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1. INTRODUCTION and BASICS 
 
 The mechanical behaviour of conventional solids is usually described by their 
elastic behaviour (limiting case of ideal elastic behaviour). As long as the 
deformations are not too large Hooke's Law applies: 
 

    (1) 

 
F ≡ force, E ≡ elastic modulus (Young Modulus) in uniaxial deformation, 
T ≡ thermodynamic temperature,ω ≡ angular velocity, x ≡ displacement (≈strain) 
In terms of a shear deformation, see fig. 1-4, this reads: 

 
( )γωσ ⋅= ,TG      (2) 

 
σ ≡ shear stress, G(T, ω) ≡ shear modulus, γ ≡ shear (deformation). Stress and 
strain are tensors, see fig. 3. When orthogonal to the plane the stress is called 
"normal stress". The reciprocal shear modulus is called (shear) compliance J = 1/G. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: the (weight) force means a stress σ that causes a deformation, that is 

measured as the strain ε. ℓ0 is the initial displacement and ℓ is the displacement 
under loadb

                                        
a With many examples provided by Kevin Menard, UNT, Denton, Texas and Perkin Elmer Corp. 
b The measurement of these quantities is not trivial since in polymers there is relaxation and creep. 
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There are different types of polymeric materials such as hard viscoelastic 

solids orsoft viscoelastic solids and highly viscous liquids (such as pitch) that appear 
to be a solid on the first glance but that show a very slow flow (creep). Also, the 
specimen come in a particular shape that should probably not be changed. 
Consequently, there are different types of stresses and deformations, more or less 
complex, all of them delivering a corresponding modulus. Examples are extension, 
compression, shear, torsion, bending (3-point, 4-point), flexing, etc. These 
mechanical values, however, are correlated. For details see the books of Ferry, or 
Read and Dean or Menard in "further reading". 

Soft materials – the shear modulus is about 107…108 Pa – allow more degrees 
of freedom in the choice of sample geometry. The Poisson ratio is close to 0.5 so 
that all extensional viscoelastic functions are correlated with the shear function by 
the factor 3 (see below).  

Hard viscoelastic materials – the shear modulus is about 108…1011 Pa – can 
principally be investigated with the same kind of equipment, however, some different 
features may have to be considered when stiffness increases by some orders of 
magnitude. The stiffness is not only depending on the material and temperature but 
also on the shape (plate vs. t-bar, for example).  
 The accuracy of a modulus from an experiment can be significantly influenced 
by the accuracy of the measurement of the shape of the sample. In particular at high 
values of the modulus care has to be taken that the sample modulus is still much 
lower than the modulus of structural parts of the measuring equipment, in particular 
in dynamic experiments. 
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Fig. 2: schematic stress-strain curves for different polymers. The end of the curves 
marks the yield of the material. Deviations from linearity document non-Hookean 
behaviour and are caused by viscose effects, see text.  
 
There are different definitions of the strain all of them become identical at small 
deformations: 
 

Cauchy (engineering strain)  
0

∆
=cε      (4a) 

σ 

ε 

yield stress 
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Hencky (true strain)    
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Fig. 3: simple shear applied to a cube. The deforming force attacks parallel to plane 
2 (see fig. 4) and orthogonal to plan 1. If the deformation takes place at constant 
volume the Poisson ratio µ = 0.5, see text. 
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Fig. 4: components of the stress tensor which represent the forces acting from 
different direction on different faces of a cubical element. 

Simple shear is a homogeneous deformation, such that a mass point of the 
solid with co-ordinates X1, X2, X3 in the undeformed state moves to a point with co-
ordinate x1, x2, x3 in the deformed state, with 

x1 = X1 + gX2 

x2 = X2 

x3 = X3 

where g is a constant. For the definitions of the non-ultimate mechanical properties 
of polymers see A. Kaye, R. F. T. Stepto, W. J. Work, J. V. Alemán, A. Ya. Malkin1

γγγ ≈= tan21

. 
 
