(n=1, 2------ ).

14
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Figure 6. (a) Ewald sphere representing Laue condition in reciprocal space. (b) Bragg
equation representing X-ray diffraction in real space

Now, Eq. (11-29) can be written as follows:
F(S)=F(hk,0)=> f expi2zi(ha*+tkb*+/c*|xa+yb+zc)f  (11-35-1)

By using the relationship (aa* ='bb* =.cc* = 1, the others, zero), Eq. (11-35-1) is
generally represented as follows:

F(hk,?) =Z f. exp[2ai(hx, +ky, +(z,)] Unit ell (11-35-2)

If there exist N atoms in‘a crystal unit, the coordinate of each atom can be given by:

Atom 1 2 3 e N
Coordinate X1,Y1,Z1 X2,Y2,Z2 X3,Y3,Z3 XN, YNSZN
Atomic scattering

factor f1 f, f3 fn

Thus, we have

F(h,k,0) =F,, = f, exp{2z(hx, +ky, + ¢z, )} + f, exp{2zi(hx, + ky, + ¢z, )}

11-36
+ fexp{2zi(hx, + Ky, + 02, )} + ——————— + f,, exp{2zi(hx, +ky, + ¢z, )} (11-36)
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hk ¢ :Fhkz hk ¢ (11-37)

\F

i Eox loc Ry |
Here every crystal plane is not involved in X-ray diffraction. Some crystal planes
contribute to the reflection, but some do not contribute on the basis of extinction rule.
Eq. (11-36) is the fourth important thing to pursue the mathematical treatment for

WAXD.

Extinction rule

Bravais lattice Reflection No eflection

Primitive all non

Base @ntered h,k, all odd h,k horkodd (or even)
or all even

body @ntered (h+k+7) even (h+k+7) odd

face e@ntered h,k, ¢ all odd h,k,¢ h,k, ¢ odd(oreven)
or all even

A number of textbooks refer to the calculation procedures of |FW|2 concerning

simple cubic lattice, base-centered orthorhombic lattice, body-centered cubic lattice and
face-centered cubic lattice and then this paper does not describe the commentary. The
example is shown for NaC/ unit.

Practice problem
Describe the structural-factor of* NaC/ unit and discuss extinction rule.

O Na*

@ -

®

/]
1 1
AL Y.

n,
L 'S

Figure 7. Crystal unit of NaC/




Answer
The coordinate Na* and C¢~ are as follows:

Na® : (0,0,0), (0, > 2), (2,0, 2), (2, 2,0)
- . E 1 E E 1 1
ce (2, > 2), (2,0,0), (0, 2,0), (0, 0, 2)

Using Eq. (11-36), the crystal structural factor F(S) for NaC/ is given by

F(hke) = (. )iL+explzi(k + 0)]+exp[zi(h + £)]+ exp[zi(h + k)]}
+(f,, Yexp(i(h+k + )L+ exp[- zi(k + )]+ exp[- zi(h + £)]+ exp[- zi(h + k) ]}

By considering Extinction rule,

k A 0, all
4( fNa+ + fC[) all even
k A, 0, allodd

k, A, !, even and odd mixing

F(hk,0)=14(f,. —f_ )
0

For example

The diffraction from the (111) plane 4(fNa+ — fcj_)

The diffraction from the (220) plane 4(fNa+ + fw,)

As supplementary explanation, let’s consider the F(h,k,¢) for KC/ with close
atomic number K(19) and C/ (18). Different from NaC/, the difference between f, .
and f.,are very small, since the number of electrons for K* and that for C ¢~ are the

same 18.

Anyway, the diffraction intensity (11-25) is written by using Egs. (11-32) and (11-37) as
follows:

sin? (7N, h)sin?(zN k) sin® (7N, /) F

) . 9 . 9 hk/7,|2 (”_38)
sin“ (7h)sin“ (zk) sin“ ()

1(h,k,0) =1,

Here it may be noted that the irradiation volume of X-ray is much bigger than the
crystallite size associated with N;, N and N3 and then the sizes of many crystallites are
not same and the actual X-ray diffraction reflects the distribution of N;, N, and Ns. If Ny,
N, and N3 are fixed, many vice maxima must be appeared in the observed diffraction
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intensity. However, such phenomenon has never been observed actually. This is due to
size distribution of crystallites (particles) existed in the irradiation volume. This
phenomenon has been described elsewhere. [4-7] Of course, the consideration for
interparticle interference effect for crystallites is negligible for WAXD, since the effect
is almost independent of the wide angle 26, .

I11. Understandable explanation about SAXS

First of all, we shall consider N particles in the irradiated volume. Among N particles,
we shall spot the K-th particle in Figure 1. As described already, the scattered intensity
from K-th particle can be evaluated by using Eq. (11-4).

For SAXS, Eq. (I1-4) is rewritten as follows:

Ey () = E.exp(ih e R, )| p(r, ) expli(h e r ) Jdr, = ESF (hyexpline R, ) (111-1)
where E. is amplitude from one electron corresponding-to K in Eq. (11-4) and 1, =EZ,
and F, (h) isgiven by

Fe () = [ p(r) explith o r, )dr, (111-2)

Fk(h) is structural amplitude of-K-particle and exp(iheR ) is the phase factor for
the center Ok in K-particle based on the origin of the coordinate. Assuming that
scattering wave is coherent, the total scattering amplitude Es of the entire system is
given by

Es(h):iEK(h): EeiFK (hyexp(iheR, ) (111-3)

In'stead of Ok+1 in Figure 1, O;particle (position different from the neighbor particle) is
set.in this section as general representation. Putting Rx; = R; — Rk, the scattered
intensity 1(h) becomes
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N N

L1(h)=1.>"> F (h)F; (h)exp(ihe R, Jexp(-iheR))

= |§N:ZN: Fo (N)F; (h)exp(-iheR,;) (11-4)
= Ie{i‘ﬁf‘ﬁ-ii F¢ (h)FJ*(h)eXp(—ih *Ry; )}

The first term means the total scattered intensity from each particle and the second term
is related to inter-particle interference in the entire system.

Here there is no orientation correlation between isotropic particles in the position of
center of each particles, Eq. (111-4) can be written

I(h) = IQ{N<F2>+<F>2%$eXp(—iho Ry, )}
= IeN[<F2>—<F>2]+ |e<F>{N +§;Z:I:exp(—iho Ry )}

(H1-5)

Generally, each particle is not spherically symmetry and then <F2>—<F>2 termed as

diffuse scattering is not zero. As shown in Eq. (I11-5), the significant term for SAXS is
due to inter-particle interference effect. This effect is unnecessary to consider for
WAXD as described in Session I1. dv,

Now, let’s focus assembly of single /
atom as shown in Figure 8.

