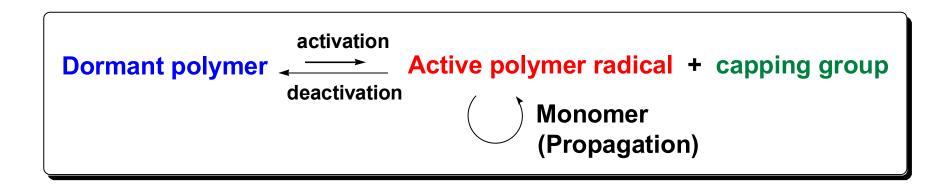
Radical Polymerizations II Special Cases

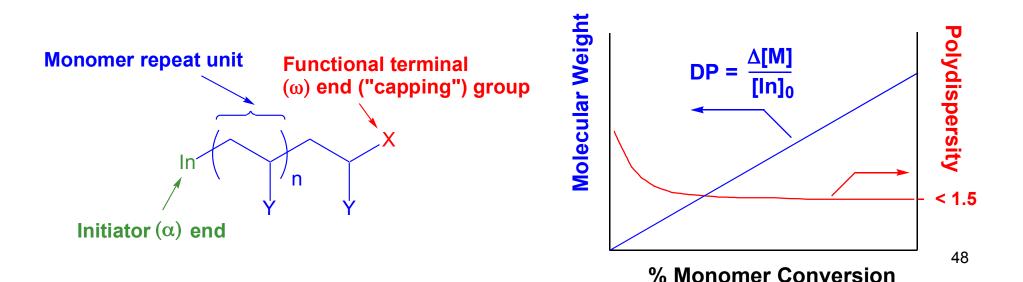
Devon A. Shipp

Department of Chemistry, & Center for Advanced Materials Processing Clarkson University Potsdam, NY 13699-5810

Tel. (315) 268-2393, Fax (315) 268-6610

dshipp@clarkson.edu


Living Polymerizations


- Objectives
 - Continuous chain growth
 - No termination
 - Well-defined chains
 - Chain structure
 - Chain length
 - Molecular weight distribution
 - Block copolymer synthesis

- Requirements
 - Initiation must be fast
 - R_i >> R_p
 - Termination must be eliminated
 - Or at least reduced to insignificance
- Problems with free radical polymerization
 - Initiation is slow
 - Radical-radical termination is fast

Reversible-Deactivation Radical Polymerizations (RDRP)

• Often called *living radical polymerization*

Features of Living Polymerizations

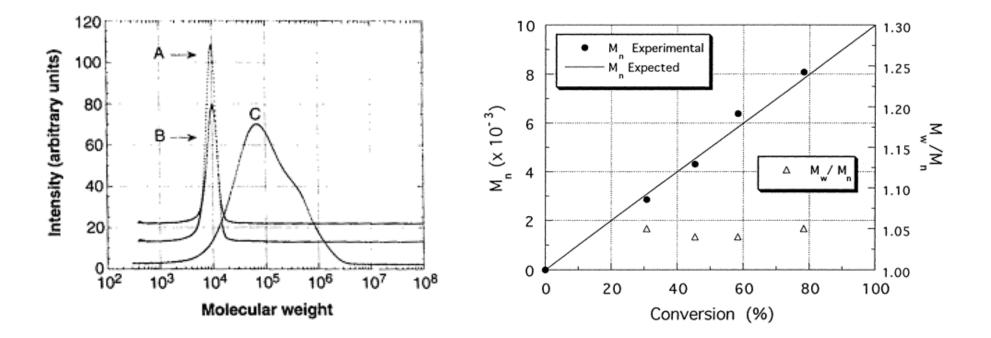
- Linear increase in molecular weight
 - Vs. monomer conversion

- Pre-defined molecular weight
 - $DP_n = M_n/FW_M$ = $\Delta[M] / [Initiator]$

Low polydispersity

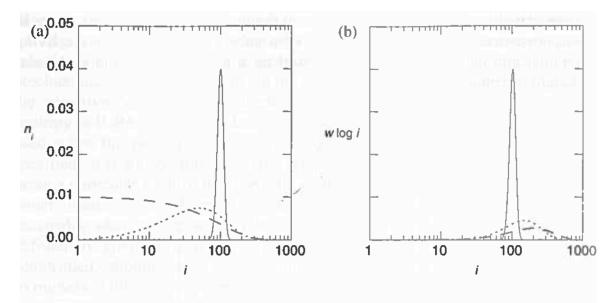
 M_w/M_n < 1.5 (often ~ 1.1)

- First-order monomer consumption
 - Same as conventional radical polymerization


Terminology/Tests for Living Polymerization

- Controversy over terminology
 - Controlled, "living", pseudo-living, quasi-living, living/controlled, "living"/controlled, reversible-deactivation,...
- IUPAC definition of "living polymerization":
 - Absence of irreversible transfer and termination
 - Cannot be applied to any radical polymerization!
- Some tests for RDRP:
 - Continued chain growth after addition monomer added
 - Molecular weight increases linearly with conversion
 - Active species (i.e. radicals) conc. remains constant
 - Narrow molecular weight distributions (low M_w/M_n)
 - Block copolymers may be prepared (subset of first test)
 - End groups are retained yields end-functionalized chains

Moad and Solomon *The Chemistry of Radical Polymerization*, 2nd edition, 2006, page 453.


Examples of RDRP Data

Atom transfer radical polymerization (ATRP)
 Styrene. M_n at 100% (theoretical) = 10,000 (DP = 100)

T.E. Patten, J. Xia, T. Abernathy, K. Matyjaszewski, *Science*, **1996**, *272*, 866. K. Matyjaszewski, T.E. Patten, J. Xia, *J. Am. Chem. Soc.*, **1997**, *119*, 674.

