IUPAC

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

How to Name Atoms in Phosphates, Polyphosphates and their Analogues, and Transition State Analogues for Enzyme-catalysed Phosphoryl Transfer Reactions

Pure and Applied Chemistry Recommendation <i>18 December 2015</i> Blackburn, G. Michael, Krebs Institute, University of Sheffield; Cherfils, Jacqueline, CNRS and Ecole Normal Supérieur,
18 December 2015 Blackburn, G. Michael, Krebs Institute, University of Sheffield;
18 December 2015 Blackburn, G. Michael, Krebs Institute, University of Sheffield;
Blackburn, G. Michael, Krebs Institute, University of Sheffield;
Cachan; Moss, Gerald P., Queen Mary University of London; Richards, Nigel J., Department of Chemistry, IUPUI, Indianapolis; Waltho, Jonathan P., Biosciences Institute, University of Manchester; Williams, Nicholas H., Chemistry Department, University of Sheffield; Wittinghofer, Alfred, Group for Structural Biology, Max-Planck-Institut für Molekulare Physiologie, Dortmund.
Phosphate nomenclature, recommendations, N, O, P atom labels, phosphate stereochemical naming, polyphosphates, phosphoryl transfer, atom labels for transition states.

1 2			
3	11		December 18, 2015
4 5	12		INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY
6 7	13		ORGANIC AND BIOMOLECULAR CHEMISTRY DIVISION
8 9	14		
10 11	15		HOW TO NAME ATOMS IN PHOSPHATES, POLYPHOSPHATES, THEIR
12	16		DERIVATIVES AND MIMICS, AND TRANSITION STATE ANALOGUES FOR
13 14	17		ENZYME-CATALYSED PHOSPHORYL TRANSFER REACTIONS
15 16	18		IUPAC Recommendations 2016 [†]
17	19		
18 19	20		
20 21 22	21 22		Michael Blackburn, ^a Jacqueline Cherfils, ^b Gerald P. Moss, ^c Nigel J. Richards, ^d Jonathan P. Iltho, ^e Nicholas H. Williams, ^f Alfred Wittinghofer ^g
23 24	23	a)	Department of Molecular Biology, Krebs Institute, University of Sheffield, S10 2TN, UK
25 26	24	b)	Laboratoire de Biologie et Pharmacologie Appliquée, CNRS - Ecole Normale Supérieure de
27	25		Cachan, Cachan, France
28 29 30	26 27	c)	Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, UK
31 32 33 34 35 36 37 38 39 40	28 29	d)	Department of Chemistry, Indiana University Purdue University Indianapolis, IL 46202, USA, and School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
	30	e)	Biosciences Institute, University of Manchester, M1 7DN, UK
	31	f)	Chemistry Department, University of Sheffield, Sheffield S10 7HF, UK
	32 33	g)	Group for Structural Biology, Max-Planck-Institut für Molekulare Physiologie, 44227 Dortmund, Deutschland
40 41	34		
42	35		
43 44	36		
45 46	37	$^{\dagger}P$	repared for publication in 2015 by G. M. Blackburn and G. P. Moss
47	38		plication of this document by any means is permitted on the condition that it is
48 49	39		ole and unchanged. Copyright © IUPAC & De Gruyter
50 51 52 53 54 55 56 57 58 59 60			