 
 The (simple) shear γ21 that results after application of the stress σ21is given by 
the quotient x/h, see fig. 3 and fig. 4, and for small deformation angles γ there is: 
 

      (5)  
 

The individual stress (respectively deformation) components combine to the 
total stress σij (strain γij) and can be expressed by the matrix: 
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In fig. 2 plane 1/3 slides in direction 1 (as indicated in fig. 2) and stress and strain 
are: 
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since only a displacement in strain components the planes 1 and 2 occurs. -p 

is an isotropic compressive pressure that occurs on application of the shear stress, 
and γ12 = γ21. 

Dimensional changes caused by longitudinal deformation usually come with 
changes of the cross section. This is described by the Poisson ratio µ. The Poisson 
ratio correlates the Young modulus with the shear modulus, respectively the bulk 
modulus B: 

 
( ) ( )µµ 21312 −=+= BGE     (8) 
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so that for elastomers:  GE ⋅≅→≅ 35.0µ     (9) 
 
 
 The volume change on deformation is for most elastomers negligible so that 
µ=0.5 (isotropic, incompressible materials). In a sample under small uniaxial 
deformation, the negative quotient of the lateral strain (εlat) and the longitudinal 
strain (εlong) in the direction of the uniaxial force. Lateral strain  εlat is the strain 
normal to the uniaxial deformation. 
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 E/GPa 
soft rubber 0.002 
polystyrene 3 
copper 120 
diamond 1050 

Tab. 1: Young modulus of different materials at ambient temperature 
 

µ  
0.5 no volume change during stretch 
0 no lateral contraction 

≈0.490…0.499 typical for elastomers 
≈0.20…0.40 typical for plastics 

   Tab. 2: typical values of the Poisson ratio 
 
The bulk modulus B is derived from the coefficient of isothermal compressibility: 
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so that with eq. 8: 
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In elastomers the modulus is related to the number Nel of elastically active chains by: 
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The mechanical behaviour of conventional fluids is described by Newton's 

Law (limiting case of ideal viscous behaviour):  

   ( ) ( )
th

xTT
∂⋅∂
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⋅=⋅=

2

,, ωηγωησ     (14) 

 
≡η viscosity, ≡γ  shear rate. Eq. 10 describes a linear velocity gradient 

th
x
∂⋅∂

∂
=

∂
∂ 2

h
v

in the fluid as shown in fig. 4: 

 
Fig. 5: linear velocity gradient in a Newtonian fluid. 
 
Polymers typically show both, viscous and elastic properties. Viscous behaviour can 
be represented by a dashpot and elastic behaviour by a spring so that a visco-elastic 
material can be modelled by appropriate combination of dashpot(s) and springs. 
There are two basic combinations: the Maxwell-element and the Voigt-Kelvin-
element, see fig. 6. 
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Fig. 6: a Maxwell- and a Voigt-Kelvin-element with the corresponding creep 
behaviour (at constant stress). γ is synonymous with ε. 
 
For a dashpot one obtains for the deformation rate from eq. 14: 
 

η
σε

=
dt
d

     (15) 

 For a spring there is from eq. 3d: 
 

dt
d

Edt
d σε

⋅=
1

    (16) 

 
so that a Maxwell-element with spring and dashpot in series is described by: 
 

η
σσε

+=
dt
d

Edt
d 1

     (17) 

 
 
With the definition of the relaxation time τ1

c

E
ητ ≡1

: 
 

     (18) 

 

                                        
c The relaxation time is the time after which the stress has reached 1/e = 0.368 of the initial stress. 
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A Voigt-Kelvin-element with a dashpot parallel to a spring is described by: 
 

εεησ ⋅+= E
dt
d

     (20) 

 
With the definition of the retardation time τ2

d

E
ητ ≡2

: 
 

     (18) 

 

Stress at constant strain, 0=
dt
dε

, can show relaxation, and strain at constant 

stress 0=
dt
dσ

can show retardation. With these conditions eq. 19 and 20 are 

integrated: 
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Combination of Maxwell-and Voigt-Kelvin-elements are suited to describe the 
behaviour of visco-elastic materials, e. g. by the following 4-element model, see fig. 
7: 

                                        
d The retardation time is the time required for the to deform to (1-1/e) of the total creep. 
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Fig. 7: 4-element model consisting of a Maxwell and a Voigt-Kelvin-element in series. 
After the stress has relaxed after the time t1 there is only a partial recovery that is 
controlled by the retardation and the corresponding creep.  
 
