Radical Polymerizations I

Chain Growth Basics

Devon A. Shipp
Department of Chemistry, &
Center for Advanced Materials Processing
Clarkson University
Potsdam, NY 13699-5810

Tel. (315) 268-2393, Fax (315) 268-6610
dshipp@clarkson.edu
Chain Polymerizations

- **Typical chain reaction**
 - $I \rightarrow I^*$ Initiation
 - $I^* + M \rightarrow IM^*$ ($=P_1^*$)
 - $P_n^* + M \rightarrow P_{n+1}^*$ Propagation
 - $P_n^* + P_m^* \rightarrow D_{n+m}$ Termination
 - $P_n^* + P_m^* \rightarrow D_n + D_n$
 - $P_n^* + A \rightarrow D_n + A^*$

- * = reactive species
 - Radical
 - Anion
 - Cation

Chain Growth (Addition)
Olefinic Monomers

<table>
<thead>
<tr>
<th>Monomers</th>
<th>Type of Initiation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Radical</td>
</tr>
<tr>
<td>Ethylene</td>
<td>+</td>
</tr>
<tr>
<td>1-Alkyl olefins (α-olefins)</td>
<td>-</td>
</tr>
<tr>
<td>1,1-Dialkyl olefins</td>
<td>-</td>
</tr>
<tr>
<td>1,3-Dienes</td>
<td>+</td>
</tr>
<tr>
<td>Styrene, α-methyl styrene</td>
<td>+</td>
</tr>
<tr>
<td>Halogenated olefins</td>
<td>+</td>
</tr>
<tr>
<td>Vinyl esters (CH₂=CHCOR)</td>
<td>+</td>
</tr>
<tr>
<td>Acrylates, methacrylates</td>
<td>+</td>
</tr>
<tr>
<td>Acrylonitrile, methacrylonitrile</td>
<td>+</td>
</tr>
<tr>
<td>Acrylamide, methacrylamide</td>
<td>+</td>
</tr>
<tr>
<td>Vinyl ethers</td>
<td>-</td>
</tr>
<tr>
<td>N-Vinyl carbazole</td>
<td>+</td>
</tr>
<tr>
<td>N-Vinyl pyrrolidone</td>
<td>+</td>
</tr>
<tr>
<td>Aldehydes, ketones</td>
<td>-</td>
</tr>
</tbody>
</table>
Initiators and Solvents

- **Initiators**
 - Peroxides
 - Azo compounds
 - Redox
 - Thermal
 - UV
 - γ-rays

- **Solvents**
 - Danger of radical transfer to solvent
 - E.g. C_6H_6 is better than $C_6H_5CH_3$
 - Water is okay
 - Remove O_2
 - Formation of stable peroxide radicals
 - $\sim\sim\sim O-O\cdot$ (relatively stable)
Some Typical Conditions

• **Styrene**
 – Bulk, under N\textsubscript{2}
 – 125\degree C, 1-7 days, M\textsubscript{n} \approx 150,000

• **Methyl methacrylate (MMA)**
 – Solution, 0.5% AIBN
 – 1-2 days, 60\degree C, M\textsubscript{n} \approx 100,000

• **Acrylonitrile**
 – Emulsion, H\textsubscript{2}O, N\textsubscript{2}, surfactant
 – K\textsubscript{2}S\textsubscript{2}O\textsubscript{8}/NaHSO\textsubscript{3} (redox)
 – 35\degree C, 24 hrs, M\textsubscript{n} \approx 50,000
Elementary Reactions …1

• **Initiation**
 - $R^\cdot = \text{primary radicals}$
 - $R_d = 2k_d[I] \ll R_i = k_i[R^\cdot][M]$

• **Propagation**
 - $R_p = k_p[R^\cdot][M]$

\[
\begin{align*}
M_1^\cdot + M & \xrightarrow{k_{p1}} M_2^\cdot \\
M_2^\cdot + M & \xrightarrow{k_{p2}} M_3^\cdot \\
M_3^\cdot + M & \xrightarrow{k_{p3}} M_4^\cdot \\
\end{align*}
\]

\[
\begin{align*}
I & \xrightarrow{k_d} 2R^\cdot \\
R^\cdot + M & \xrightarrow{k_i} M_1^\cdot (R-M^\cdot) \\
M_n^\cdot + M & \xrightarrow{k_p} M_{n+1}^\cdot \\
\end{align*}
\]
Elementary Reactions ...