40 41 42	HOW TO NAME ATOMS IN PHOSPHATES, POLYPHOSPHATES, THEIR DERIVATIVES AND MIMICS, AND TRANSITION STATE ANALOGUES FOR ENZYME-CATALYSED PHOSPHORYL TRANSFER REACTIONS
43	(IUPAC Recommendations 2016)
44	
45 46 47 48 49 50 51 52 53 54 55 56 57	<i>Abstract</i> : Procedures are proposed for the naming of individual atoms, N, P, O, etc., in phosphate esters, amidates, thiophosphates, polyphosphates, their mimics, and analogues of transition states for enzyme-catalysed phosphoryl transfer reactions. Their purpose is to enable scientists in very different fields, <i>e.g.</i> biochemistry, biophysics, chemistry, computational chemistry, crystallography, and molecular biology, to share standard protocols for the labelling of individua atoms in complex molecules. This will facilitate clear and unambiguous descriptions of structura results and scientific intercommunication concerning them. At the present time, perusal of the Protein Data Bank (PDB) and other sources shows that there is a limited degree of commonality in nomenclature but a large measure of irregularity in more complex structures. The recommendations described herein adhere to established practice as closely as possible, in particular to IUPAC and IUBMB recommendations and to "best practice" in the PDB, especially to its atom labelling of amino acids, and particularly to Cahn-Ingold-Prelog rules for stereochemical nomenclature. They are designed to work in complex enzyme sites for binding
58	phosphates but also to have utility for non-enzymatic systems. Above all, the recommendations
59 60	are designed to be clear to assimilate and convenient to use.
61	KEYWORDS: Phosphate nomenclature, recommendations, N, O and P atom labels,
62	phosphate stereochemical naming, polyphosphates, phosphate analogues, phosphoryl
63	transfer, atom names for transition states.
64	
65	CONTENTS
66	1. Introduction
67	2. Existing Recommendations
68	3. Recommendations for labelling Phosphorus atoms in phosphates
69	4. Recommendations for labelling Oxygen atoms in phosphates
70 71	5. Recommendations for labelling Fluorine and other atoms in phosphate transition state analogues
72	6. Recommendations for labelling Vanadate and Tungstate analogues of phosphates
73	7. Conclusion
74	8. References and Notes
75 76	9. Appendix. Procedure for use of Cahn-Ingold-Prelog rules for prochirality
	41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

1. INTRODUCTION

The advent of stereochemical studies on phosphate esters and diesters with particular reference to their enzyme catalysed reactions, initially through the work of Jeremy Knowles [1] and of Gordon Lowe [2] placed new demands on the nomenclature of the oxygen atoms of the transferring phosphoryl group, PO_3^- . In early work employing thiophosphates made chiral by the specific introduction of oxygen-18 paired with oxygen-16, the direct application of Cahn-Ingold-Prelog (CIP) Rules for prochirality [3] resolved the problem by labelling the oxygens (Rp) and (Sp) as appropriate. [4] The more advanced use of ¹⁶O, ¹⁷O, and ¹⁸O bonded to the same phosphorus [5] led to the concept of *pro-pro-pro*-chirality at phosphorus, which was still capable of CIP identification. [2, 5] However, such isotopic labelling is experimentally demanding and not necessarily applicable to stereochemical problems now more readily amenable to analysis through advances in protein crystallography. The increasing frequency of binary and tertiary structures of proteins in complex with phosphate ester substrates and/or analogues has enabled a rapidly expanding number of enzyme catalysed reactions to be investigated by structural and computational methods. [6, 7] Indeed, there are now over 1600 ligands in the PDB having a phosphoryl group component and they are associated with over 28,000 deposited structures. While many of these structures can be, and have been, labelled for their phosphorus and phosphoryl oxygen atoms through current practice, comparative studies of related structures easily identify multiple inconsistencies in labelling that arise from variable methods of naming N, O, and P atoms.

This situation has become increasingly complex as a result of the introduction and development of metal fluoride (MF_x) analogues of the PO_3^- group in studies on transition state analogues (TSA) for phosphoryl transfer enzymes. Trifluoroberyllate (BeF₃⁻; PDB ligand code: **BEF**) is a ground state analogue for phosphate, with characteristic tetrahedral geometry when ligated to anionic oxygen. Tetrafluoroaluminate (AlF₄⁻; PDB ligand code: ALF) is a mimic for concerted phosphoryl transfer in multiple enzymes, though it has octahedral geometry. Aluminium trifluoride (AlF₃; PDB ligand code: AF3) forms trigonal bipyramidal (tbp) TSA complexes that have the correct stereochemistry for a concerted PO_3^{-} group transfer but lack the ionic charge thereof. These two values converge in the relatively smaller number of trifluoromagnesate complexes (MgF₃⁻; PDB ligand code MGF) which are both anionic and have tbp geometry. Indeed, some of the AlF₃ complexes have been shown in reality to be MgF_3^- complexes in solution. [8] The growth in use of these four types of MF_x complexes is illustrated in Figure 1. In addition, there are many significant structures of phosphoryl transfer enzyme complexes that include vanadium(V) or tungsten(VI) complexes either as tetrahedral phosphate mimics or as tbp mimics of transition states. The relative growth in use of these six species is presented in Figure 1. The double change from four coordinate tetrahedral PO₄ to five coordinate tbp O-MF₃-O and six coordinate, octahedral O-MF₄-O complexes adds a new dimension to the problem of the atomic description of these complexes. The need to solve this general problem provided the principal motivation for this development of these standardized naming conventions.