The existing possibility-of other atom
in do separated with distance r from
the center is dP(r). In-the volume V
of the whole specimen, there exist
N atoms. The average volume occupied
by one‘atom becomes V /N =uv;. In

— V

N particles

this case, the possibility to find the dv
firstatom.in dov is dov/v,. When the .
atoms are separated at enough distance Figure 8. N particles in volume V

each other, the finding possibility for the second atom at the pointed tip of r becomes
always do/uv,.
However, in dense atomic assembly as like liquid, the possibility at the small r region

is dependent upon r by inter-atomic interaction and it can describe as
dP(r) = P(r)dv/v,. Accordingly, when two atoms are connected or r is shorter than
twice distance of atom radius, P(r) becomes zero. When r is much far than twice
distance of atom radius, P(r) become unity. If r is in the middle region, P(r) becomes a
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function with fluctuation around unity. If {P(r)—l} has the fluctuation, the double
summation in Eq. (111-5) cannot be carried out by the same weight for pair of each

two-atoms and the summation must be represented by weight i{P(r) -1},
Uy

In Figure 1, let’s consider Rk as continuous scale in statistical group, the integration
can be done in stead of summation of

ZZexp iheR,, ——j P(R,,) —1lexp(-ihe R, )dv
4 sin(hR
ﬂ- {P(RKJ) ﬂMRKJdRKJ
v, h

Hence Eq. (I1-5) @n bewritten & bllows:

I(h):IeN[<F2>—<F>] AF) [N +ZZexp ihe RKJ)}
:IeN:<F2>—<F>2:

+1,(F)°
e

{
N+

1
{N+—” P(Ru) - ﬂ@%d%}

(111-6)
{ P(R) =1}

4
L
Ar sin(hR) RdR
) h

1/7[ {P(R) 1}sm(hR)

_|_
:IEN<F2>—<F>2_+IGN<F>2[1 RdR}

The scattered intensity from congested polyatomic molecules is given by the electron
density distribution P(R) as a function of distance R between molecules in textbooks.
The normal rewriting-from Rgj denoting vector between K and J to R in Eq. (111-6)
means the difficulty ‘in distinguishing between atoms within a molecules as well as
between atoms in.other molecule in congested system.

When the system-is isotropic and all the particles are the same shape with the same

volume, <F2> is equal to <F>2. Also, the density at R is p(r)=P(r)/V and the

average density is p, =1/V . Hence Eq. (111-6) can be rewritten as follows:

}sm(hR)
hR

1 (h) = |eN<F>2[1+47sz°°{p(R)— R dR} (11-7)

Here, the above equation can be rewritten by using P(R) = p(R) — p, as follows:

sin(hR)
hR

I(h):IeN<F> [1+4 j P(R)——=R dR} (111-8)
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In Eqg. (I11-8), P(R) termed as radial distribution function becomes positive and
negative as reported many text books.
From Eq. (111-8),

sin(hR)
hR

I(h) = 1,N({F)* {1+4 j P(R)———= deR}:IO+Iojow4ﬂR2P(R)—Sinrf2R)dR

| (h)

O

I'(h) = _j 4zR2P(R) 2 S'n(hR) dR  (I11-9)

In most of textbooks, R is written by r.

I'(h) = '(h) _j4 2P(r)s'”(hr)olr (111-9)’

O

By Fourier transform of Eq. (111-9)’,
2 0% s

47rP(r) == [ hI*(h)sin(hr)dh
7 Y0

Let’s consider Eq. (111-2) for a sphere with radius a. From p(r)=p, at r<a/2
and p(r)=0 at r>a/2, the intensity is.given by

F(h) = Ip(r) expli(h e ) [dr = p, jj” J.Oﬁ'foa r? cos[hr cos aJsin adrdad ¢

=3V (sinU —U cosU)/Y?
(111-10-1)

1(h) = 1, p,|F (h)|°

I(h) =91 pV.A(sinU —U cosU)* /U ° = 1(q) (111-10-2)

where U=ha = (4za/A)sind=2zqa (q=sind/1)and V =47°/3.

Plotting 1(q) against q, many sharp peaks reflecting intra-particle effect appear in high
range of g. The decrease of peak top of 1(q) shows asymptotical behavior of g™, which
is termed as - 4 rule (Porod rule). Such many peaks can be observed in the system
where the isolated uniform spheres with the same radius are dispersed in solution but
the peaks become duller for the particles with different radius.

Of course, many scattered peaks of I(h) (I1(g)) are independent of X-ray diffraction
from crystal planes, even if the sphere composed of crystallites. The angle range
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concerning diffraction peaks is much wider than the small angle range discussed above.

Guinier law

Now, let’s consider Guinier law [8], since the law is very important for SAXS. For
SAXS measurements for uniform dilute polymer solution or uniform particle dispersion,
Guinier plots have been used to determine radius of inertia of polymer chain or that of
particle in the dilute solution. Guinier plots can be induced by series expansion
(Maclaurin) of sin(hr) around hr = 0 for Eq. (111-9),

I'(hy = 2" o '(h) _j 47R*P(R) S'”(ER) dR
h4
:4;{] P(R)R dR——j P(R)R*dR + 20 " P(R)ROAR = e — } (111-10)

0 [ PRIR‘R
_47rj P(R)R?dR{1- + A
3 2j P(R)R’dR

where D is the point at P(R) = 0 and corresponds to the diameter for sphere. Here,
D
1(0) = 4;sz P(R)R?dr

and

D
1 jo P(R)R*dR

RZ=-0 = (111-12)
Zjo P(R)R%dR
Accordingly,
I'th)=1(0)<1 hzR2 hZR 2 ~1(0 hZRgz 11-12-1
()—()—? 5(3 ]—~()6><|O—3 (111-12-1)
[ (275)2jo
1'(s) = 1(0)exp B (11-12-2)

Ry is termed as radius gyration. Rewriting 1°(s) as I(s), Figure 9(a) and (b) show the
plots of I(s) vs. s and ¢n[I(s)] vs. s respectively. Ry can be obtained by plotting
én[l (s)] vs. s°>. When P(R) is used for a concrete particle, it is generally termed as
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correlation function Q(R). The overlapped particles K and K+1 are separated as shown

in Figure 1 and the separation for two spheres is shown in Figure 10.

For a sphere with radius a, the correlation function Q(r) can be induced as follows:

X2+y2:a2

(x—a)’+y°=a’
Then evaluation for volume V of revolution along x is given by
V= r:z 27r(\/a2 —x? )de

When r — R, the correlation function of sphere with radius a is given by

3 3
» 4ma 1_§B+i(ﬂj - P(R)
4a 16\ a

3
By using Eq. (111-11), the radius of gyration of sphere isgiven.as-follows:
D - 2a,

QR)=p

o 1L QRR'R 1 [TQRR'R 12555 3a°
C2[TQRR'R 2 [TQRRR 22737 S

(11-13)

A B
100 ¢ 4.5
3 e 0MNaCl 3
e 0.5MNaCl
I e 1MNaCl
10 |
' El
o 1 2
= E A
3, -
— o E
Q@ CAdE <
=04l e -
E . g . *l .
- Y @ .. -
001 b— 1) e, 25bL 01
0 1 2 3 0.02 0.04 0.06
S [nm’] s? [nm?]

Figure 9. (a) SAXS scattering profiles of the full-length barley SGT1 protein in solution

at different concentrations. (b) Guinier plot to obtain Ry.
Doi:10.1371/journal.pone.0093313.g007.
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Figure 10. The schematic diagram to induce the correlation function for spheres.

Here it may be emphasized again that Guinier plots can be utilized, when many
particles exist in the medium without any inter-particles interference effect. That is,
many particles must be isolated in the medium. Table 1 lists radius gyration Ry for
several particles.