- **Termination** (radical–radical)

 \[
 \begin{align*}
 \text{(CH}_2\text{-CH)}_n\text{CH}_2\cdot \text{CH} & \xrightarrow{k_{ic}} \text{(CH}_2\text{-CH)}_n\text{CH}_2\text{-CH} \cdot \\
 \cdot \text{CH} \text{-CH}_2(\text{CH}_2\cdot \text{CH})_m & \xrightarrow{k_{id}} \text{(CH}_2\text{-CH)}_n\text{CH}_2\text{-CH} \cdot \text{CH}_2(\text{CH}_2\cdot \text{CH})_m
 \end{align*}
 \]

 Combination

- **Transfer**
 - E.g. to monomer

 \[
 \begin{align*}
 M_n^\cdot & + \text{H}_2\text{C} \equiv \text{C} \xrightarrow{k_{tr}} M_n\text{-H} + \text{H}_2\text{C} \equiv \cdot \text{C} \\
 \text{R} & \text{R}
 \end{align*}
 \]
 - Solvent
 - Polymer
 - Additives
Initiation

• **Rate of radical formation**
 – \(\frac{d[R]}{dt} = 2 \ k_d \ [I]\)
 – Typical values
 • \(k_d \sim 10^{-6} - 10^{-4} \text{ s}^{-1}\)
 • \([I] \sim 0.01 \text{ M (0.1%)}\)
 – \(\frac{d[R]}{dt} \sim 10^{-8} - 10^{-6} \text{ M s}^{-1}\)

• **Temperature at which half lifetime = 10 hrs**
 – Depends on initiator structure
 – \(\tau_{1/2} = (\ln 2)/k_d\)
Thermal Initiators … 1

- **Peroxides**
 - Dialkyl peroxides

 \[
 \begin{align*}
 \text{H}_3\text{C} - \overset{\text{CH}_3}{\text{C}} - \overset{\text{CH}_3}{\text{O}} - \overset{\text{CH}_3}{\text{O}} - \overset{\text{CH}_3}{\text{C}} - \overset{\text{CH}_3}{\text{CH}_3} & \rightarrow 120 - 140 ^\circ \text{C} \quad 2 \text{H}_3\text{C} - \overset{\text{CH}_3}{\text{C}} - \overset{\text{O^*}}{\overset{\text{CH}_3}{\text{CH}_3}} \\
 \text{H}_3\text{C} - \overset{\text{CH}_3}{\text{C}} - \overset{\text{CH}_3}{\text{O}} - \overset{\text{CH}_3}{\text{O}} - \overset{\text{CH}_3}{\text{C}} - \overset{\text{CH}_3}{\text{CH}_3} & \rightarrow 70 - 90 ^\circ \text{C} \quad 2 \text{H}_3\text{C} - \overset{\text{C}}{\text{O^*}} \rightarrow 2 \text{CH}_3 + 2 \text{CO}_2 \\
 \text{Ph} - \overset{\text{O}}{\text{C}} - \overset{\text{O}}{\overset{\text{C}}{\text{Ph}}} & \rightarrow 80 - 95 ^\circ \text{C} \quad 2 \text{Ph} - \overset{\text{C}}{\text{O^*}} \rightarrow 2 \text{Ph}^* + 2 \text{CO}_2
 \end{align*}
 \]
Thermal Initiators …2

- **Hydroperoxides**
 - Low efficiency

\[
\begin{align*}
\text{H}_3\text{C} & \text{C} \text{O} \text{H} & \text{Ph} & \rightarrow & 2\text{H}_3\text{C} & \text{C} \text{O} \cdot & + & \cdot \text{OH} & \rightarrow & \text{H}_3\text{C} & \text{C} \text{O} \cdot & + & \text{H}_2\text{O} \\
\end{align*}
\]