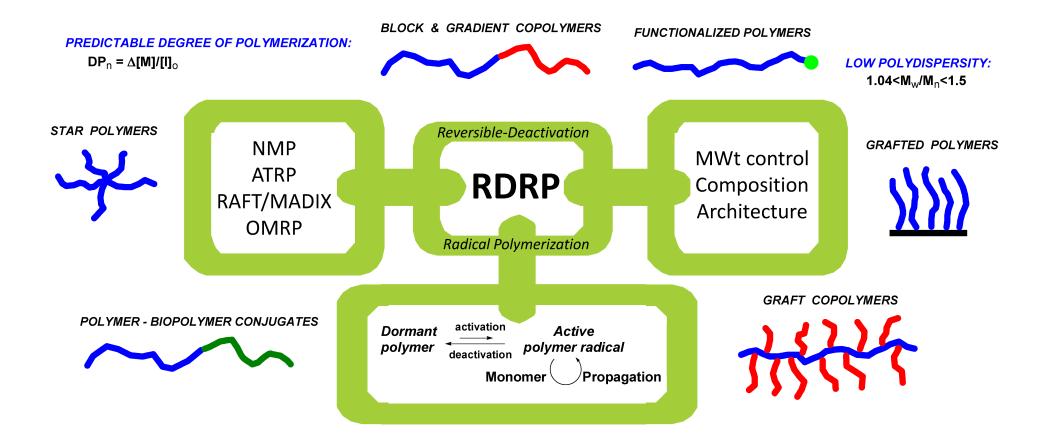

Calculated MWDs

Figure 9.2 Calculated (a) number and (b) GPC distributions for three polymers each with $\overline{X}_n = 100$. The number distributions of chains formed by conventional radical polymerization with termination by disproportionation or chain transfer $(--, \sum n_i=1.0, \overline{X}_n / \overline{X}_n=2.0)$ or termination by combination (-----, $\sum n_i=1.0, \overline{X}_n / \overline{X}_n=1.5$) were calculated as discussed in Section 5.2.1.3. The number distribution of chains formed in an ideal living polymerization (----, $\sum n_i=1.0, \overline{X}_n / \overline{X}_n=1.01$) was calculated using a Poisson distribution function.

Moad and Solomon The Chemistry of Radical Polymerization, 2nd edition, 2006, page 454.

Materials From RDRP

RDRP: Types & Requirements

- Main types
 - Nitroxide-Mediated
 Polymerization
 - NMP
 - Atom Transfer Radical Polymerization
 - ATRP
 - Reversible Addition Fragmentation Chain
 Transfer Polymerization
 - RAFT
- Other types
 - Metal-mediated polym'n
 - Iniferter
 - Group transfer polym' n

- Requirements
 - All chains begin at the same time
 - "Fast initiation"
 - Little or no termination
 - Low radical concentration
 - All chains grow at the same rate
 - "Fast exchange"

 lodo and methacrylate-based degenerate transfer

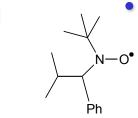
Nitroxide-Mediated Polymerization

Nitroxides

P_n-X

 $k_{\rm d}$

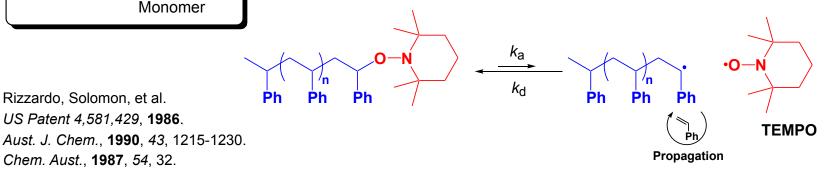
Rizzardo, Solomon, et al.

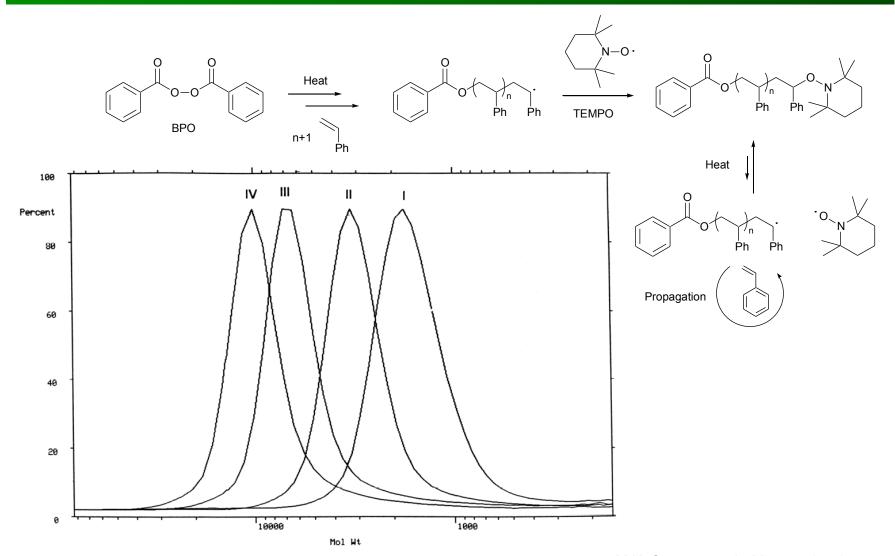

US Patent 4,581,429, 1986.

Chem. Aust., 1987, 54, 32.

- Stable free radicals
- Do not react with O-centered radicals
- React fast with C-centered radicals
 - $k_{\rm d} \sim 10^6 10^9 \,{\rm M}^{-1} \,{\rm s}^{-1}$

 $P_n + X$

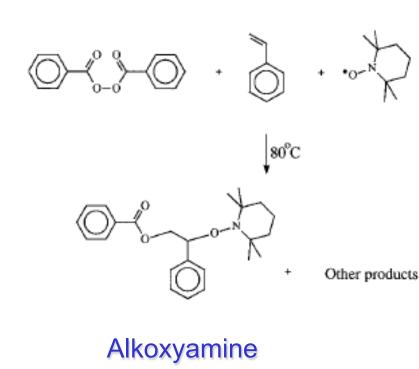

Do not initiate polymerization

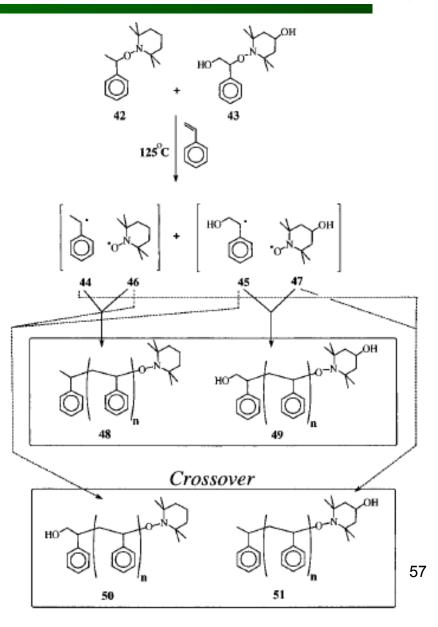

TEMPO

N−O•

- 2,2,6,6
 - tetramethylpiperidim-Noxyl
- Only good for styrene (co)polymers
- α -H nitroxides
 - Styrene, acrylates, acrylonitrile, 1,3butadiene