Table 1. Radius gyration (Ry) for several particles

Particle $ape, dze radius gyration (Rg)
3\
Sphere with radius a (E) a
2\ %%
Spheroid (a, a,va) a(ZJ;v j
R2 2 %
Cylinder (2H:"height, R adius) (7+_j
Very thin dsk R: radius) R
' v2

Evaluation of inter-particle interference effect by convolution
This section is focused on the reason why the X-ray profile is strongly affected by the

distance fluctuation between adjacent particles (lattices) and the intensity profile
broadness is considerable as the fluctuation increases.
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Let’s consider statistical treatment about inter-particle interference effect.[9] As shown
in Figure 11(a), there exist lattice points ay, ay, as, ------ . When existence probability of
a; at the tip of vector y from origin O is H(y), the possibility of a, at the tip of vector z
from a; is H(y)H (2). In this case, the possibility of a, at the tip of vector x (=y + 2)

from O is not H(y) H(2) butJ' H(y)H (x—y)dy . Here we shall consider one-dimensional

problem in Figure 11(b) to simplify the mathematical treatment. In this case, the lattice

points ai, ay, as,~----- exist on vector x and then H(x) may be replaced on scalar H(x).
The existence possibility of the tip of vector x at a; is given by
Hz(X)=jH(y)H(X—y)dy=H(X)“H(X) (11-14)

Hence the possibility for the n-th lattice point is as follows
H,(X)=HX)"H(X)"H(x)" ——— (convolution of (n -1) times), (111-15)

H(x) is probability function between x and x+dx, when x is the closest distance
between two points. Of course, H(x) must be normalized as follows:

j: H(x)dx =1
The average value a for the closestdistance is
a= '[O XH, (x)dx

Similarly, when Hy(x) is the probability for finding the second closest distance,

2a = '[0 xH, (x)dx 2(x)
. /\
ﬂi
0 @ 2a 3a
—— — X —
H1H1H1 -y -.-—_\'-"I-'—-
(@) (b)

Figure 11. (a) Schematic diagram for lattice points arranged in one-dimensional
direction. (b) Statistical existence possibility z(x) of lattice particles in one-dimension.

When the origin of coordinate corresponds to the center of the coordinate, the

summation in the positive and negative directions can be represented easily. In
one-dimensional case, statistical distance z(x) concerning the existence possibility of the
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point distances along the disordered point sequence is given by
2(x) =5(x=0)+ > H, () + > H,(-x) (11-16)
n=1 n=1

Considering Fourier transformation Z(X) of z(x), Z(X) becomes diffraction intensity
from point sequence corresponding to one-dimensional disordered lattice factor.

By using mathematical treatment that Fourier transformation of convolution becomes
product of each Fourier transformation, Fourier transformations [F(X)]n of Hy(x) and
[F*(X)]" of H,(-x) aregiven by

F(X)= jo“’ H(x)explihexldx,  [F(X)] = j: H . (x) exp[ih o x]dx
F*(X)= j: H (—x) exp[—ih e X]dx, [F*(X)]" = jO“ H_(-x)exp[=ihex]dx  (I11-17)
1= [* 5(x—0)exp[ih + X]dx

As described above, Z(X) is Fourier transformation of z(x) and is given as follows:
Z(X)=1+F(X)+F*(X)+————<— +E*X)+[F*(X)f +-———-

L1, FO L Fr(X) =Re[1+F(X)}= 21—|F| (111-18)
1-F(X) 1-F*(X) 1-F(X)] 1+|F|" -2|F|cos(hea)

When lattice points a;, a;, as ---- are set on vector h, a is written as vector.
F(X) =|F|cos(h e @) = |F|cos(ha) (111-19)
Eq. (111-19)< (n.—> =) is related to scattered (or diffraction) intensity profile from

lattice factors.along point sequence.
Assuming H(x) to be Gauss function at the center a ,[9]

H(x) = \/%0 exp{— (’;;25)} (111-20)

F(X)= exp[27ziX§]I: H (x) exp[27iX (x — @ )lix = exp[27iXa]exp|- 277X *6?]

(1n-21)
By using variable g(= o /&) denoting the fluctuation and reciprocal space coordinate X
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representing as X (= p/a),
F|= expl- 272X %0 | = exp|- 22797 p?|  (11-22)

Hence Eq. (I11-18) can be also represented as follows:

242 52
Z( ) 1—eXp[—47r g p

_ IV-23
P L—expl-222g2 p2 [ + 4sin? (m)exp{- 27297 p? ) e

Figure 12 shows that the scattered peaks (or diffraction peaks) becomes smaller and
broader as the fluctuation g becomes larger. Of course, the peak profile shown in Figure
12 is similar to Laue functionat g — 0 but different, since Eq. (111-23) was induced at

N — o0,

21000k 10} 10}
= E | 2=0.01 P £=0.1 g=0.2
§ 500F 8+ 8+
= 1005 “__ﬂ_ 6l 6l
2
g 4r 4 4
= B - - —
£ 2r 2 \/\/\12:
ALV AL | /l | | | | |
0 1 2 3 01 2 3 01 2 3
p 4 4

Figure-12. The diffraction intensity as a function of p at the indicated fluctuation given
asg.

The above concept for lattice sequence in one-dimensional direction can be applied to
particle sequence. The application shall be induced by using more reasonable treatment.

Returning to Eq. (111-5), the lattice points aj, a;, as --- a, in Figure 11 can be replaced
by the center of gravity of each scattering element.

Hence the last term in Eq. (111-5) is given by [4-5]
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N +ZN:leexp(—iho Ry,)
K= J

_EN * E*x(1_E*N
:N+R{NF_FG F'), NF* F*(-F q

1-F  (-FF 1-F* (Q-F*

_ N
_ NRel LEF L 2FC Fz)
1-F N@-F)

Accordingly, the scattered intensity from N elements arranged in one-dimensional
direction.

uh):|eNkF2>—<Ff]+|4F>1)u+§;ﬁiemx—nwoRKJﬂ
:IeNkf2>—<f>1+Je<ff{N-+§;2iemﬁ—ﬂﬂoRKJﬂ (IN-24)

Y S T e S

As one example, numerical calculation by using Eq. (111-24) is carried out for carbon
fiber (CF) with ellipsoidal voids on the basis of Babinet’s reciprocity theorem. This
example indicates that the scattering«from voids provides SAXS patterns with intensity
maxima like scattering from particles.[10] The calculation was carried out in accordance

with Babonet’s reciprocity .  theorem. In stead of Eq. (n-3),
p(r)=(p,—p,)o(r)+p, = po(r) is adopted at p, =0 to analyze SAXS pattern
from ellipsoidal voids:

To avoid confusion “between [<F2>,<F>2, F in Eq. (111-18)] and [<F2> and
(F)zconcerning structural amplitude in Eq. (111-24) ] are rewritten as <f 2> and <f>2.
Figure 13 shows the geometrical coordinate for the calculation. The ellipsoidal void
shape is related to b/a, in which b and a are the long and short axes of the void,
respectively. The center of gravity of each void is arranged in the one direction (j-axis)
and the distance between adjacent voids was given as like di., dj, di+;. The average

distance is d and the parameter is set to be (T/a. In Case I, b/a (= P) is variable but

a/A (= Q) is a constant. In Case 1, b/a is constant but a/4 is variable.
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Figure 13. Geometrical arrangement of ellipsoidal voids along j axis. Assembly of
voids for (a) Case | and (b) Case Il; (c) coordinate to calculate scattering from an
ellipsoidal void, in which the major axis of the ellipsoid V3 is on the kj plane. [10]
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The calculation of 1(h) in Eq. (111-24) must be modified in the two cases. To do so, the
two kinds of intensity in Case | and in Case Il are rewritten as Ip (h) and Iq4(h),
respectively. By considering the size distribution of voids denoted by P and g, Ip (h) and