- **Azo initiators**
 - AIBN
 - Azobisisobutyronitrile
 - Others
 - **R-N=N-R**
 - **R = Me (250°C), isopropyl (200°C), PhC(H)Me (110°C), Me_2(CN)C (60°C), Ph_2CH (30°C)**
Redox Initiators

• **Advantages**
 – Lower temperatures
 – Good solubilities
 – High initiation efficiency

 • One mole radicals per mole initiator

\[
\text{HO} - \text{OH} + \text{Fe}^{2+} \rightarrow \text{HO}^\cdot + \text{OH}^- + \text{Fe}^{3+}
\]

\[
\text{RO} - \text{OH} + \text{Fe}^{2+} \xrightarrow{15\text{ - }30^\circ\text{C}} \text{RO}^\cdot + \text{OH}^- + \text{Fe}^{3+}
\]

\[
\text{R}_3\text{N} \quad \text{R}^' - \text{C} - \text{O} - \text{O} - \text{C} - \text{R}^' \rightarrow \text{R}_3\text{N}^\cdot + \text{R}^' - \text{C} - \text{O}^\cdot - \text{O} - \text{C} - \text{R}^'
\]

\[
\text{O} - \text{S} - \text{O} - \text{O} - \text{S} - \text{O}^- + \text{Fe}^{2+} \rightarrow \text{O}^\cdot - \text{S} - \text{O}^- - \text{O} - \text{S} - \text{O}^- + \text{Fe}^{3+}
\]
Photochemical Initiator

• **Advantages**
 – Spatially directed polymerization
 – Easy to turn on/off
 – Initiation rates can be controlled

• **Absorb light > 300 – 350nm**
 – Dye-sensitized

\[D + h\nu \rightarrow D^* \]

\[\text{radicals} \]

\[(DA)^* \rightarrow \text{radicals} \]

\[\text{exciplex} \]
Radiation & Pure Thermal

- **Radiation**
 - Neutrons, α-particles, β-rays, γ-rays, x-rays
 - Homolytic cleavage

- **Pure thermal**
 - Styrene

![Chemical Reaction Diagram]

\[\text{Ph} + \text{Ph} \rightarrow \text{PhPh} \]
Initiation Efficiency

- **Cage effect**
 - $f = \text{initiator efficiency} \sim 0.3 - 0.8$
 - Dependent on conversion (viscosity)

- **No cage effect for redox**
 - One radical generated
Kinetics of Initiation

- Rate of initiation
 - Generation of radicals through thermal initiation
 - $R_d = 2 f k_d [I]$
 - Rate of change in primary radical concentration
 - $\frac{d[R\cdot]}{dt} = 2 f k_d [I] - k_i [R\cdot] [M] = 0$
 - Steady-state assumption
 - Assumes f is invariant
 - Rearranging for $[R\cdot]$
 - $[R\cdot] = \frac{(2 f k_d [I])}{(k_i [M])}$
 - Assume decomposition is slowest step:
 - $R_i = 2 f k_d [I]$
Kinetics of Propagation

• **Rate of propagation**

 \[-R_p = \frac{d[M]}{dt} = k_p [M•] [M]\]

 • Assumes that monomer only consumed during propagation

 \[-\frac{d[M•]}{dt} = k_i [R•] [M] - 2 k_t [M•]^2 = 0\]

 • Assumes steady state for radical concentration

 \[-2 f k_d [I] - 2 k_t [M•]^2 = 0\]

 \[-[M•] = \left(f k_d [I] / k_t\right)^{0.5}\]

\[
\begin{align*}
R_p &= \frac{d[M]}{dt} = k_p [M] \sqrt{\frac{2 f k_d [I]}{2 k_t}} \\
R_p &= \frac{d[M]}{dt} = k_p [M] \sqrt{\frac{R_i}{2 k_t}}
\end{align*}
\]
Rate of Polymerization

- **Predictions:**
 - 1st order in monomer
 - ½ order in initiator

- **Plot of** R_p vs. $[I]^{0.5}$
 - Linear

- Classical kinetics justified (?)