Georges/Xerox Approach to NMP

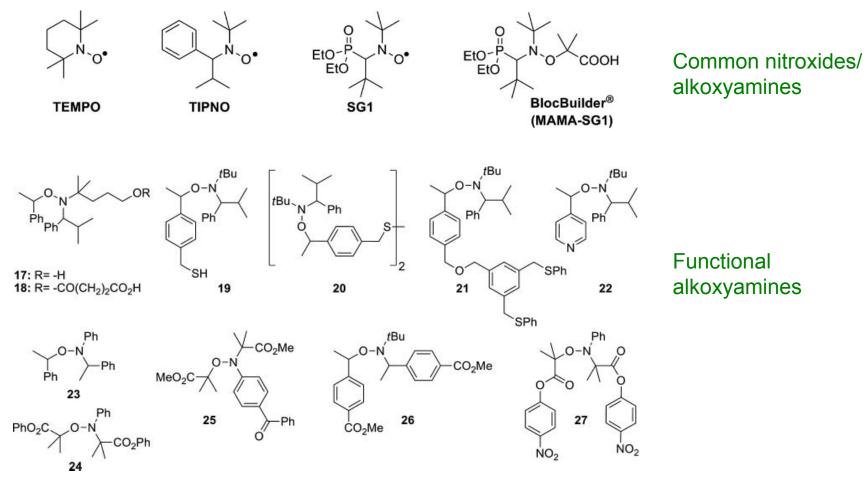



Molecular weight distributions of polystyrene produced by NMP using BPO and TEMPO. M^n and M_w/M_n of samples I – IV are as follows: $(M_n:M_w/M_n)$ 1700:1.28, 3200:1.27, 6800:1.21, 7800:1.27.

M.K. Georges et al., *Macromolecules*, **1993**, *26*, 2987-2988.

56

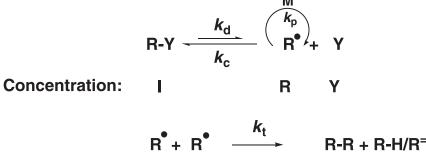
Hawker Approach to NMP (Using TEMPO)



C.J. Hawker, J. Am. Chem. Soc., 1994, 116, 11185-11186.

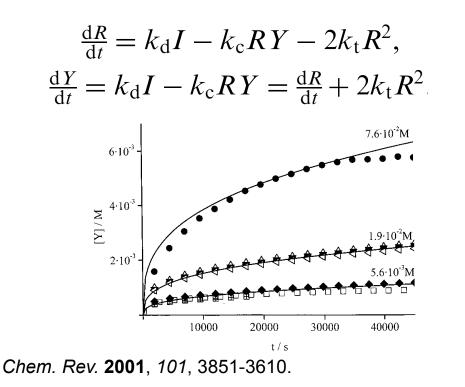
Newer Nitroxides: α -Hydrido-Derivatives

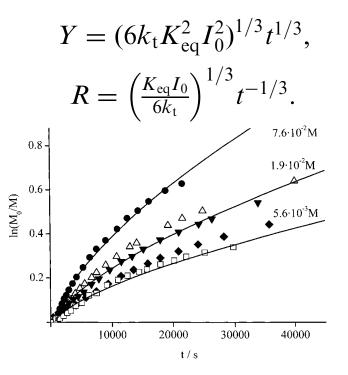
Wider range of monomers & functionalities


P. Tordo, Y. Gnanau, et al., *J. Am. Chem. Soc.*, 2000, 122, 5929-5939.
C.J. Hawker, et al., *J. Am. Chem. Soc.*, 1999, 121, 3904-3920.

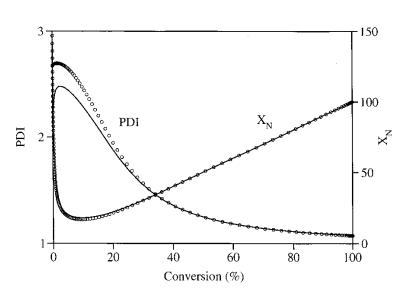
R.B. Grubbs, Polym. Rev., 2011, 51, 104-137.

58


The Persistent Radical Effect (PRE)


 Idea developed by H. Fischer, and furthered by T. Fukuda

Ρ

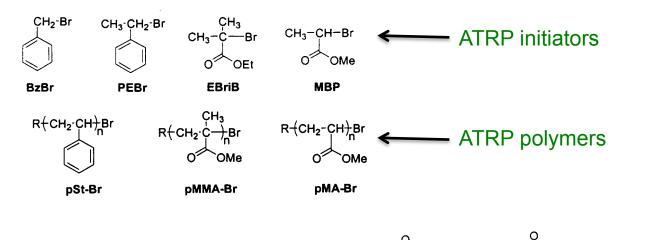



R

Consequences of the PRE

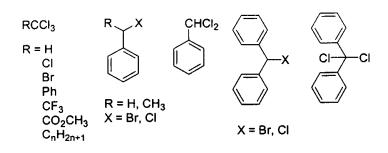
- Better control over polymer growth
 - Faster deactivation
 - Fewer radicals
 - Slower termination $(R_t \sim [R \bullet]^2)$
 - Slower polymerization $(R_p \sim [R \bullet])$
 - Better chain end functionalization
 - Odd polymerization kinetics
 - Approx. $t^{1/3}$ dependence instead of t
 - Can add some extra persistent radical (e.g. nitroxide) to improve PDI, slow rate, better end group control

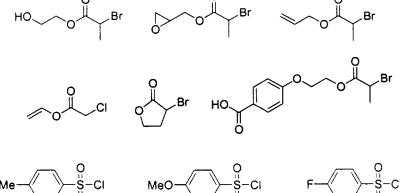
Atom Transfer Radical Polymerization



J.-S. Wang, K. Matyjaszewski, *J. Am. Chem. Soc.*, **1995**, *117*, 5614. M. Kato, M. Kamigaito, M. Sawamoto, T. Higashimura, *Macromolecules*, **1995**, *28*, 1721. V. Percec, B. Barboiu, *Macromolecules*, **1995**, *28*, 7970.