I4(h) are written as <I b (h)>av and <Iq (h)> , respectively. That is, the particle size in the

av

assembly is given as Gaussian distribution as follows:

D\2
exp{— (P- F:) } _
202 2P 1

Case | N(P)=— [ (P_P)T <Ip(h)>aV=PZ:‘IN(P)IP(h) (M1-25-1)
exp| — 5
P=1 2 P
q e
o _(2 q)
20} @
Case I  N(q)= <Iq(h)>av =S N@)I,(h)  (11-25-2)
431 (g—q)z -~
qz_;‘exp -~ 207

The voids are oriented to ‘their. own fiber axes (the k-axis) predominantly. The
orientation function p(f)of the long axis is given by

p(B) = eXp(— o sin’ ﬂ) (111-26)
Hence <f2> and <f>2 are given by '[OZEp(ﬂ)EZ(,B)d[;’/.[:”p(ﬂ)dﬂ and

T T 2
{'-02 p(ﬂ)E(ﬂ)dﬂ/Jj p(ﬂ)dﬂ} , respectively. E(f) is the scattering amplitude from a

void and it is described elsewhere.[10]

Figure 14 shows the observed SAXS pattern from carbon fibers and two examples of
theoretical patterns in Case Il. The theoretical patterns are in good agreement with the
observed pattern.
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Figure 14. The observed SAXS pattern (a) from a specimen prepared. by stabilization at
260°C and carbonization at 1200°C. The two patterns calculated from Case Il

(d/a=0.5), (b)o/d=0.01 and (c) o/d = 0.5. The common parameters; b/a=10,
q =3, N=10. [10]

The reasonable approach to analyze SAXS intensity distribution is that the electron
density fluctuation must be evaluated on the average density of the specimen. This
concept has been used for neutron scattering. Such treatment was proposed in terms of
the relationship between electron density distribution about crystal and amorphous
phases and the autocorrelation function in one-dimensional direction by Stroble and
Schneider [11]. This method is convenience to determine the thicknesses of real crystal
lamella and crystal boundary layer in addition to identity period (long period). Their
method can be applied precisely in the case where the stacked lamellae are arranged
perfectly in a particular direction of the sample.

The recent drastic speed-up of the calculation by computer made it possible to more
strict treatment. Figure 15 shows the model that the electron density fluctuation must be
evaluated on“the average density p of the specimen, in which the transition region
between erystal and amorphous is represented as (t; + tz). [7] This model is similar to
the.concept proposed by Stroble and Schneider. [11]
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Figure 15 (a) lamellar assembly on two-dimensional plane. (b) density variation of two
phases by positive-and negative deviations from the average density p of the system
represented.by_.an arbitrary function. (c) density variation represented by a trapezoidal
function.[7]

The .complicated mathematical treatment is represented elsewhere.[7] The results
calculated by computer at the above optimum conditions are in good agreement with the
observed results for the two-dimensional patterns as shown in Figure 16. The observed
pattern was observed for dry gel films prepared by decalin and paraffine solutions, when
the X-ray beam was inserted parallel to the surface of stacked dry gel films. [12] The
parameter fitting was easy because of rapid calculation speed of recent computers.

The parameters to give the best fittings are as follows:

32



Decalin

Y/L=002, X/L=003, o,/Y =011, 0,/Z =011, N=5, o, =3,
o,=3, t,/X=0.051, t,/X =0.166

Paraffin

Y/L=002, X/L=003, o,/Y =015, 5,/Z =015, N =8,

c,=5, t,/X=0047, t,/ X =0.129

—Fiang (2)

Experimental 1

Log (1)

Log (1)

I— Fill.‘ting' (b)

—— Experimental

300

270

240

Figure 16. Observed and theoretical SAXS intensity distributions in the vertical
direction; (a) Dry gel films prepared in decalin; (b) dry gel films prepared in paraffin;
(c) SAXS patterns (edge) from stacked decalin films; (d) SAXS image patterns (edge)
from stacked paraffin film; (e) Theoretical SAXS patterns from the decalin films; (f)

Theoretical SAXS patterns from the paraffin films.[12]
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Incidentally, the good fitting of scattered intensity for two-dimensional pattern is
generally very difficult in the case where the medium density is set to be zero because
of appearance of the very unusual peaks, even if the good fitting along the vertical
direction was achieved as shown in frames (a) and (b). [5] Incidentally, it should be
emphasized that Babonet’s theorem can be satisfied in the case where the two phases for
model (c) in Figure 15 have no fluctuation in thickness in addition to no orientation
fluctuation of lamellar assembly.[7]

IV Understandable explanation about small angle light scattering (SALS) under
polarization

As described in Introduction, the different characteristics between X-ray beam and
visible light beam are due to the different wavelengths associated with the difference of
photon energy. Therefore the electrons in atoms by an incident.X-ray beam behave as
free electrons because of high photon energy, while electrons of atom by visible light
cause vibration on bottom of the potential box. Surely, polarized incident X-ray surely
provides strong intensity. The scattered X-ray: beam, however, is independent of the
polarization direction of the beam. On the other hand, the scattered visible light
intensity strongly depends on the polarization direction of the incident beam.

Figures 17(a) and (b) show the arrangement of polarizer and analyzer under Hv and Vv
scatterings, respectively.

polarizer polarizer

photo-plate
photo-plate

(a) (b)
Figure 17. Schematic diagrams (a) Hv light scattering, (b) Vv scattering

Incidentally, the following idioms are related to the polarization conditions. [13]
polarizer-vertical and analyzer-horizontal Hv
polarizer-vertical and analyzer-vertical Vv
polarizer-horizontal and analyzer-horizontal ~ Hh
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polarizer-horizontal and analyzer-vertical Vh

Advantage of small angle light scattering (SALS) under polarization is to recognize
the structure shape of isolated particles in polymer films and liquid crystal very rapidly
by using a simple home-made instrument under Hv polarization.

Different from X-ray scattering, visible light scattering is associated with refractive
index fluctuation. The total scattering amplitude from N scattering elements is given by

E.(h) = Y E, explith o )]

= (4;;2/R§,1§)ZN:(M eO)explither,)]= KJ(I\/I e O)explik(s e r)dr. ¢ “(1V-1)

For visible light, E; is the scattering amplitude given as E, =(4z*/RZ22)M,siny,, in

which M; siny;is the characteristic term of visible light different from X-ray. M; is
induced dipole moment of i—th scattering element and ; is interior angle between M;
and R; vectors. M; is given by @,E_, in which_.a; is tensor for polarizability and E, is
electric vector. Accordingly, y, is dependent, upon polarizability ellipsoid and the
orientation. On observation of scattering beam through analyzer as shown in Figure 17,

the polarization direction of analyzer denoting as unit vector O can be detected among
the tangential component of M; for. R;. Eventually, M, siny isreplacedas (MeO).

drj is micro-volume element at position vector r;. Idrj denotes volume integral.