Assumptions Made in Kinetic Analysis

- **Propagation rate constant is constant**
 - k_p is independent of chain length

- **Termination rate constant is constant**
 - k_t is independent of chain length

- **Very long chains**
 - Monomer only consumed in propagation

- **One type of active site**
 - Only head-to-tail addition
 - Otherwise (at least) 2 types of active sites

- **Steady state**
 - $[M\cdot] = \text{constant (polymer)}$
 - $[R\cdot] = \text{constant (primary)}$
Kinetics for Photoinitiation …1

• **Rate of initiation**

 - \(R_i = 2 \Phi I_a \)

 - \(I_a = I_0 \varepsilon [A] b \)

 • \(\Phi \) = quantum yield for initiation

 • \(I_a \) = intensity of light absorbed

 • \(I_0 \) = intensity of incident light

 • \(\varepsilon \) = extinction coefficient of A

 • \(A \) = molecule absorbing light

 • \(b \) = total thickness of reaction flask

• **If absorbance does not vary with thickness**

\[
R_p = k_p [M] \sqrt{\frac{R_i}{k_t}} = k_p [M] \sqrt{\frac{2 \Phi I_a}{k_t}} = k_p [M] \sqrt{\frac{2 \Phi \varepsilon I_0 [A] b}{k_t}}
\]
Kinetics for Photoinitiation ...2

• If appreciable absorption
 – Beer-Lambert law
 • \(I = I_0 \left(10^{-\varepsilon[A]b'} \right) \)
 – \(b' \) = distance into reaction flask
 – \(I = \) intensity at distance \(b' \) into flask

 – \(I_a = I_0 - I \)
 – Therefore:
 \[
 R_p = k_p [M] \sqrt{\frac{2 \Phi I_0 (1-10^{-\varepsilon[A]b'})}{k_t}}
 \]
Dead-End Polymerization

- **Measures** k_d
- **Low** [Initiator]
 - Initiator is consumed before polymerization is complete
 - $p = \text{extent of monomer conversion}$
 - $p_\infty = \text{limiting extent of monomer conversion}$

\[-\ln \left[1 - \frac{\ln(1-p)}{\ln(1-p_\infty)} \right] = \frac{k_d t}{2}\]

Non-Steady State Kinetics

• **Steady state kinetics**
 – Gives coupled form of \(k_p^2/k_t \)

• **Non-steady state kinetics**
 – Gives coupled form of \(k_p/k_t \)

• **Combine both methods**
 – Gives \(k_p \) and \(k_t \) individually

• **Rotating sector method**
 – Most common non-steady state method (until recently)
 – Determines average lifetime of a growing radical (\(\tau_s \))
 – Complex analysis yields \(k_p/k_t \)
Pulsed Laser Polymerization ...

- Obtains k_p by itself
- Periodic initiation established by laser flashes
 - Initiation effectively instantaneous (10 ns)
- Propagation occurs between pulses
- Most termination occurs at time of laser pulses
 - Chains tend to start growth at laser pulse and terminate at a subsequent pulse
Pulsed Laser Polymerization …2

- **Average time for a propagation event**
 - \(\text{Avg. time} = \frac{1}{(k_p[M])} \)

- **Number of propagation events in time \(t_f \)**
 - \(\nu_p = k_p [M] t_f \)

- **Measure \(\nu_p \) from GPC, know \(t_f \) & [M] (low conversion)**
 - Estimate \(k_p \)

- **From PLP of MMA**
 - From \(\nu_p^{(1)} \)
 - \(k_p = 331 \text{ M}^{-1}\text{s}^{-1} \)
 - From \(\nu_p^{(2)} \)
 - \(k_p = 328 \text{ M}^{-1}\text{s}^{-1} \)
 - From \(\nu_p^{(3)} \)
 - \(k_p = 329 \text{ M}^{-1}\text{s}^{-1} \)

- **Lit. value**
 - \(k_p = 323 \text{ M}^{-1}\text{s}^{-1} \)
Termination Rates

• **Radical-radical termination**
 – Fast; usually diffusion-controlled
 – $k_t \sim 10^6 – 10^9 \text{ M}^{-1}\text{s}^{-1}$
 • low conversion & viscosity
 – k_t decreases with monomer conversion
 • From $\sim 10^9$ to 10^2 or less

• **No method of unambiguously determining** k_t
 – Viscosity dependent
 – Chain length dependent
 • $k_t(i,j)$ where $i, j =$ radical chain lengths
How k_t Varies During Polymerization

Fig. 6. Conversion dependence of k_t for the free-radical polymerization of methyl methacrylate. The experimental data are: (○) from ref. 8) (for 0°C) and (△) from ref. 9) (for 50°C). The full line represents k_t from Eq. (11) with the rate coefficients and kinetic parameters given in the text.