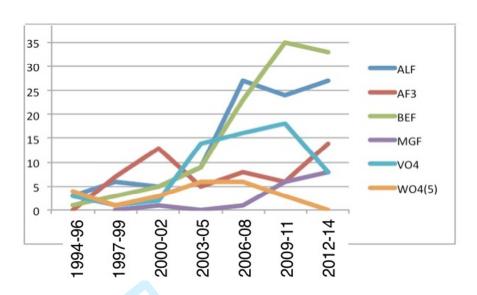


Figure 1. Protein structures published in the PDB for successive triennia containing the
 ligands designated as analogues of phosphoryl groups or their transition states.

As the development of our protocols progressed, it became apparent to us that a rational, logical set of labels for the 5- and 6-coordinate systems described above could only be established on the basis of a clear definition of the systematic labelling of phosphorus atoms in standard multiple phosphate molecules, that already extends to eight in the case of hexaphosphoinositol bisphosphates. [9] It needed to be followed by a comprehensive system for oxygen atom labelling to include both bridge and non-bridge atoms in linear chains of phosphates, as for the 13 oxygens of 5'-adenosyl 5'''-guanosyl P^1 , P^4 -tetraphosphate [10] and the 3 non-isotopically identifiable oxygens of the PO_3^- group of terminal phosphates. With those objectives accomplished, our recommendations could then be developed to incorporate the fluorine ligands of MF_x systems and also the oxygen atoms of vanadate and tungstate analogues of phosphates and their TSAs.

The basic strategy of the recommendations is built on the recognition that a phosphate monoester comprises an alkoxy group and a phosphoryl group (ROH + PO_3^{-}), a monoalkyl diphosphate comprises a phosphate monoester and a second phosphoryl group (ROPO₃⁻ + PO₃⁻), a monoalkyl triphosphate comprises a monoalkyl diphosphate and a third phosphoryl group, and so on. For simplicity, we have ignored anionic charges on phosphoryl oxygens and we have treated P=O "double bonds" as P-O single bonds because there is no π -bonding in the phosphoryl group. While we do not seek to claim that our coverage has been exhaustive, we believe that the principles for naming atoms set out here will prove generally applicable to all cognate molecular species which share a geometrical relationship to phosphates, e.g. sulfates, perchlorates, etc.

Lastly, we provide an Appendix as a simple guide to the application of Cahn-Ingold Prelog Rules to label prochiral, non-bridge oxygen atoms in molecules under inspection.

1		
2 3	142	
4 5	143	2. EXISTING RECOMMENDATIONS
6 7	144	
8 9	145	Phosphorus Nomenclature and Related IUPAC Recommendations
9 10	146	a) The nomenclature of phosphorus-containing compounds of biochemical importance,
11 12	147	Recommendations 1976, was published in 1977. [11] It was concerned with the naming of
13	148	compounds but did not consider the identification of the individual atoms of the phosphate or
14 15	149	polyphosphate groups other than to label the phosphates of a nucleoside triphosphate α , $\beta \Box$
16	150	and γ . It did cover naming of polyphosphates where a bridging oxygen is replaced by a
17 18	151	methylene or imino group. A variation on this was proposed in 1980 and revised in 1992. [12]
10	152	b) A document on the abbreviations and symbols for the description of conformation of
20	153	polynucleotide chains, Recommendations 1982, was published in 1983. [13] In a related
21 22	154	paper, it was proposed that the <i>pro-S</i> oxygen should be OP1 and <i>pro-R</i> should be OP2. [14]
23	155	This is the <i>reverse</i> of the system proposed here and it is also contrary to CIP nomenclature
24 25	156	that gives priority to <i>R</i> over <i>S</i> (CIP Rule 5). We have chosen to adhere to CIP priority Rule 5.
26	157	c) IUPAC Recommendations for preferred names of derivatives of phosphoric acid are
27 28	158	pertinent. [15] They included the application of the CIP rules to chiral phosphates as well as
29	159	CIP rules for a trigonal bipyramidal and octahedral systems. These are also described in
30	160	IUPAC inorganic chemistry nomenclature systems for bipyramidal and octahedral structures.
31 32	161	[16]
33	162	
34 35	163	
36	164	
37 38	104	[16]
39		
40 41		
42 43		
44		
45		
46 47		
48		
49		
50 51		
52		
53		
54 55		
56		
57 58		
58 59		
60		