In stead of h in Eqg. (11:7), s in Eqg. (IV-1) has been normally used to represent the
following notation for light scattering in a number of papers and textbooks. It should be
noted that scattering angle for PALS is represented as 6 in stead of 26 for X-ray
scattering. [13]

s=s/=5" "k=27/4 |[s|=2ksin(6/2)

For polymers, the refractive index difference between spherulite (or rod) index and the
medium index is much less than unity and the phase shift of light passed through
particles and medium becomes generally very small. The normal spherulite and rod
sizes are less than 100 times in comparison with wavelength of He-Ne gas laser, which
allows the evaluation for the scattering pattern by Rayleigh-Gans scattering.

According to the concept by Rayleigh-Gans, sattered intensity br SALS & gven by
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| = KZH(Mi «O)(M; ¢ O)exp[-ik(r; os)]exp[ik(rj os)]dridrj
= K2[ [ (M, +0)(M » O)explik(r;, os)jir,dr,

= KZJ.J‘(Mi ¢ O)(M, ¢ O){cos[k(r es)|+isin[k(r es)]idr,dr

= K?[[(M; «0)(M « O)coslk(r es)Jdr,dr

= KZJ‘{[(Mi ¢ O)(M, ¢ O)dr, }cos[k(ros)]dr

= KZV.[<(Mi ¢ O)(M, oO)>r cos[k(r es)Jdr

(IV-2)

where r = rjj=rj - ri and< >, is the average of the product of scattering elements with
separation distance r, depending upon optical density, anisotropy. and orientation
fluctuation. V is an irradiated volume. M; (dipole moment induced. by i-th scattering
element) is generally given by [13]

M; =E, {5i (tp .ai)ai +(bt)itp} (1V-3)

where a; is the vector along the i-th optical axis.and t, is unit vector denoting
polarization direction of an incident beam,

Furthermore,
o, = (0!,, )i - (Oﬁ )i ' (bt )i = (ai )i — 0O (1v-4)

(a,), and (e, ),are polarizabilities parallel and perpendicular to optical axis (the unit
vector a;), respectively. « is the polarizability of the medium. t, depends on the
polarization components-of scattering light; t, = k for vertical polarization direction and
t, = j for horizontal polarization direction. Normally, t, = k.

As for the observation of vertical and horizontal components of scattered intensity,
Ov = k and Oy = can be constructed approximately. Hence,

(Me0),=(Me0), =E,s(a *j)a *k) (IV-5-1)

(Ms0), =E,15,(a, ok +(b,),} (IV-5-2)

(Me0), =E,15.(a ¢j)+(b)) (IV-5-3)

Here, as described in Eq. (I\V-2), it should be noted that the center of coordinate must
be set in the center of particle on the theoretical calculation. In this case, sin term
disappears.

As described before, X-ray scattered intensity is given by
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Loc|F ()| = [Q(r)expli(h e r)ldr

Qr)= [ plr; olr, - r)ar,

Q(r) for isolated particles can be evaluated roughly by Guinier plots as discussed
already. However, for polarized light scattering, it is impossible to pull out information

directly from complicated <(MioO)(MjoO)>r in Eq. (IV-2). Hence the model

analysis and/or statistical analysis must be adopted to compare the theoretical results
with observed ones.

The scattering analyses for spherulites [13-14] and rods [15-16] have been reported in
a number of papers and then this paper does not deal with the analyses. The emphasized
point is due to the fact that the difference between inter-particle interference between
SAXS and SALS can be represented easily, when the particles are arranged in the
one-dimensional direction on the two-dimensional plane..To confirm the concept, the
schematic diagram is proposed for the observed Hv pattern corresponding to polarized
microscopy in Figure 18 [17-18] and the detailed'geometrical arrangement is shown in
Figure 19 to pursue the theoretical calculation.[18] The scattered intensity provides the
same style as Eq. (111-14) for SAXS.

The variations of the length L;, the width Djand the adjacent distance X; between j-th
and (j+1)-th rods have no correlation each other and are represented by the following
symmetrical functions with ' the-respective mean lengths L, D and X and their
standard deviations oo, and o,.

h(L,) = ! exp{_(L’ _ZL) } (IV-6-1)
2707, 20,
\/Zlizexp{_(Dz'a_zD) } (IV-6-2)
o d

H(X,) = \/ZLexp{_(xz‘ _ZX) } (IV-6-3)
rol Oy

Generally, each rod in the assembly has the orientation distribution and then it is
defined that the j-th rod is oriented at angle& between Z; axis (width direction of j-th

M (Dy) =

rod) and Z, axis (the line to connect each rod gravity), which is given by
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p(E) =expl-alsin®(c-&,)|] (V)

where o, is a parameter associated with the shape of p(&).p(£) shows a sharp
distribution with increasing o.and a =& -y -7/2 or a=-¢& +y+7/2.
Through Egs. (IV-6) — (IV-7), <f2>, <f>2 and F in Eq. (111-24) corresponding to

SAXS are written for SALS as follows:

I=1g -1l (IV-8)
where
2 2 1+F 2
IB:Rer )—(f) +1_F<f>} (1V-9-1)
o 2FA-FY) (12 o
le —Re{—N(l_ Fy (f) } (1IV-9-2)

i [ [ [ p@M(D)h(L,)f 2d&dD,dL,

— (1V-10)
[ p&)de

()

) [ [ [ pMDh(L, ), dedD,dL,
[NEIGLE R

(IV-11)

(f)

F =" H(x)explinX Jax; = [7 H(X,)exp(-27isX  Jix;  (1V-12)
The structural amplitude from the j-th rod is given by

sinzL; sin@sin(u + & - y)/ A|sin|zD; sin @ cos(u + & y) 1 4|
aL;sin@sin(u+&—-y) A D singcos(u+&-y) A

1 :
f, = A KJycosp, sin{2(E + m,)}

(IV-13)

In"Eq. (IV-13), o, is anisotropy of the scattering element and

cos p, = cos @ /(cos? @ +sin? @sin? u)*? [14]

In a real system [18], the position of the samples irradiated by the laser beam contains
distribution of the number of rods N. This concept must be introduced to smear out the
many subsidiary maxima that appear at lower scattering angle. The distribution is

generally written as
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P(N) = exp{— (N2—0|2\|)} / ZNZIGXD{— ('\I;(jlz\l)} (1IV-14)

N

In the present system [18], we will assume the same type of distribution of N. Then, the
average value of the term I¢ in Eq. (IV-8) is given by

2N-1

(Ic)=D_1.P(N) (IV-15)

Of course, as described before, this concept is introduced essentially. by theoretical
calculation for SAXS intensity as particle size parameter P or g.in-Case | and Case I,
respectively in Figure 13. Incidentally, @, is fixed to be 0°.

o]
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Figure 18. Schematic diagram for Hv scattering patterns and oriented rod assembly. (a)
schematic representation of Hv pattern; (b) schematic representation of arrangement for
rods: (c) observed Hv pattern from poly(tetramethylene oxide)-poly(tetramethylene
terephthalate) film with draw ratio of 1.5; (d) polarized micrograph observed for the
film. [17-18]

L3

the{ j+11=th r%

i
the j-throd o

=3

¥

:U:;H-'

Figure 19. Model.used for the theoretical analysis of scattered intensity distribution.[18]

Figure 20 shows the calculated Hv patterns. The patterns are sensitive to the variation

of &, “butis hardly affected by o, . For the calculation, y is fixed to be 10° from the
relationship shown in Figure 18 and also «a =60°and « =-60° are satisfied at
a=-5+y+90° and a=¢&,—y—90°%in the case of &, =40°, indicating the

justice of the geometrical relationship between the broad and sharp scattering lobes and
arrangement of the rod assembly.