Termination Chemistry

- Two mechanisms
 - Combination (or coupling)
 - Disproportionation

- Proportions of both depend on monomer

<table>
<thead>
<tr>
<th></th>
<th>%D</th>
<th>%C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylonitrile</td>
<td>~0</td>
<td>~100</td>
</tr>
<tr>
<td>Styrene</td>
<td>~10</td>
<td>~90</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>~10</td>
<td>~90</td>
</tr>
<tr>
<td>MMA</td>
<td>~60</td>
<td>~40</td>
</tr>
</tbody>
</table>

- More H’s available ⇒ more disproportionation
Kinetic Chain Length

- **Kinetic chain length** = \(\nu \)
 - Number of monomer molecules per radical
 - \(\nu = \frac{R_p}{R_i} = \frac{R_p}{R_t} \) (steady state)

\[
\nu = \frac{k_p [M]}{2k_t \text{[radical]}} = \frac{k_p^2 [M]^2}{2k_t R_p}
\]

- For thermolysis:

\[
\nu = \frac{k_p [M]}{2(fk_d k_t [I])^{1/2}}
\]

- Increase \(R_p \) (through increase [radical])
 - Decrease in \(\nu \)
Molecular Weights … 1

• **Average degrees of polymerization**
 – Dependent on mode of termination
 • Disproportionation
 • Combination

• **Define:**
 – \(p = \text{probability of propagation over termination or transfer} \)

\[
p = \frac{R_p}{R_p + R_{tr} + R_t}
\]
Molecular Weights …2

• **Disproportionation**
 - \(X_n = \) number average degree of polymerization = \(\nu \)

 \[
 X_n = \frac{1}{1-p} \quad X_w = \frac{1+p}{1-p}
 \]

 \[
 \frac{X_w}{X_n} = 1 + p
 \]

• **Combination**
 - \(X_n = 2\nu \)

 \[
 X_n = \frac{2}{1-p} \quad X_w = \frac{2+p}{1-p}
 \]

 \[
 \frac{X_w}{X_n} = \frac{2+p}{2}
 \]
Chain Transfer ...1

- Transfer may occur to:
 - Monomer (M)
 - Polymer (P)
 - Solvent (S)
 - Impurity
 - Chain transfer agent (A)

\[
M_n^\cdot + XA \xrightarrow{k_{tr}} M_nX + A^\cdot
\]
\[
A^\cdot + M \xrightarrow{k_a} M_1^\cdot
\]

<table>
<thead>
<tr>
<th>Case</th>
<th>Relative Rates</th>
<th>Effect</th>
<th>(R_p)</th>
<th>(X_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(k_p \gg k_{tr}) (k_a \sim k_p)</td>
<td>Normal</td>
<td>None</td>
<td>↓</td>
</tr>
<tr>
<td>2</td>
<td>(k_p \ll k_{tr}) (k_a \sim k_p)</td>
<td>Oligomerization</td>
<td>None</td>
<td>Large ↓</td>
</tr>
<tr>
<td>3</td>
<td>(k_p \gg k_{tr}) (k_a < k_p)</td>
<td>Retardation</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>4</td>
<td>(k_p \ll k_{tr}) (k_a < k_p)</td>
<td>Degradative Chain Transfer</td>
<td>Large ↓</td>
<td>Large ↓</td>
</tr>
</tbody>
</table>
Chain Transfer …2

- **Transfer constants = C**
 - Defined by the ratio of k_{tr}/k_p for a particular transfer agent
 - E.g. monomer ($C_M = k_{tr,M}/k_p$), solvent ($C_S = k_{tr,S}/k_p$), etc.