60

2 3	165	3. RECOMMENDATIONS FOR LABELLING PHOSPHORUS ATOMS IN
4 5	166	PHOSPHATES
6 7 8	167	A. Labelling Phosphorus Atoms in Polyphosphate Species
9	168	A1. Species with One Single Polyphosphate Chain
10 11	169	This requires a one-symbol code to describe the position of each phosphorus in a single chain
12	170	of phosphates. Phosphorus descriptions use a capital letter that serves to discriminate
13 14	171	sequential phosphorus atoms in the same chain (PDB usage).
15 16	172	a) Phosphorus atoms are named in progression from the RO- end as PA, PB, PG, PD etc. ^a
17	173	Hence adenosine 5'-tetraphosphate (PDB ligand: AQP) has phosphorus atoms labelled as
18	174	PA, PB, PG, PD starting from the ribose
19 20 21	175 176	PA, PB, PG, PD starting from the ribose 5'-oxygen [Fig. A1a]. $0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$
22	177	
23	1,,	Figure Ala PD PG PB PA HO OH
24 25		
26		
27	178	b) For the RO- group at the end of a phosphate chain, a nucleoside takes priority over a non-
28 29	179	nucleoside. Thus in uridine diphosphate glucose (PDB ligand: UPG), PA is bonded to
30	180	uridine-O5' and PB is bonded to O1" of \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
31 32 33	181	glucose [Fig. A1b]. ^b HO HO OH O' O' P O' P' O' Ura
34 35 36	182	Figure A1b HO PB PA HO OH
37 38	183	
39	184	c) A nucleic acid base takes priority over non-nucleic acid base (i.e. adenosine > nicotinamide
40 41	185	riboside). Thus in NAD ⁺ (PDB ligand: NAD), PA is bonded to O5' of adenosine with PB
42	186	bonded to O5" of the nicotinamide
43 44	187	riboside [Fig. A1c]. Ade $O_{1}^{5'}$ P_{1}^{-} P_{2}^{-} O_{2}^{-} Nicotinamide
45 46	188	\rightarrow
40 47 48	189	Figure A1c HO OH PA PB HO OH
49 50 51 52 53 54 55	190	
56 57 58 59		 ^a PDB usage currently always replaces P□ with PG as it does not use a Greek/Symbol font. ^b Here, and throughout, negative charges on phosphates and P=O double bonds are omitted for simplicity.

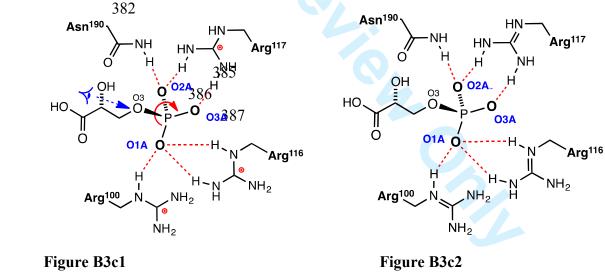
1 2		
3 4	101	\mathbf{D} Needeesides take in slabshatised and $\mathbf{D} \in \mathbf{C} \times (\mathbf{T} \times \mathbf{D})$ Thus is
5	191 102	d) Nucleosides take priority in alphabetical order (A > C > G > dT > U). Thus in P^{1} -(5'-adenosyl) P^{4} -(5''-deoxythymidyl) tetraphosphate (Ap ₄ dT) (PDB ligand: 4TA), the
6 7	192	
7 8	193	phosphorus atoms should be named PA, PB, PG, PD starting at the 5'-oxygen of the
9	194	adenosine [Fig. A1d]. $Ade \xrightarrow{5'} O O O O O O O O O O O O O O O O O O O$
10		Ade $P_{P_{P_{P_{P_{P_{P_{P_{P_{P_{P_{P_{P_{P$
11 12	195	
13	196	Figure A1d HO OH PA PB PG PD HO
14 15		
16		
17	197	Depterson have priority D ribers > 1 ribers > 2 decays D ribers > 2 decays L ribers c Thus a
18 19		Pentoses have priority D-ribose > L-ribose > 2-deoxy-D-ribose > 2-deoxy-L-ribose. ^c Thus a transition state for $dAMD$ binese should label the four phase bound states DA DD DC DD
20	198	transition state for dAMP kinase should label the four phosphorus atoms PA, PB, PG, PD
21	199	starting from the adenosine 5'-oxygen [Fig. A1e].
22 23	200	$Ade \xrightarrow{5'} 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, $
23 24	201	Ade O P P P P O P O Ade
25	201	
26	202	но он О но
27 28	202	Figure A1e PA PB PG PD
29		
30 31	203	a) In phosphonate and phosphoremidate analogues of polyphosphotos, phosphorus atoms will
32		e) In phosphonate and phosphoramidate analogues of polyphosphates, phosphorus atoms will
33	204	be labelled in the same manner as for the parent polyphosphate molecule. Hence for β , γ -
34 35	205	methylene-GTP (PDB ligand: GCP), phosphorus atoms should be named PA, PB and PG
36	206	from the 5'-oxygen [Fig. A1f1]. $\bigcirc \bigcirc \bigcirc$
37	207	P P P O Gua
38 20	207	
39 40	208	Figure A1f1 PG PB PA HO OH
41		
42 43	209	
43 44		
45	010	
46	210	Likewise, for 2'-deoxyuridine 5'- α , β -imidotriphosphate (PDB ligand: DUP) phosphorus
47 48	211	atoms should be named PA, PB and PG from the 5'-oxygen [Fig. A1f2].
49		00000
50	212	P P P P O Ura
51 52		
53	213	Figure A1f2 PG PB PA HO
54		
55 56		
57		^c This pentose order approximates to CIP Rule 5 priority (R) > (S). This rule will apply primarily to
58		transition states for deoxynucleotide kinases, e.g. where ATP phosphorylates dAMP.
59		