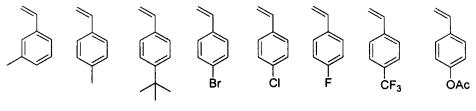
61


Initiators for ATRP

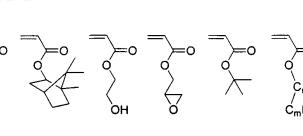

Best to "copy" end of growing polymer

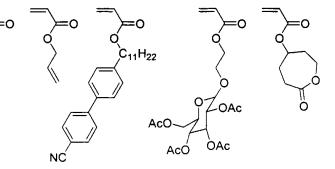
HBSC

Other ATRP initiators used include:

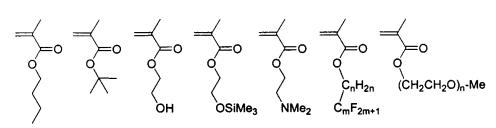

MBSC

K. Matyjaszewski, J. Xia, Chem. Rev. 2001, 101, 2921-2990.

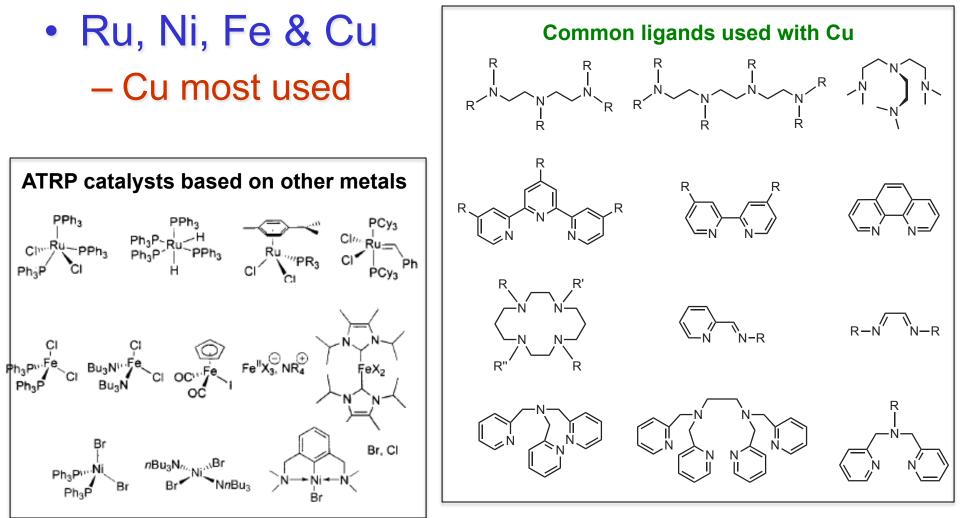

FBSC


Monomers for ATRP

• Styrenics



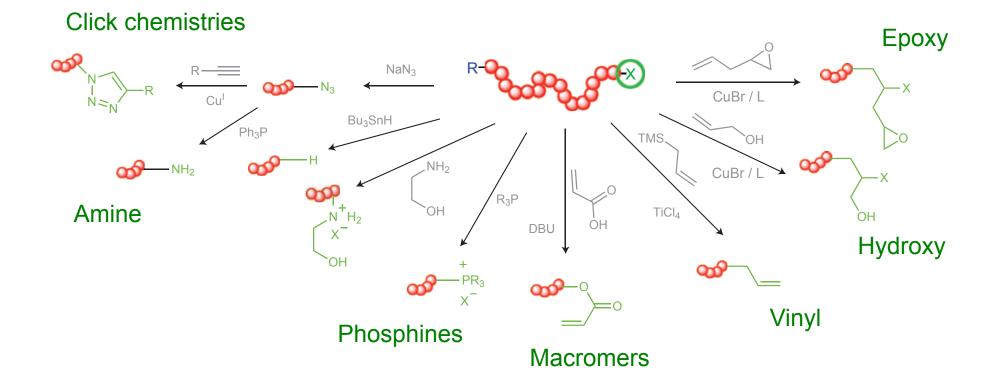
Acrylates



- Other monomers, such nitriles, can be polymerized.
- Nucleophilic functionalities (e.g., amines, acids) can cause problems.

K. Matyjaszewski, J. Xia, Chem. Rev. 2001, 101, 2921-2990.

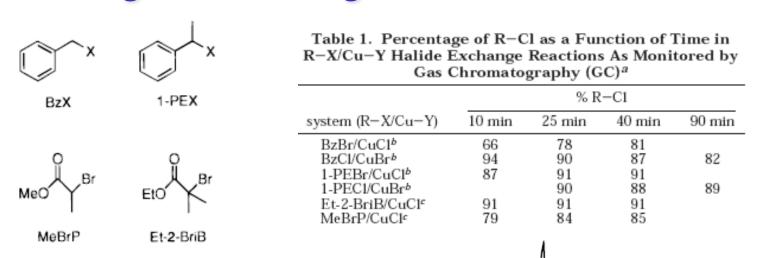
Catalysts for ATRP


K. Matyjaszewski, J. Xia, Chem. Rev. 2001, 101, 2921-2990.

K. Matyjaszewski, N.V. Tsarevsky, Nat. Chem. 2009, 1, 276-288.

64

Functional Polymers by ATRP


End-group functionalization easy to perform with various alkyl halide reactions

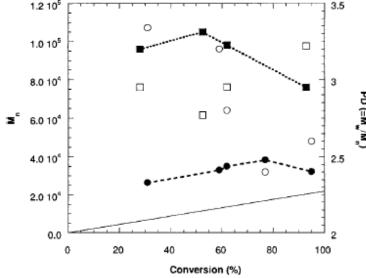
Some Mechanistic Details

RBr + CuCl/L

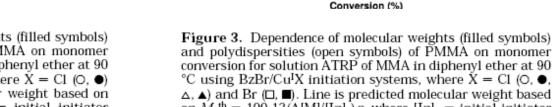
Halogen exchange

Figure 1. ¹H NMR spectra obtained from the model study of BzBr/CuCl at room temperature at the times indicated (last entry in Table 2). [BzBr] = 0.1 M, [CuCl] = 0.1 M, [dNbpy] = 0.2 M solvent = benzene- d_6 .