 The creep-function of the 4-element model in fig. 6 is then given by: 
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The dynamic behaviour of Maxwell-and Voigt-Kelvin-Elements can be summarised as 
follows with the periodic deformation given in terms of the angular frequency 
ω =2πν, where ν is the frequency in s-1. For explanation of the ' - and ''-terms see 
later. 
 
Maxwell-element         (24 a-g) 
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Voigt-Kelvin-element         (25 a-g) 
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Fig. 8: modulus and viscosity 

In an ideal elastic body stress and deformation are in phase, stress and strain 
are constant over the time. This is not the case in viscoelastic materials which show 
both properties simultaneously to a smaller or greater extend, fig. 9.  
 

Fig. 9: example for a viscoelastic material exposed to a dynamic stress experiment 
where there is a phase delay between applied stress and strain response. This delay 
can be described by a phase angle δ. This behaviour is in particular important in 
dynamic deformations, see later. 
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 At sufficiently low temperatures when chain-and chain segment mobility are 
frozen in, that is below the glass-transition temperature (see later), polymers behave 
like common elastic materials. The (elastic) deformations in that state are character-
ised by changes of bond length and bond angles. The only in macromolecular sub-
stances observed rubber elasticity is not caused by an energetic distortion of bond 
length or bond angles but by entropic effects: perturbation of a random coil leads to 
a state of lower entropy since the number of accessible quantum states (conforma-
tions) is restricted by e. g. an extension. Rubber elasticity can be observed at tem-
peratures higher than the glass transition temperature if the polymer chains are long 
enough and if cross-links of any kind are present. The cross-links can be permanent 
or temporary, chemical or physical of nature. They cause phenomena like relaxation 
and creep (retardation). A stress at constant strain relaxes, a strain at constant 
stress retards and the material creeps. The typical mechanical response of materials 
are shown in fig. 10: 
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Fig. 10: Typical response of different types of material on an applied stress (top). γ is 
synonymous to ε. The broken lines refer to uncrosslinked material, the solid lines to 
crosslinked material: 
Normal (ideal) energy-elastic behaviour, the strain follows the stress without delay 
(ideal spring), case a). Normal (ideal) viscous behaviour, no elastic behaviour (ideal 
dashpot), case d). Case c) shows typical rubber elasticity with a high deformation 
and a fraction of irreversible flow. Case b) resembles case c, however, there is a 
delayed response and after removal of the applied stress there is a significant 
relaxation of the sample stress over a quite long time long time, again with some 
irreversible flow in the crosslinked sample. This behaviour can be characterised as 
partially blocked rubber elastic, is termed "leather-like" and is observed around the 
glass transition temperature, see fig. 11. An overhead foil, fresh from the copy-
machine, still warm, is in this leather-like state. In principle, any polymer can – 
depending on the temperature – exist in any of these states as long as the thermal 
stability allows this.  
 A polymer sample tested for the temperature-dependence of its mechanical 
modulus at a constant frequency will in principle go through most of these states 
depending on the chain length (distribution), degree of crosslinking, degree of 
crystallinity and thermal stability. A frequency-scan at fixed temperature will 
principally deliver the same information (temperature-frequency-equivalence 
principle). At constant frequency the temperature is scanned and observed when the 
resonance modes corresponding to the measuring frequency are called. At constant 
temperature there is just a frequency sweep and the resonance cases are monitored.  
 

 
Fig. 11: temperature of thermal transitions (measuring frequency ≈ 1Hz) and the 
corresponding molecular motions. G' is the real part (storage modulus) of the 
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complex shear modulus, Λ is the logarithmic decrement. For explanation see text 
and fig. 18-20. 