The Hv pattern provides no direct information about sample morphology as explained
by using Eq. (111-24) for SAXS pattern but the accumulated knowledge for SALS can
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indicate the important information about morphology with rapid and easy measurement
as shown in Figure 17.

Figure 20. Hv patterns with change in &, and o in which the other parameters are
fixed ato,/L =0,/D =0.001,0,/X =0.5,D/L =0.05, X/D =40, L/A=40 and
y= +10°at small scattering angle up to 5°. [18]

Another treatment for SALS is statistical approach model. [19-20] The statistical
approach is useful for the system where the morphology observed by polarized
microscopy provides unclear and dark structure. The statistical approach has been
adopted for scattering from gels [21-22] and amorphous films [23-24]. When there exist
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many small assemblies with disordered chain arrangement in polymer film or gel, the
assemblies can be considered as optical elements, In such case, Hv scattering pattern
becomes very weak and the pattern could not be observed on the photo screen of frosted
glass (as shown in Figure 21(a)), since the very weak light scattered from the gels could
not pass through the analyzer. [20] The pattern was observed on the sample surface by
the reflection from the analyzer, and then photographs were taken using a commercial
camera, as shown in Figure 21 (b).

photo, plate commercial camera

L frosted glass

analyzer

polarizer

[il He-Ne gas laser EI

(a) (b)

Figure 21. Light scattering pattern afforded by polymer gels.
(a) usual method to photograph the pattern; (b) pattern reflected on the gel surface by
using a commercial camera. [20]

The actual patterns were observed for poly(vinylalcohol) (PVA) gel [21] and
x -carrageenan gel [22]. As an example, Figure 22 shows the gelation process of
K -carrageenan solution by quenching at 30°C. After quenching the solution, the pattern
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appeared from the polymer rich phase by progression of concentration fluctuation and
the pattern became clearer with elapsing time. Incidentally, the pattern disappeared after
a week later. [21-22]

In(1)

Time / min

Figure 22. Change of fiff{l) at 6= 15° and Hv patterns with respect to time measured for
the 1.0 and 2.5% « -carrageenan aqueous solutions after quenching at 30°C.[22]

Judging from~the appearance of the X-type pattern, a new concept is needed. Light
scattering from anisotropic density fluctuation was first developed by Debye and Bueche
and the.theory'was expanded to the scattering of light from a polymer film with randomly
correlated orientation fluctuations of anisotropic elements by Stein and Wilson. [19] By
using the geometrical coordinate in Figure 23, the following equations are formulated.

1, o0
oy = 1o KO [ D) 1)

SINO 2ge  (1v-16)
hr

and

l, =K]

0

%nﬁwﬂ0+£%5w(omy&%ﬂ%?1ﬂdruv¢n
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In Egs. (IV-16) and Eq. (IV-17), »(r) is a correlation function associated with the
mean square fluctuation in average polarizability (772>av. f(r) is an orientation
correlation function of the principal axes between two scattering elements and 4/ (r) is

2
<A >av

H (f)=1+7 p(r)  (1v-18)

given by

where ¢ is the average anisotropy and (Az)av is a mean square fluctuation-in average
optical anisotropy and w(r) is the correlation function associated with the fluctuation

in the magnitude of the anisotropy normalized by <A2>

av

Z

Ly s iy,

Figure 23. The coordinate system for the principal polarizabilities of the scattering
elements proposed by Stein and Wilson. [19]

From Eq. (IV-16) and (I1V-17), the following relation can be derived.

Si

4 o nhr
IVV—EIHV:K<772>aVL;/(r) - r’dr (IV-19)
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In the actual analysis, the correlation distance estimating the extension of the
inhomogeneities can be obtained by assuming that »(r) in Eq. (V-17) and/or Eq. (V-19)
has been described by a sum of Gaussians. [22]

In Egs. (V-16) and (V-17), however, the orientation function is defined as polar angle
associated with the correlation distance between two scattering elements and the
theoretical Hv pattern shows a circular type different from Figure 22. The adoption of
y(r) is limited to the system that optical axes between scattering elements orient
randomly with respect to the vector along distance between the center of gravities of the
optical elements. That is, the optical axes rotate freely around rj independent of
correlation length rj;. This is obviously abnormal.

To resolve the discrepancy, the more detailed analysis is needed for the azimuthal angle
as shown in Figure 24. [20]

“
-
——————
"

21

Figure 24. Optical coordinate system of light scattering concerning the principal
polarizabilities of the scattering elements, in which the optical axes separated with r;
have optical fluctuations for polar and azimuthal angles. [20]

As for the statistical method in Figure 24, the scattered intensity obtained after very
complicated mathematical treatment is given by [20]
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o =K [ [ A O} 10 + 90 (1)

x i(5(:05“ a +30c0s’ o —11)—icos2 Q(Scos“ a +6c0s’ a —3) (1V-20)
720 144 2

576
By omitting the dummy subscript ij for rj;, f(r) is given by [20]

+ -1 cos* gsin2 2u(35¢0s* o —30c0s o + 3)}} cos[hrcos aJr*sinadrde

£(r) = <3C°;2w1;1> (IV-21-1)
f(r)= exp(— ;—zJ (IV-21-2)

where the average is taken over all pairs of volume elements (i and j) separated by a
constant scalar distance r. f(r) = 1 for parallel orientation (®;= 0°) and 0 for random

orientation (w; : random), and it varies between these limits as r changes from zero to
infinity.

Furthermore, as discussed before, it is.important to consider that azimuthal angle
which the projection of the j-th principal axis onto a plane perpendicular to the principal
axis of the i-th element makes, isalso given as a correlation of the distance between the
two elements. The caorrelation function g(r) is defined as [20]

o(r)=(2cos’ g =1)  (Iv-22-1)

2

g(r)= exp(— g—zj (1V-22-2)

where the average is taken over all pairs of volume elements (i and j) separated by a
constant scalar distance r. g(r) = 1 for parallel orientation (¢;= 0%, and g(r) = 0 for
random orientation (¢, : random), and it varies between these limits as r changes from
zero to infinity. At g(r) = 0, Eq. (I\V-18) reduces to Eq. (1V-16). [20]

Figure 25 shows the Hv patterns at the indicated b/a, in which a/ 1 is fixed to be 3.
The four lobes taking an X-type become sharper with increasing b/a, indicating that the
pattern is strongly affected by azimuthal angle dependence for the correlation distance.
The pattern is in good agreement with the pattern observed at initial stage of the
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formation of polymer rich phases by concentration fluctuation in the crystalline polymer
solutions [20-22] and initial crystallization process of polyethylene (terephthalate).
[23-24]

=

b/a=5 b/a=10

Figure 25. Hv light scattering patterns calculated by Eq. (111-20) as a function of b/a : (a)
1, (b) 3,(c)5and (d) 10 at a/ 1 =3. [20]

Of course, the ‘concept shown in Figure 24 was applied to the systems concerning
spherulite @and rod. [25] The theoretical patterns were in good agreement with the
observed patterns.