time = 50 hrs Cl time = 0 4.20 4.15 4.10 4.05 4.00 3.95 3.90


Kexch

RCI + CBr/L


K. Matyjaszewski et al. Macromolecules 1998, 31, 6836-6840.

How to Utilize Halogen Exchange

Better control of homopolymerizations

Figure 2. Dependence of molecular weights (filled symbols) and polydispersities (open symbols) of PMMA on monomer conversion for solution ATRP of MMA in diphenyl ether at 90 °C using BzCl/Cu¹X initiation systems, where X = Cl (O, \bullet) and Br (\Box , \blacksquare). Line is predicted molecular weight based on $M_n^{\text{th}} = 100.12(\Delta[\text{M}]/[\text{In}]_0)p$, where $[\text{In}]_0 = \text{initial initiator}$ concentration and p = fractional conversion. [BzCl]₀ = 0.021 M, [CuX]₀ = 0.011 M, [dNbpy] = 0.021 M.

3 10

2.5 10

2 10

1 10

5 10°

0

0

20

40

≥ 1.5 10

conversion for solution ATRP of MMA in diphenyl ether at 90 °C using BzBr/Cu^IX initiation systems, where $X = CI (O, \bullet, \Delta, \blacktriangle)$ and Br (\Box, \blacksquare) . Line is predicted molecular weight based on $M_n^{\text{th}} = 100.12 (\Delta[M]/[In]_0) p$, where $[In]_0 = \text{initial initiator concentration and } p = \text{fractional conversion. For } (O, \bullet, \Box, \blacksquare), [BzBr]_0 = 0.021 \text{ M}, [CuX]_0 = 0.011 \text{ M}, [dNbpy] = 0.021 \text{ M}; for <math>(\Delta, \blacktriangle), [BzBr]_0 = 0.021 \text{ M}, [CuCI]_0 = 0.021 \text{ M}, [dNbpy] = 0.042 \text{ M}.$

2.4

2.2

2

C

0

 Δ

80

Δ

00

60

Δ

1.8 PD [#M

≧

1.6

1.4

1.2

100

Utilizing Halogen Exchange...2

Better block copolymers

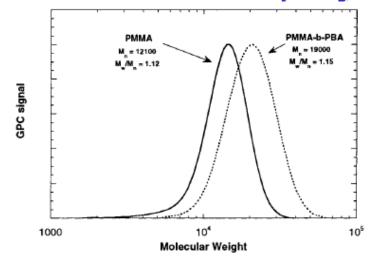
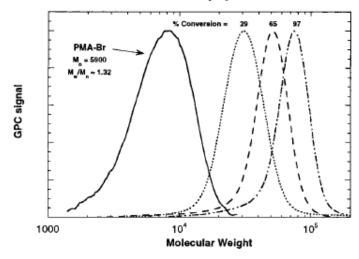
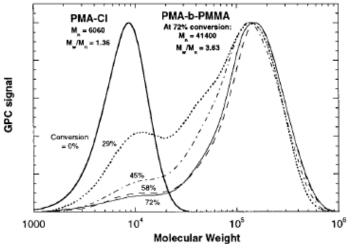




Figure 1. Molecular weight distributions of PMMA macroinitiator and PMMA-*b*-PBA diblock copolymer.

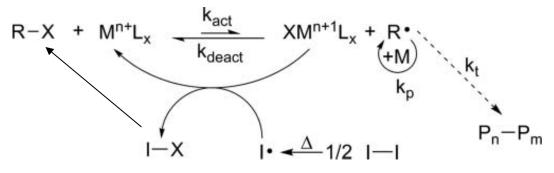
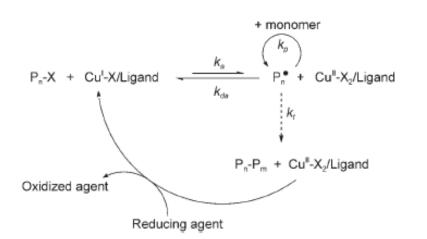
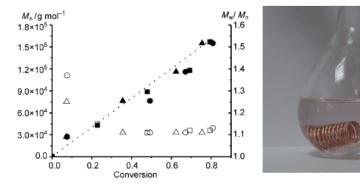

Figure 3. Molecular weight distributions of PMA-C1 macroinitiator and PMA-*b*-PMMA diblock copolymer at various monomer conversions (indicated in the figure).

Figure 6. Molecular weight distributions of PMA-Br macroinitiator and PMA-*b*-PMMA diblock copolymer at various monomer conversions.

D.A. Shipp, J.-L. Wang, K. Matyjaszewski *Macromolecules* **1998**, *31*, 8005-8008.

"Reverse" ATRP


- Add regular initiator (e.g. AIBN), with oxidized metal (e.g. Cu^{II}Br₂) & ligand
 - Less trouble handling Cu^{II} (c.f. Cu^I)
 - Uses common initiator
 - Still provides good control, etc.


- Related to "ICAR" ATRP
 - Initiators for continuous activator regeneration
 - Allows for lower Cu concentrations

Activator (Re)Generated by Electron Transfer (AGET & ARGET) ATRP

- Problem: use of Cu metal salts contaminates polymer
 - Usually ends up being green
 - Adds expense to polymerization
- Overcome this by regenerating Cu(I) by using a reducing agent such as amines, glucose, ascorbic acid, etc., as well as Cu(0) wire
 - Much lower [Cu]