 
There is a direct relation of the viscoelastic properties of a polymer and 

molecular motions, in particular cooperative motions. This is caused by the fact that 
each deformation of a polymer chain changes its equilibrium conformation, hence 
giving rise to an entropy-driven tendency to restore the initial state. There are 
always four parts in the temperature-modulus curve of an amorphous polymer: the 
metastable glassy solid (frozen liquid) at low temperatures followed by the glass-
rubber (or brittle-tough-) transition, the more or less pronounced rubber-elastic 
plateau, and finally the terminal flow range. The first transition in fig. 8 coming down 
from high temperatures is termed α transition. In semi-crystalline polymers this is 
the crystallisation/melting process. In amorphous polymers – such as in fig.8 – the 
glass transition temperature is the strongest transition (α-relaxation). These 
transitions are also called relaxations since – coming from low temperatures – they 
describe the onset of the molecular motion as indicated in fig. 8. In particular the 
glass transition indicates the onset of cooperative chain-segment motions (about 5 
chain segments) and is a continuous transition leading from a solid-like state to a 
liquid-like state (or vice versa). The glass transition is not an equilibrium transition, 
see below. As a matter of fact there is no "the" glass transition temperature since 
there is an infinite number of glass states (hence glas transition temperatures) 
depending on the thermal history. Annealing changes the physical properties of a 
glass. 

The relaxation behaviour can be monitored at a fixed temperature with a 
frequency sweep or it can be monitored at a fixed frequency but with a temperature 
sweep. In the first case resonance is observed when the applied frequency matches 
a corresponding molecular motion at this temperature, in the second case resonance 
is observed when the energy provided by the applied temperature fits in with a 
molecular motion that matches with the chosen frequency. This reflects a time-
temperature relation – Boltzmann's time-temperature superposition principle (TTS), 
see fig. XXX – this, however, is not generally valid, only if all relaxation processes are 
affected by the temperature in the same way. Only in these cases time and 
temperature are equivalent. There are numerous examples where there are 
deviations from TTS, see fig. 13. 

The temperature-dependence of the relaxation processes mentioned above 
can be described by the Williams-Landel-Ferry equation (WLF)2 as long as the 
restriction mentioned does not apply. The (semi-empirical) WLF equation can be 
derived using the free volume theory, and a quantitative description is frequently 
possible in the melt in a temperature range from Tg to Tg+100 K. The derivation 
goes back to the early work of Doolittle3 on the viscosity of non-associated pure 
liquids. The importance of a relation like the WLF equation becomes clear recalling 
the fact that the experimental techniques usually only cover a rather narrow time 
slot, e. g. 100s…105 s ( corresponding to a frequency range). The time-temperature 
superposition principle allows an estimate of the relaxation behaviour and related 
properties of polymers – such as the melt viscosity – over a wide temperature range 
(e.g. 10-14 hrs…102 hrs) with the WLF-equation and the shift factor. 
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Fig. 12: TTS: superposition of the individual relaxation curves at different 
temperatures as indicated on the left to one master curve at 25°C on the right. The 
insert shows the temperature-dependence of the shift parameter that is required to 
make all curves fit into one master curve. 

Considered a certain generalised transition temperature T0 (frequently the 
glass transition temperature), AT is called the reduced variables shift factor, where t0 
is the time required for the transition and η0 the corresponding viscosity. The other 
values are then valid for a different state. 
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AT is not only related with the viscosity but with many other time-dpendent 
quantities at the transition temperature respectively another temperature, see below. 