transition states for deoxynucleotide kinases, e.g. where ATP phosphorylates dAMP.

1 2	214	
3 4	215	A2. Species with Multiple Single Phosphate Chains
5	215	This requires a one-symbol code to describe the relationship of each phosphate chain to the
6 7	210	parent molecule.
8	,	
9 10	218	a) Inositol polyphosphates require a phosphorus label derived from the identity of the oxygen
11	219	to which each single phosphate is attached. Thus for myo-inositol 1,3,4,5,6-pentakis-
12	220	phosphate (InsP5) (PDB ligand: 5MY) the phosphorus atoms should be labelled P1, P3, P4,
13 14	221	P5, and P6 [Fig. A2a1]. ^d For fructose 1,6-bisphosphate (PDB label: FBP) the phosphorus
15	222	atoms should be labelled P1 and P6 [Fig. A2a2].
16 17 18 19 20 21 22 23	223	$\begin{array}{c} P1 \\ OPO_{3} \\ HO \\ 1 \\ 0_{3}PO \end{array} \\ OPO_{3} \\ OPO$
24		P3 OPO ₃ P5 P6 P1
25 26	224	Figure A2a1 224 Figure A2a2
27 28 29 30 31		
32	225	A3. Species with Multiple Single Phosphate and/or Polyphosphate Chains
33	226	This requires a two-symbol code to describe (i) the position of each phosphorus in a single
34 35 36	227	chain of phosphates, and (ii) the relationship of that phosphate chain to the parent molecule.
37 38	228	a) Species with polyphosphates located on multiple oxygens require a two-symbol code to
39	229	designate their phosphorus atoms, a numerical code for the oxygen bridging to the parent
40	230	molecule and an alphabetic code for the position of the phosphorus in the phosphate chain.
41 42	231	Thus in pppGpp (PDB ligand: 0O2), the 5'-phosphorus atoms should be named PA5, PB5
43	232	and PG5, and the 3'-phosphorus atoms named
44 45	233	PA3 and PB3 [Fig. A3a]. $P P P = P = G Gua$
46 47	234	0 ⁻ P-0 ⁻ P-0 ⁻ O PG5 PB5 PA5 3'
48	235	ОЧ
49 50 51	236	
52 53	237	Figure A3a PB3 PA3
54 55 56 57 58		^d cf. R. F. Irvine & M. J. Schell, <i>Nature Rev. Molec. Cell Biol.</i> 2 , 327-338 (2001).