- **Redefine X_n:**
 - Rate of polymerization divided by all chain-terminating processes
 - \[
 X_n = \frac{R_p}{R_t + R_{tr,M} + R_{tr,S} + \ldots} = \frac{k_p [M^\cdot] [M]}{k_{tc} [M^\cdot]^2 / 2 + k_{tr,M} [M^\cdot] [M] + k_{tr,S} [M^\cdot] [S] + \ldots}
 \]
 - Then rearrange ……
Chain Transfer …3

• After rearranging …

\[
\frac{1}{X_n} = \frac{k_t[M\cdot]}{2k_p[M]} \left(\frac{k_p[M]}{k_p[M]} \right) + \frac{k_{tr,M}}{k_p} + \frac{k_{tr,S}[S]}{k_p[M]} + \ldots
\]

\[
\frac{1}{X_n} = \frac{k_tR_p}{k_p^2[M]^2} + C_M + C_S \frac{[S]}{[M]} + C_I \frac{k_tR_p^2}{k_p^2 f_k[M]^3}
\]

• For transfer to monomer
 – \(C_S[S]/[M] \) & other terms vanish
 – Plot \(1/X_n \) vs. \(R_p \)
 • Intercept yields \(C_M \)
 • Slope yields \(k_p^2/k_t \)
• **Added transfer agent (A)**
 – Dominates any transfer events

• **Mayo equation:**

\[
\frac{1}{X_n} = \left(\frac{1}{X_n} \right)_0 + C_A \frac{[A]}{[M]}
\]

– \((1/X_n)_0 = \text{value of } (1/X_n) \text{ in absence of } A\)
– Plot \(1/X_n \text{ vs. } [A]/[M]\)
 • Slope = \(C_S\)

Fig. 3-10 The effect of various chain-transfer agents on the degree of polymerization of styrene at 100°C. After Gregg and Mayo [1948] (by permission of American Chemical Society, Washington, D.C.).

Transfer Agents & Constants

- Transfer agents and constants for styrene polymerization at 60°C

<table>
<thead>
<tr>
<th>Transfer Agent</th>
<th>C_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>1.0×10^{-6}</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.05×10^{-5}</td>
</tr>
<tr>
<td>Butyl alcohol</td>
<td>6.0×10^{-6}</td>
</tr>
<tr>
<td>t-Butyl alcohol</td>
<td>6.7×10^{-4}</td>
</tr>
<tr>
<td>CBr$_4$</td>
<td>1.8</td>
</tr>
<tr>
<td>CCl$_4$</td>
<td>8.4×10^{-3}</td>
</tr>
<tr>
<td>CHCl$_3$</td>
<td>5×10^{-5}</td>
</tr>
<tr>
<td>1-Octanethiol</td>
<td>19</td>
</tr>
<tr>
<td>Triethylamine</td>
<td>1.4×10^{-4}</td>
</tr>
<tr>
<td>Water</td>
<td>0</td>
</tr>
</tbody>
</table>

- Alkyl thiols often used to control molecular weight
Gel Effect - Autoacceleration

- Expect rate to decrease with time
 - Monomer is consumed
 - $R_p = k_p [M\cdot] [M]$
- But, rate usually increases

- Cause
 - Decrease in k_t
 - Diffusion-controlled process
 - R_p increases

$$R_p = \frac{d [M]}{dt} = k_p [M] \sqrt{\frac{R_i}{2 k_t}}$$

Figure 3.4: Plot of conversion vs. time, for the free radical polymerization of methyl methacrylate at 50°C using benzoyl peroxide at various concentrations in benzene. Redrawn from the data of G.W. Schultz and G. Harborth, Macromol. Chem., 110:67 (1967).
Ceiling Temperature

- Propagation as an equilibrium
 \[\text{M}\cdot + M \rightleftharpoons \text{MM}\cdot \]
 \[k_p \]
 \[k_{dp} \]
 \[\Delta G = \Delta G^o + RT \ln K \]
 \[K = k_p/k_{dp} = \frac{[\text{~~MM}\cdot]}{[\text{~~M}\cdot][\text{M}]} = \frac{1}{[\text{M}]} \]