 
 



                                                                
 

 17 

( )


( )
TsT

TsTA
t
t

TgT
TgT

A
t
t

t
ss

C

C

t
gg

−+
−

−==







=









−+
−

−==









=











6.101
86.8lglglg

:lyrespective

6.51
44.17

lglglg

2

1

η
η

η
η



   (27a, b) 

Ts [K]= (Tg + 50) 
The index s indicates the situation at an arbitrary temperature up to 50 K above Tg. 
The numerical constants are empirical and valid for a number of linear amorphous 
polymers more or less independent of their chemical nature. The constants C1 and C2 
depend on the polymer. The "universal" constants are C1=17.44 and C2=51.6 and 
give good results for many polymers. Some examples were listed by Aklonis and 
McKnight4: 
 

 C1 C2 Tg/K 
polyisbutylene 16.6 104 202 
Natural rubber 16.7 53.6 200 
Polyurethane (elastomer) 15.6 32.6 238 
polystyrene 14.5 50.4 373 
Poly(ethyl methacrylate) 17.6 65.5 335 

 Tab. 3: WLF-constants and Tg from Aklonis and McKnight 
  
 In this way, the WLF-equation enables a determination of the frequency 
dependence of a determination of a physical entity of polymers that depends on the 
free volume, such as the glass transition temperature, the determination of which is 
frequency dependent. For example an increase of the measuring frequency by a 
factor 10 (or a decrease of the time frame by a factor of 10) near Tg the glass-
transition temperature is found about 3 K higher: 
 
From eq. 27a one obtains: 
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with the different measuring frequencies νg and ν, e. g. 1Hz and 10 Hz, respectively. 
The shift factor is a function of the temperature and often obtains values between 
10-10…1010.
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Failure of TTS
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g 

J*

 
Fig. 13: in contrast to fig. 12 the individual relaxation curves do not fit to form one 
single master curve but they "branch-off" for longer times indicating that not all 
relaxation processes show the same temperature-dependence.
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Fig. 14: the temperature-dependence of the relaxation frequency of the αe

.1ln const
TR

Et a +−=

-(glass), 
respectively β-transition of polystyrene. The slope gives access to the energy of 
activation of the process. The energy of activation can give an idea of the origin of 
the transition, see text. While second-order transitions as defined by Ehrenfest5,6   
 
The apparent energy of activation is calculated from the slope of an Arrhenius plot 
according to eq. 29: 
 

    (29) 

The apparent activation energy for the transitions in polystyrene shown in fig. 13 is 
351.7 kJ/mol for the α-process and 146.5 kJ/mol for the β-process. The activation 
energy of relaxation processes near the glass-transition temperature is usually higher 
compared with other relaxation processes in a glass. Kovacs7 has derived eq. (30) for 
the apparent activation energy of molecular relaxations due to the onset of 
cooperative motions of main-chain segments in amorphous polymers (such as atactic 
polystyrene): 
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e The transition at the highest temperature is frequently termed α-transition 
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Activation Energy tells us about the molecule

• For example, are these 2 T gs or a Tg and a Tβ?

• Because we can calculate the Eact for the peaks, we 
can determine both are glass transitions.

Elastomer 
Sa mple

 
 

Fig. 15: Discrimination between a glass transition and a secondary relaxation. The 
apparent activation energy of glass transitions is higher compared with secondary 
relaxation processes which are correlated with smaller molecular motions (such as 
side group rotations) that are usually not cooperative. 
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The melting transition – a first order transition – is not frequency depending. In 
cases where it is difficult to measure a sample beyond its melting transition because 
the sample shape disintegrates because of the melt flow, torsional braid-analysis or a 
comparable technique might be used to determine the transition temperature. This 
technique analyses the mechanical properties of the polymer supported by an inert 
material. This can be a textile material soaked with the sample, a thin metal foil 
metal (transitions in lacquer layers or polymer surface layers of a few micrometer 
thickness can be analysed) or braids of glass threads or fabric can be used. However, 
care has to be taken because interactions of the substrate with the support can 
influence the transition (temperature, strength, etc.). 
   The glass-transition temperature is said to be the temperature at which the 
motion of groups of segments (such as a few repetition units) freeze in a cooperative 
way, where the viscosity diverges etc.. There are three very different theories 
approaching the phenomenon of the glass transition. These are summarised in tab. 4 
with their advantages and disadvantages. The criteria for a second order transition 
according to Ehrenfest are usually not fulfilled and there is a strong evidence for its 
kinetic character. 