V. Fatal defect about the recent X-ray instrument termed as “simultaneous SAXS
and WAXD measurement instrument”

Recently, small angle X-ray scattering (SAXS) and wide angle X-ray diffraction
(WAXD) intensities have been measured by using X-ray beam generated in one
direction. The brand name of the instrument is “a simultaneous SAXS and WAXD
measurement instrument”. The X-ray beam generated by the instrument has surely high
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luminance providing high degree resolution of peak profiles by diffraction and/or
scattering. The sample stage and detector, however, are fixed, since the intensities for
SAXS and WAXD are obtained by the digital display of the number of photons detected
on the imaging plate. Such optical system contains serious fatal defect on evaluating
orientation of crystallites parallel to the surface of films prepared by T-die and inflation
methods, which shall be discussed elsewhere. [26]

This chapter points out the serious defect for evaluating most probable distance
between adjacent amorphous molecular chains taking preferred orientation with respect
to the reference axis of the fiber and film. The focus is concentrated on.importance of
incoherent scattering to evaluate radial distribution function of amorphous-chains but
the intensity measurement up to very wide Bragg angle is impossible by imaging plate.

When X-ray photons with wavelength A, collide with stationary-electrons in atom,
two X-ray beams with the same wavelength (4,) and with longer wavelength (1) are
scattered. As an approximation, the following relationship can.be.obtained. [2]

A=1, +mLc(1_COSQB) =4, +0.002426(1-cosf,) =4, + A, (L—cosb;) (unit : nm)

(V-1)
where
h (Planck’s constant) = 6.626 x 10’ [erg * sec]
m. (stationary electron mass) =9.109 x-10% [gr]
¢ (velocity of light) = 2.998 x 10" [cm/sec]

The constant A, ‘for ) incoherent (inelastic) scattering is termed as Compton
wavelength. The characteristics are three points. The incoherent scattered intensity
becomes higher, when 1) the wavelength of incident X-ray is shorter, 2) scattering angle
0, is wider, and 3) atomic number becomes lower.

For_amorphous polymer solid, intensity distribution | as a function of 26, for Cu
target, has generally three peaks at least because of ordering of adjacent amorphous
chains Jas shown in Figure 26, in which frames (a) and (b) show the intensity
distribution for polyethylene (PE). Figure 26(a) indicates X-ray scattering from
amorphous film with no crystal phase maintained at 110°C by Joule heat under electric
field [27], in which experimental curve is obtained after corrections for air scattering,
background noise, polarization and absorption. The first, second and third peaks appears
at 26, (20) =185, 43.4, 78.9° respectively. Such peaks have been observed for
undrawn amorphous polymer films. [28] The appearance of the second and third peaks
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indicates the ordered arrangement of adjacent amorphous chains. The curve could not
be obtained beyond 120°, since 60° was the limit rotation of sample stage on goniometer
under -2 scanning.

The intensity distribution I (26) up to 180° was indispensable to obtain smooth radial
distribution function. As shown in Figure 26, the experimental curve is almost flat in
26 range from 100 to 120° indicating that the intensity > 100° is attributed to incoherent
intensity as well as coherent intensity independent of ordering amorphous chains. Here
it may be noted that the incoherent intensity tends to level off at 26 >120° and thenthe
profile is determined on the basis of the postulation that the coherent intensity at
0 =180° is equal to value at @ =0° and the incoherent intensity at 20 =180° is equal
to the difference between supposition intensity and coherent intensity.{8-9]

The coherent intensity by the above method as a function_of.28is represented
by I'(s)(=1(s)/ 1, —1)generally as a well-known profile in frame (b), in which s is
given by sin@/A. This relation was discussed in Eq. (111-9)’ already. The 1’(s) vs. s
obtained by same treatment was shown in Figures 26(c) and (d) for polyethylene
terephthalate (PET) and poly(phthalazinone ether ketone) (PPEK), respectively.
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Figure 26. (a) : Process to obtain coherent intensity. (b) 1I’(s) vs. s curve of undrawn
amorphous PE [27] (c) I’(s) vs. s curve of undrawn amorphous PET. [28] (d) I’(S) vs. s
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curve of undrawn amorphous PPEK [28], where h =275 .

Here it should be noticed that the scanning angle @= 60° by Cu target
corresponds to @ = 23.5° by Mo target, since the wavelengths (1) of X-ray beam
generated from Cu and Mo targets are 0.154 and 0.071073 nm, respectively. Certainly,
Mo target is better than Cu target to obtain accuracy of the experimental intensity 1(h)
for evaluating the radial distribution function, since I(h) up to 180° can be measured
directly without the suppuration intensity shown in Fig. 10(a). Even for Mo target;.the
very wide width of imaging plate for the recent X-ray instrument is needed and the fine
treatment as shown in Fig. 26(a) is impossible.

The radial distribution function P(r) for random orientation system can be given by

4nrP(r) = 3]‘” h' (h) sin(hr)dh (V-2-1)
T 0

47rP(r) = 327 jo“’ sl' (47s)sin(4zsr)ds (V-2-2)

In Eq. (V-2-2), h (=4zsin@/ A) was replaced as s(s = h/4x) in actual calculation
Figure 27 shows radial distribution functions of the amorphous PE, PET and PPEK

films. The functions are important t0 evaluate the most probable distance between
adjacent amorphous chains corresponding to the existence probability of electron
density. As discussed elsewhere [28], the average distances obtained for the PET and
PPEK at roomtemperature are reasonable in relation to their bulky structure of
monomer unit. On the other hand, the average distance between amorphous PE chains
maintained.at 110°C by Joule heat under electric field [27] is wider than the distances

aboutPET and"PPEK chains at room temperature. [28]

47 rP(r)

15 20 0 15 20

5 10
r(A)
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Figure 27. Radial distribution function of (a) undrawn PE [27], (b) PET [28], (c) PPEK
[28]

As for the oriented system for amorphous chains, most of the evaluation is associated
with the orientation function of amorphous peak magnitude as a function of angle
between the reference axis and stretching axis. [28]

Here it should be noted that that the most probable distance between adjacent
amorphous main chains depends on the orientation degree of the chains in the fiber..On
the other hand, as a well-known fact, the lattice constants of crystal units for. most of
crystallite polymers provide their intrinsic values independent of orientation of
crystallites in the elongation material under no external stress at room temperature.
Hence orientation modes of crystallites can be evaluated according to the intrinsic
distance between established crystal planes relating to the different shapes of crystal
unit such as orthorhombic [29-33], monoclinic [34-35], triclinic [36-37] etc. Namely,
the different distance between the adjacent chains in the erystal unit, is independent of
the crystallite orientation in the sample after stress relaxation. However, the amorphous
chains with different orientation directions in.bulk associated with compression and
expansion modes provide different distances. between their adjacent chains. Such
phenomenon is shown as a model in Figure 28. Such oriented mode cannot be
represented by one dimensional radial distribution function P(r) for an isotropic system.
[27-28]

To obtain most probable possibility of adjacent amorphous chain distance with the
model in Figure 28, the intensity must be measured as a function of tilting angle « with
respect to the fiber axis. / The radial distribution can be expanded as a function of «

as follows:

4arP(r, k) = 3[‘” hi*(h, <) sin(hr)dh = 32;zj°°s| (475, k) sin(4zsr)ds (V-3)
7 90 0

I'(h;x) is the scattered intensity detected at 2 = 90°in Figure 2.
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Figure 28. Orientation modes of amorphous chains existed in the different directions
with respect to the spinning fiber direction.. The distance between adjacent chains
oriented at 45° with respect to the fiber axis (the Xz axis) can be evaluated by scattered
intensity in the horizontal direction.