K. Matyjaszewski et al. *Angew. Chem. Int. Ed.* **2010**, *49*, 541-544. *Chem. Rev.* **2007**, *107*, 2270-2299

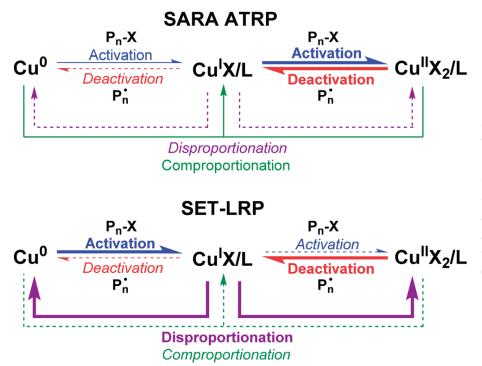
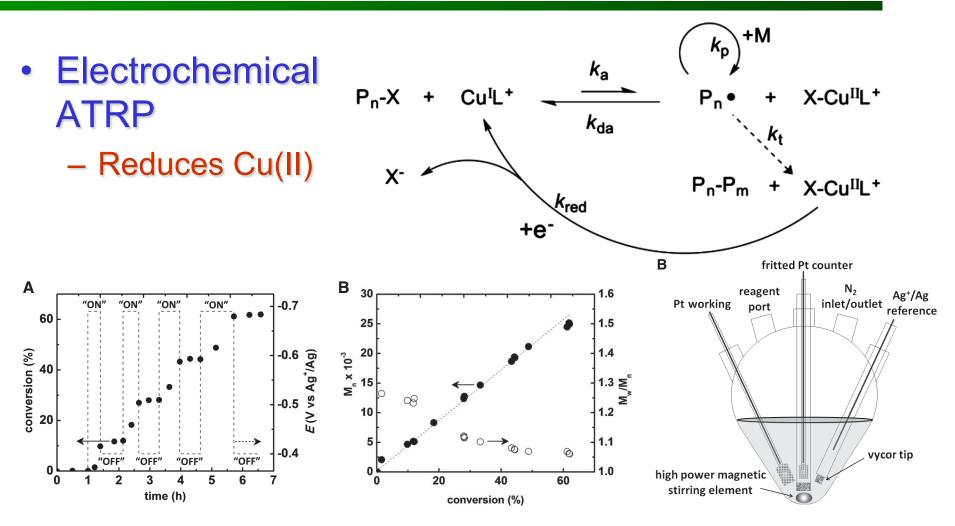


Figure 3. Plot of M_n (filled shapes) and M_w/M_n (empty shapes) versus conversion for three consecutive polymerizations of MMA with CDB using the same copper wire as the reducing agent. 1st use \bullet , \bigcirc , 2nd use \bullet , \square , 3rd use \bullet , \triangle . Polymerization conditions: [MMA]₀/[CDB]₀/[CuBr]₀/[TPMA]₀=2000:1:0.01:0.03; MMA/anisole=1:2 (v/v); 72 h at 80 °C; copper(0) wire I=70 cm, d=1 mm.

SARA ATRP vs. SET LRP

- Controversy over ARGET-type approach
 - SARA = supplemental regeneration of activators



Scheme 2 Key differences between the SARA ATRP mechanism and the SET-LRP mechanism. The SET-LRP mechanism assumes that Cu⁰ is the major activator of alkyl halides (green dashed line) and that disproportionation (blue dashed line) is the dominant fate for Cu¹ complexes. SARA ATRP (red solid lines) assumes that Cu¹ is the major activator of alkyl halides and that Cu¹ species predominantly activate alkyl halides rather than disproportionate (reprinted with permission from ref. 72. Copyright 2014 the American Chemical Society).

SET-LRP: Chem. Rev. 2009, 109, 5069-5119.

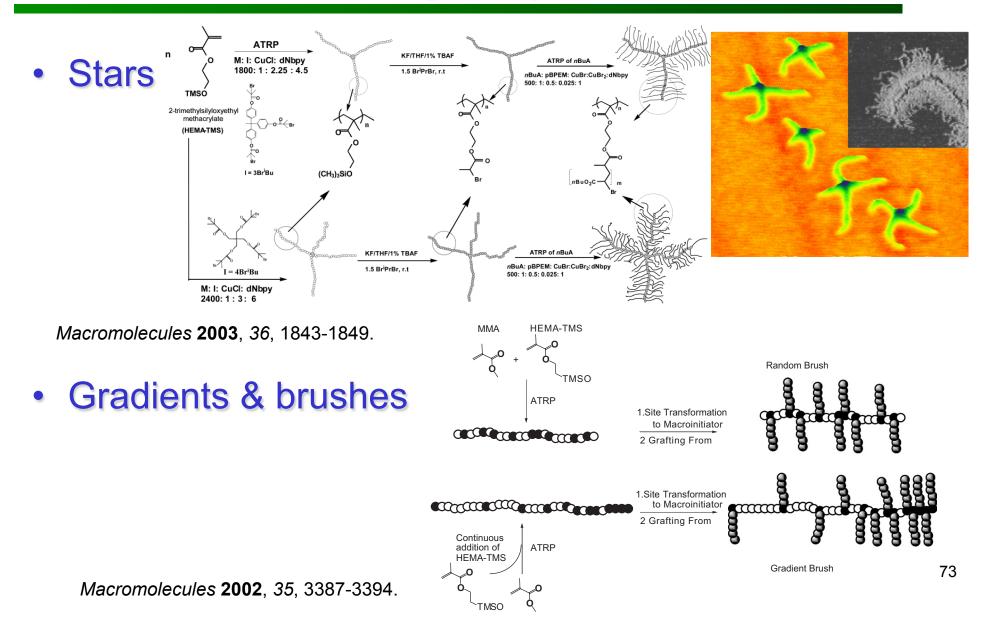
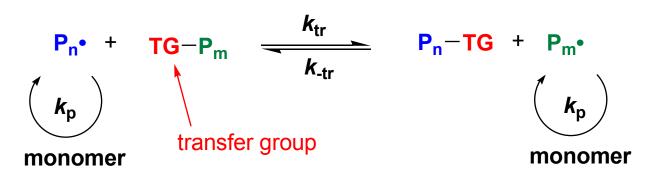

eATRP

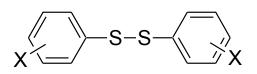
Fig. 4. (**A**) Conversion (solid circles) and applied potential (dashed line) with respect to time and (**B**) M_n and M_w/M_n with respect to conversion. Toggling between active and dormant states is represented by changes of the E_{app} values between -0.69V and -0.40 V versus Ag⁺/Ag, respectively. Reaction conditions are identical to those stated in Fig. 2. K. Matyjaszewski et al. Science **2011**, 332, 81-84.