 
 advantages disadvantages 
thermodynamic theory8 Variation of Tg with 

molecular mass, plasticizer 
and cross-link density are 
predicted with some 
accuracy 

A true second order 
transition is predicted but 
poorly defined 
Infinite time scale required 
for measurements 

kinetic theory2, 3 Frequency-dependence of 
Tg are well predicted 
Heat capacities can be 
determined 

No Tg predicted for infinite 
time scale 

Free-volume theory9,10,11 Time-temperature super-
position principle 
Expansivity (below and 
above) can be related with 
Tg 
 

The actual molecular 
motions are poorly defined 

 
  Fox and Flory10 have shown that the (number-average) molar mass of a 

polymer significantly influences the glass transition temperature, so that 
polymerization and cross-linking processe (gelation) are reflected by Tg, e. g. during 
the curing process of a thermoset. 

 

n
gg M

KTT −= ∞      (31) 
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∞gT is the glass transition temperature at infinitely high molar mass, K is a constant 
individual for any particular polymer. 
 
According to eq. 31 the glass transition temperature rises and it can happen that the 
polymerisation reaction stops because of the frozen molecular mobility. The time-
temperature-transformation diagram, fig. 16 developed by Gillham12, describes the 
processes in a curing thermoset in detail. 

 

 
Fig. 16: curing behaviour of a thermoset displayed as a time-temperature-
transformation-reaction diagram as an example for the long-time behaviour of a 
(crosslinked) amorphous polymeric material after Gillham13. 
 
 
 There are numerous methods to measure transitions in polymers and, as 
pointed out above, the measuring frequency plays an important role. The smaller the 
frequency (or the heating rate) the closer is the determined value to the equilibrium 
value of the property under consideration. Some examples are given in fig. 17. 
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Fig. 17: comparison of some methods to determine thermal transitions in 
amorphous, crystalline and semi-crystalline polymers. All of them can be carried out 
at different frequencies. In differential scanning calorimetry (DSC), for example, the 
frequency is given by the heating rate, in dynamic-mechanical (or dielectric 
measurements) the frequency of the mechanical stress (or dielectric polarisation) is a 
direct parameter of the experiment besides the temperature or the pressure). 
Calorimetric methods are covered in another lection of this course as are volumetric 
methods, see also Hess14. 
 
 One way among others (see "Further Reading") to determine dynamic-
mechanical properties is the free decay of a torsional oscillation performed in a 
pendulum such as shown in fig. 18.



                                                                
 

 25 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 18: a torsional pendulum as example for equipment to determine dynamic 
mechanical properties. The strip-shaped sample specimen (≈7cmx1cmx0.05cm) is 
twisted by about 5° and then allowed for a free (damped) oscillation. 
 
The amplitude of subsequent maxima of the oscillation makes it possible to 
determine the logarithmic decrement Λ and the storage modulus G'(T), the loss 
modulus G''(T) and the damping D (=loss tangent,  tan  δ, where δ is the phase 
angle of the delay of the deformation behind the stress). 
 In fact the dynamic modulus is a complex physical entity: 
 

GiGG ′′⋅+′=* GiGG ′′⋅+′=*
                                         (32) 

  
and the loss tangent is given by: 
 

G
G

′
′′

=δtan      (33) 

 
All important equations are summarised in figs. 18-20. 
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Fig. 18: free-damping experiment the logarithmic decrement Λ is calculated from two 
subsequent extremes of the oscillation.
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Fig. 19: calculation of the storage modulus G'(T) and the loss modulus G''(T) from a  
free-damping oscillation. Θ is the momentum of inertia.
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Fig. 20: definitions of G' and G'' from the differential equation of free oscillations. 
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Storage modulus G' (or E') and  loss modulus G'' (or G'') can be explained by fig. 21: 
 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 21: visualisation of the meaning off the storagemodulus E' (T)(here the Young 
modulus as example) and the loss modulus E''(T). The loss-energy is dissipated as 
heat and can be measured as a temperature increase of a bouncing rubber ball. 
Figure by courtesy of K. Menard. 
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