b) Inositol polyphosphates having polyphosphate moieties require a two-symbol code to designate their phosphorus atoms. A numerical symbol designates the oxygen to which each single phosphate is attached and an alphabetic code designates the position of the phosphorus in the phosphate chain. In the case of **PA1** OPO3 PA6 monophosphates, the labels P1, P2, etc. should **PA2** apply to single phosphorus entities while PAn, PBn .0P03 03P0 will apply to diphosphates, as in PP-InsP₅ (PDB ligand: **I7P**) [Fig. A3b].^d 03P0 $\overline{O}PO_3$ PA3 PA5 PB5 **Figure A3b PA4** 4. RECOMMENDATIONS FOR LABELLING OXYGEN ATOMS IN PHOSPHATES **B1.** Non-terminal Phosphates in Molecules with One Single Phosphate Chain This requires a two-symbol code to describe (i) the identity of the oxygen relative to its congeners and (ii) the identity of the parent phosphorus atom. Oxygen codes use a number first to discriminate oxygens bonded to the same phosphorus, followed by a letter to indicate the parent phosphorus. a) The oxygen linking PA to the carbon moiety of the molecule will retain its regular label. Thus in ATP, O5' bonds PA to the ribose [Fig. B1a1]. In Ap₄G, O5' bonds PA to adenosine while O5" bonds PD to guanosine [Fig. B1a2]. [10] Ade Gua Ade HO OН **Figure B1a1** Figure B1a2 **b**) In each non-terminal phosphoryl group, the two non-bridging oxygens will be labelled 1 and 2 according to their CIP pro-R- and pro-S-chiralities respectively.^e Hence in ATP, PA will have non-bridging oxygens O1A and O2A **O1A O2A** for the *pro-R* and *pro-S* oxygens respectively [Fig. B1b]. Ade **O3B O3A** HO OH

^e This nomenclature is widely used in the PDB for oxygens on PA in nucleoside triphosphates but is rather variably used for oxygens on PB.