72

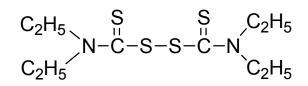
Some Interesting Polymers from ATRP

Degenerate Transfer

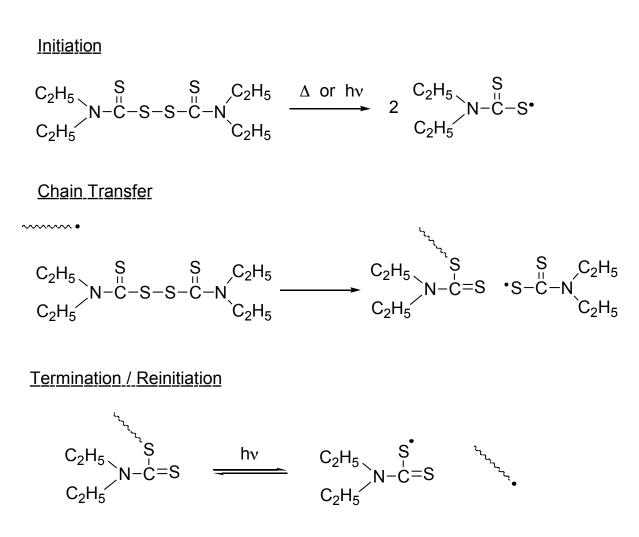
Reversible chain transfer


- Examples
 - Iodine-mediated (TG = I atom)
 - Methacrylic macromonomers
 - Thiocarbonylthio (RAFT) polymerization

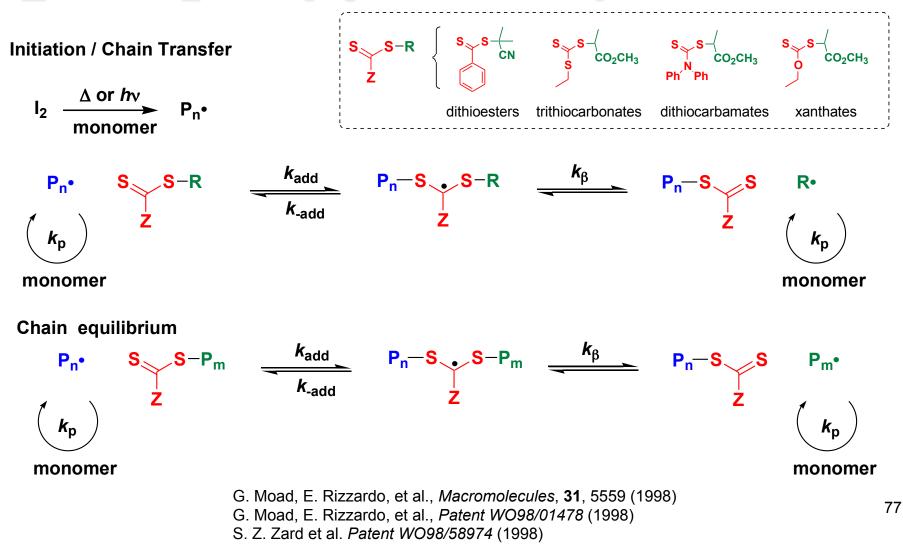
Iniferters ...1


• Initiator, transfer agent, terminator

Otsu et al. Makromol. Rapid Commun., 1983, 3, 127 & 133

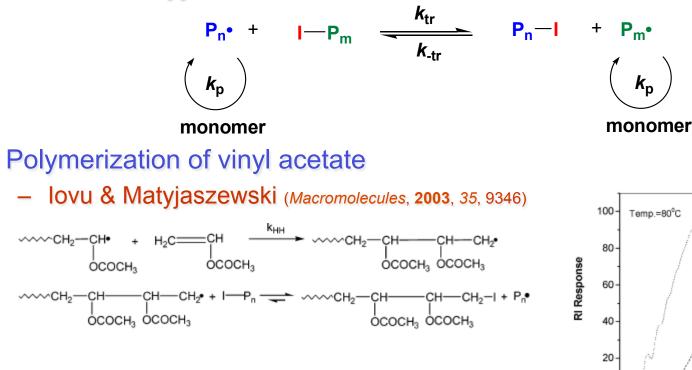

- Disulfides
 - High amounts of transfer
 - Examples
 - Diaryl disulfides
 - Dithiuram disulfides (most successful)

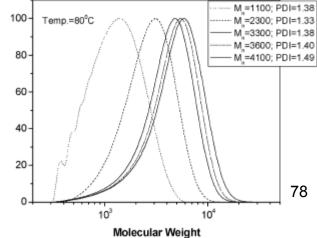
- Dithiocarbamyl end groups
 - Thermally stable
 - Photochemically labile



Iniferters ...2

RAFT Polymerization

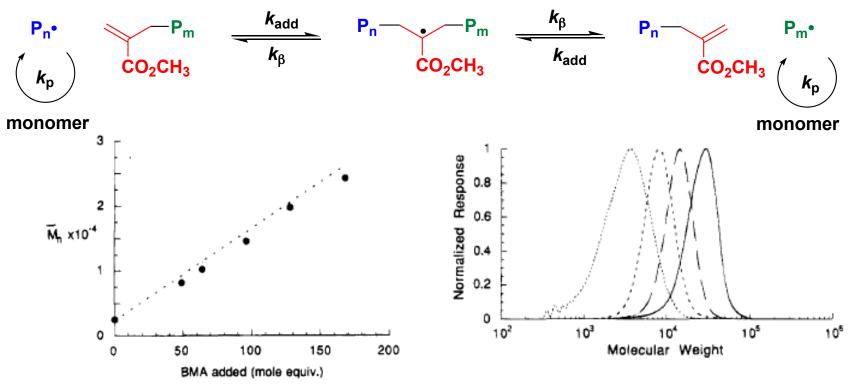

<u>Reversible addition-fragmentation chain transfer</u>



Iodine & Methacrylic Macromonomers

- Iodine-mediated polymerizations
 - Tatemoto (Eur. Patent 489370A1, 1992)

- Matyjaszewski (Macromolecules, 1995, 28, pp. 2093 and 8051)