Figure 29 shows the results of PPEK fibers prepared by dry spinning method [28],
since PPEK is perfectly amorphous‘polymer which is not crystallized by elongation and
thermal treatment. By the #-26 scanning, 1'(s,x) can be obtained easily by
measuring intensity at angle x fixed with interval 10° in the range of 0 ~ 90°, since the
intensity corrections, concerning air scattering, absorption coefficient and incoherent
scattering at each x are not complicated as like treatments shown in Figure 26(a) for
the undrawn PE film. The intensity height is dependent upon tilting angle «. The «
dependence of peak magnitude indicates that the distance between the adjacent

amaorphous chains at the different orientations is different as shown in Figure 28.
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Figure 29. I’(s) ~ s curves of the PPEK spinning fibers against the indicated angles «
(p=7/2-x).[28]

As discussed already, Figure 2 shows general representation ofX-ray scattering system
for flat image. The intensity depends on the OP distance. Therefore the accurate
scattered intensity can be obtained only by the spherical image. Of course, the distance
correction must be done for flat image and curved image in addition to the corrections
for air scattering, absorption and polarization.factor. To simplify these corrections, it is
important to satisfy two conditions: 1) sample rotation with respect to the vertical
reference axis V in Figure 2 to detect the intensity in the horizontal direction and 2) the
6 — 26 rotation about sample and detector. The geometrical arrangement to satisfy the
above two conditions is shown in Figure 30.

V (Reference axis)

X5 (Fiber axis)

N Xz

Figure 30. Geometrical arrangement to calculate two-dimensional radial distribution
function of oriented PPEK amorphous chains, in which « is the tilting angle of fiber
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direction with respect to the vertical direction (the V axis) and « is the angle between
the vector r perpendicular to adjacent amorphous chain arrangement (see Figs. 28) and
fiber axis (the X3 axis). [28]

Based on the geometrical coordinate in Figure 30, the contour map of the
two-dimensional radial distribution function Q(r,«) can be obtained by using Eq.

(V-3) after somewhat complicated mathematical treatments, in which the experimental
data of 1'(s, ) is given in Figure 29.

Q(r,a) = j: joz” jo”sz | '(S,(p)[i 3, (475r)(=1)" (4n +1)P,, (COSgo)PZn(Cosa)}sin odd yds

P, (cosa)2(4n +1)(-1)" 57, (47zsr)[ [ 1°(5.9)P,, (cos p)sin godgo]ds

P,, (cos a)J.: 47s*(-D)"J,, (47zsr)[ (4n+1) J.O” I'(s, ) P, (cos @) sin godgo}ds

2

I T N

47P,, (cos ) [ (-1)"s7 3, (4711 5, (5)dls

= > Py (cosaW,, ()
(V-3)
where
() = L2 [ 1Gip)Rulcosg)singdp  (v-4)
and
Woq (1) =47 (=D ] "5%15,(5)J, (47sr)ds (V-5)

where P, (x) .is Legendre polynomial and J,, (x) is Bessel function.
Figure 31:shows the contour map of Q(r,«) for PPEK spinning fibers with low chain

orientation (F,; =0.0546). [28] The density magnitude is normalized by the lowest

magnitude which is drawn in the contour map. Namely, the lowest magnitude is
represented as a unit in the map. It may be postulated that the most probable distance at
each polar angle o approximately corresponds to that at angle ¢, although the

physical meanings of ¢ and ¢ are different as shown in Figure 30. At x=0°, ¢
must be 90° to detect X-ray beam by horizontal scanning of scintillation counter and the
vector r associated with the adjacent chain distance direction must exist on the
horizontal plane (« =90°).
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The most probable distance r between adjacent chains is 0.486 nm at o« = 0° for chains
oriented parallel to the spinning fiber direction because of tension under dry spinning,
while r at o« =90° is 0.473 nm for chains oriented perpendicular to the spinning fiber
direction because of the compression. In the map, each inflection point of contour lines
almost corresponds to the average distance r. Anyway, this paper emphasizes that such
detailed analysis must be done by using & — 26 scanning instrument up to wide angle.
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Figure 31. Contour map Q(r,«).of the radial distribution function associated with
electron density distribution for a PPEK fiber (0.1x r nm). [28]

Different from WAXD, the recent instrument has great advantage to evaluate SAXS
intensity from large domains with high order arrangement in order to detect high order
scattering peaks as well as to evaluate a single crystal structure analysis, since it provide
high X-ray brightness. Also high brightness assures the incident beam through point
focus and the scattered and diffraction intensity can use without slit correction.

Summary

The present paper is based on a course taught by the authors (MS program) of
Department of Polymer Material at Dalian University of Technology. The course
covered a wide range including the difference between continuous and characteristic
X-rays in terms of fundamental quantum mechanics as well as synchrotron light and
X-ray-absorption fine structure spectroscopy (XAFS) etc. In the course, the application
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examples for WAXD, SAXS and SALS were described in comparison with more
detailed observed and theoretical results.

To shorten the course taught, this paper picks up the similarity and difference between
SAXS and SALS by simple mathematical treatment to facilitate understanding as much
as possible for students and young scientists who are not familiar with X-ray and visible
light beams. When an incident X-ray beam is entered in the polymer material, electrons
in atoms behave as free electrons because of high photon energy. On the other hand,
when visible light with low photon energy is entered, electrons of atom cause vibration
on bottom of the potential box. Accordingly, SAXS and SALS scattered intensity
distributions are given by Fourier transform of mean square value of electron density
fluctuation and mean square value of refractive index, respectively.. The WAXD and
SAXS are written by the same fundamental equation EE* (E . amplitude, E* : the
conjugate complex). WAXD can neglect inter-particle interference effect between
crystallites and then the probability function to find other unit-within the crystallite is
defined to be unity and the intensity from a crystal unit'becomes simple summation for
intensities from atoms in the unit. However, under calculation of the magnitude, Laue
condition must be satisfied for crystal units in.each crystallite. Most of SAXS patterns
from materials must be analyzed by considering inter-particle interference effect except
scattered intensity from isolated particles evaluating Guinier law. SAXS patterns from
materials must be analyzed by ‘considering inter-particle interference effect except
scattered intensity from isolated particles evaluating Guinier law. The further
description is pointed out theserious defect of the recent machine termed as
simultaneous measuring-instrument of WAXD and SAXS. By using the instrument, the
evaluation of incoherent intensity is difficult on evaluating scattered intensity at wide
angle region.
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