- At equilibrium ($\Delta G = 0$)
 \[\Delta H^o + T\Delta S^o = -RT \ln K \]
 \[T_c = \frac{\Delta H^o}{\Delta S^o + R \ln[M]_c} \]
 \[\ln[M]_c = \frac{\Delta H^o}{RT_c} - \frac{\Delta S^o}{R} \]
 \[T_c = \text{ceiling temperature} \]
 \[[M]_c = \text{equilibrium monomer conc.} \]

- For α-methyl styrene
 - Neat, $T_c = 61^\circ C$
 - $T = 25^\circ C$, $[M]_c = 2.2$ M
Heterogeneous Radical Polymerizations

- Particle-forming polymerizations
 - Emulsion polymerizations
 - Mini-emulsion, micro-emulsion and emulsion
 - Dispersion polymerizations
 - Suspension polymerizations

![Image of polymerization process]
Heterogeneous Polymerization ... 1

- Advantages
 - Bulk – batch
 • Reduces effect of impurities
 - Bulk – continuous
 • Better temperature control
 - Solution
 • Temperature control

- Suspension
 • Temperature control
 • Low viscosity
 • Isolation
 • Size control

- Emulsion
 • Temperature control
 • Low viscosity
 • Latex product
 • High molecular weight & polymerization rate
Heterogeneous Polymerization ...2

- **Disadvantages**
 - Bulk – batch
 - Temperature control difficult
 - High viscosity
 - Incomplete conversion possible
 - Bulk – continuous
 - Isolation
 - Agitation required
 - Recycling

- **Solution**
 - Isolation
 - Chain transfer to solvent
 - Solvent removal

- **Suspension**
 - Agitation required to maintain suspension
 - Washing, drying
 - Removal of suspending agents (stabilizers)

- **Emulsion**
 - Sensitive to impurities
 - Removal of emulsifier maybe required
 - Cost
Suspension vs. Emulsion

Comparison of suspension and emulsion polymerizations

<table>
<thead>
<tr>
<th></th>
<th>Suspension</th>
<th>Emulsion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monomer</td>
<td>35.7</td>
<td>Monomer</td>
</tr>
<tr>
<td>H₂O</td>
<td>64.2</td>
<td>H₂O</td>
</tr>
<tr>
<td>Poly(vinyl alcohol)</td>
<td>0.0143</td>
<td>H(CH₂)₇CO₂⁻NH₄⁺</td>
</tr>
<tr>
<td>Laurel peroxide</td>
<td>0.0714</td>
<td>K₂S₂O₈</td>
</tr>
<tr>
<td>Size of monomer droplet (φ)</td>
<td>0.1-5 mm</td>
<td>Size of monomer droplet (φ)</td>
</tr>
</tbody>
</table>
Emulsion Polymerizations

- **Nucleation**
 - Micellar
 - Radicals from \(\text{H}_2\text{O} \) into micelle
 - Homogeneous
 - Polymer radicals precipitate from \(\text{H}_2\text{O} \)

Suspension Polymerization

- **Monomer**
 - Discontinuous suspension in a continuous phase (usually water)

- **Initiators**
 - Monomer-soluble

- **Surfactants**
 - Determine monomer droplet size
 - Control agglomeration

- **Polymerizing droplets**
 - Diameter of 50 – 500 micron
 - Heat removed easily

- **Monomers**
 - Styrene/divinyl benzene
 - Vinyl chloride, vinyl acetate
 - Methacrylic esters
 - Tetrafluoro ethylene
 - Homo- and co-polymers
Mini- & Micro-Emulsions, Precipitation

• **Mini-emulsion polymerization**
 • Similar to emulsions but droplet nucleation

• **Micro-emulsion polymerization**
 • An emulsion that is thermodynamically stable
 • Usually particles are 10-50 nm

• **Precipitation polymerization**
Dispersion Polymerizations

• **Monomer**
 - Homogeneous monomer phase in solvent (usually water)
 - Polymer is insoluble in solvent, therefore becomes heterogeneous

• **Initiators**
 - Monomer-soluble

• **Surfactants**
 - Stabilize polymer particles
 - Control agglomeration

• **Polymerizing particles**
 - Diameter of 1–10 micron
 - Heat removed easily

• **Monomers**
 - Vinyl acetate
 - Methacrylates, acrylates
 • Homo- and co-polymers