Macromonomer Method

Methacrylate-based macromonomers

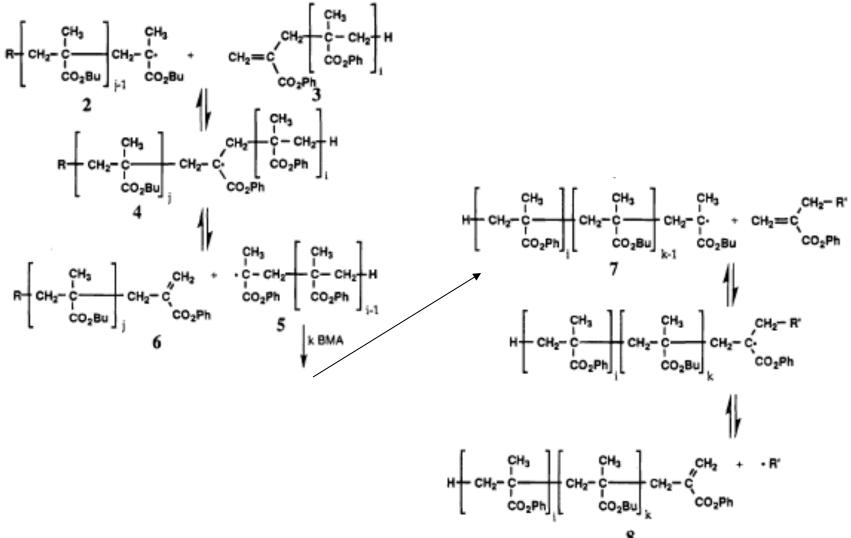

- Moad et al. (Macromolecules, 1996, 29, 7717)

Figure 1. Variation in molecular weight with monomer addition for poly(butyl methacrylate-*block*-methyl methacrylate) synthesis. Data are for the example given in the text and reported in Table 1. Calculated molecular weights (---). The initial macromonomer (8.5 g) had $\bar{M}_n = 2300$.

Figure 2. Molecular weight distributions for methyl methacrylate macromonomer (---) and for poly(butyl methacrylateblock-methyl methacrylate) synthesis after additions of 33.6 (--), 59.8 $(-\cdots -)$, and 88.2 g (-) of BMA. Data are for the example given in the text and reported in Table 1 and Figure 1.

Macromonomer Mechanism

Organoheteroatom-Mediated Polymerization

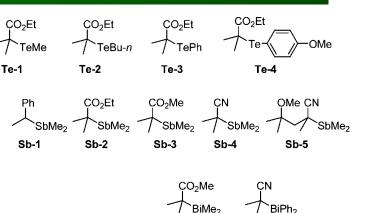
- Organotellurium
 - A. Goto et al. JACS, 2003, 125, 8720
- Organostibine
 - S. Yamago et al. JACS, **2004**, *126*, 13908
- Organobismuthin
 - S. Yamago et al. Angew. Chem. Int. Ed., 2007, 46, 1304

Two concurrent mechanisms:

(a) Reversible termination (RT) mechanism

$$P-X \xrightarrow{K_d} P \cdot + \cdot X$$

(b) Degenerative transfer (DT) mechanism

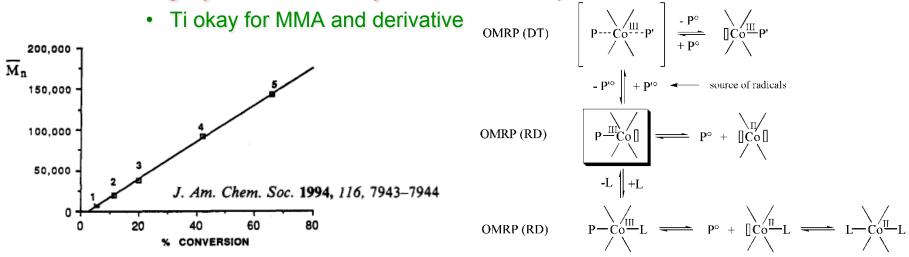

 $P-X + P' \bullet \xrightarrow{k_{ex}} P \bullet + X-P'$

S. Yamago Chem. Rev., 2009, 109, 5051-5068.

entry	monomer®	method ⁶	conditions (°C/h)	yield (%)	M₁ ^c	PDI⊄
1	St	А	60/11	94	11300	1.17
2	St	A^d	60/11	82	4300	1.11
3	St	A ^e	40/23	82	7400	1.21
4	St	в	100/16	96	9200	1.17
5	BA	A	60/4	99	15900	1.19
6	BA	в	100/24	89	10300	1.13
7	MMA	A	60/2	93	11000	1.36
8/	MMA	A	60/2	98	9600	1.15
91	MMA	В	80/13	92	9700	1.18
10e	NIPAM	Ā	60/3	99	30600	1.09
118	AN	A	60/6	99	37800	1.16
12	HEMA	A	60/2	99	22300	1.18

Table 1. Polymerization with 4 in the Presence of AIBN

^{*a*} St: styrene, BA: *n*-butyl acrylate, MMA: methyl methacrylate, NIPAM: *N*-isopropyl acrylamide, AN: acrylonitrile, HEMA: 2-hydroxyethyl methacrylate. ^{*b*} A: A mixture of 4 (1 equiv), AIBN (1 equiv) and monomer (100 equiv) was heated. B: A mixture of 4 (1 equiv) and monomer (100 equiv) was heated. ³ ^{*c*} Number-average molecular weight (*M*_n) and polydispersity index (PDI) were obtained by size exclusion chromatography calibrated by polySt standards for entries 1–4 and 11 and polyMMA standards for others. ^{*d*} Two equivalents of 4 was used. ^{*e*} V-70 was used instead of AIBN. ^{*f*} Dimethyl ditelluride (1 equiv) was added. ^{*g*} Reaction was carried out in DMF.


Bi-1

Bi-2

- N

Cobalt-Mediated Polymerization

- Organometallic mediated polymerization (OMRP)
 - Various metals can be used (Ti, V, Fe, Os, Mo, Cr) but most successful is Co
 - Co-mediated polymerization mechanism depends on conditions
 - Degenerate transfer (DT) if high radical conc.
 - Reversible-deactivation (RD) if low radical conc.
 - Largely works for vinyl acetate & acrylates

monomer conversion that results from reaction of (TMP)Co-neopentyl relative to polystyrene standards. (1) $\bar{M}_w/\bar{M}_n = 1.10$; (2) $\bar{M}_w/\bar{M}_n = 1.0$; and methyl acrylate (60 °C. benzene: $[(TMP)Co-neopentyl]_i = 1.0 \times 1.16;$ (3) $\bar{M}_w/\bar{M}_n = 1.21;$ (4) $\bar{M}_w/\bar{M}_n = 1.17;$ (5) $\bar{M}_w/\bar{M}_n = 1.21.$

Figure 1. Number average molecular weight of PMA versus percent of 10-3 M; [MA]; = 2.5 M). Molecular weights of PMA were determined

82