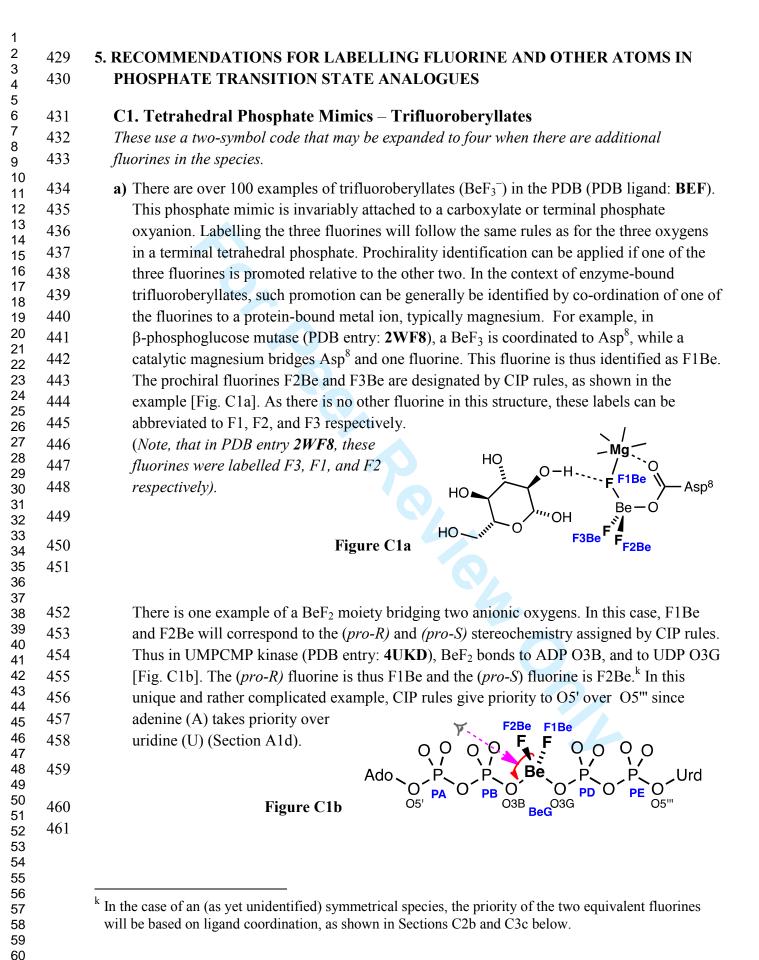

1 2 3 4	266 267	Figure B1b
5 6 7 8 9	268 269 270	c) In each non-terminal phosphoryl group (PO ₃), the bridging oxygen bonding PX to P(X+1) in the chain should be numbered O3X. Hence in ATP, O3A joins PA to PB, and O3B joins PB to PG [Fig. B1b].
10 11 12 13 14 15 16 17 18 19 20 21 22 23	 271 272 273 274 275 276 277 278 279 	d) In chains containing a sulfur atom in a non-bridging, non-terminal position, the sulfur will take the name S1A (for substituent on PA), S1B (for substituent on PB), etc. The non-bridging oxygen then is named O2A, O2B, etc., and the bridging oxygen is O3A, O3B, etc., as above. This is shown for guanosine 5'-(Rp)- α -thio-triphosphate (PDB ligand: GAV) [Fig. B1d]. Figure B1d
24 25 26 27 28 29 30 31 32 33 34 35 36	280 281 282 283 284 285 286	e) In modified polyphosphate chains having two-atom bridges replacing an O3N (where N = A, B, etc.) the bridging atoms X and Y will be labelled X3A and Y4A progressively. Thus in β , γ -oxymethylene-ATP (Ado <i>POPOCH</i> ₂ <i>P</i>), the PB,PG-bridging atoms are O3B and C4B respectively [Fig. B1e]. $Q = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -P & CH_2 $
$\begin{array}{c} 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\end{array}$	287 288 289 290 291 292 293 293 294 295 296 297	f) In polyphosphate chains with a bridging oxygen replaced by carbon or nitrogen, the prochirality designations may change consequently. Thus in α,β -methylene adenosine 5'-triphosphate (PDB ligand: APC) [Fig.B1f], oxygens O1A and O2A are necessarily reversed relative to their designation in ATP [Fig. B1b]. [Fig. B1b]. O2A O1A O1A O2A O1A O1A O1A O1A O1A O1A O1A O1A O1A O1
58 59 60		P.O. 13757, Research Triangle Park, NC (919) 485-8700

B2. Non-terminal Phosphates in Molecules with Multiple Phosphate Chains This requires a three-symbol code to describe (i) the identity of the oxygen relative to its congeners and (ii) two symbols for the identity of the parent phosphorus atom (v.s.). a) In each non-terminal phosphoryl group, the two non-bridging oxygens OIA5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively, and PA3 will have non-bridging oxygens OIA5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively [Fig. B2a1]. Figure B2a1 O2A5 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively [Fig. B2a1]. O2A5 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively [Fig. B2a2]. Figure B2a2 O2A5 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively [Fig. B2a2]. I n NAD ¹ , the oxygens on PA5 will be labelled OIA5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively [Fig. B2a2]. Figure B2a2 O2A5 O1A5 O2B5 O2A5 O1A5 O2B5 O2B5 O1A5 O2B5 O2A5 O1A5 O2B5 O2A5 O1A5 O2B5 O1A5 O2A5 O2A5 O1A5 O2A5 O1A5 O1A5 O2B5 O2B5 O1A5 O2B5 O2A6 O1A5 O1A5 O1A5 O2B5 O1A5 O1A5 O2B5 O1A5 O1A5 O2A5 O1A5 O1B5 O2B5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O1A5 O	1		
This requires a intree-symbol code to describe (1) the identity of the oxygen relative to its congeners and (ii) two symbols for the identity of the parent phosphorus atom (v.s.) a) In each non-terminal phosphoryl group, the two non-bridging oxygens OIA5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively, and PA3 will have non-bridging oxygens respectively (Fig. B2a1). Figure B2a1 Or AS O2A5 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively (Fig. B2a1). Figure B2a1 Or AS O2A5 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively (Fig. B2a1). Figure B2a1 Or AS O2A5 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively (Fig. B2a2). Hon NAD ⁺ , the oxygens on PA5 will be labelled O1A5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively (Fig. B2a2). Hon NAD ⁺ , the oxygens on PA5 will be labelled O1A5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively (Fig. B2a2). Hon OH Hon OH Figure B2a2 Figure B2a3 Figure B2a3 Figure B2a3 Figure B2a3	2	298	B2. Non-terminal Phosphates in Molecules with Multiple Phosphate Chains
$ \begin{array}{c} 5 \\ 300 \\ congeners and (ii) two symbols for the identity of the parent phosphorus atom (v.s.). \\ a) In each non-terminal phosphoryl group, the two non-bridging oxygens will be labelled 1 and 2 according to their CIP pro-R and pro-S chiralities respectively. Hence in ppGpp (PDB ligand; GAP, PAS will have non-bridging oxygens 01A5 and 02A5 for the pro-R and pro-S oxygens respectively, and PA3 will have non-bridging oxygens or pA3 and 02A3 for the pro-R and pro-S oxygens respectively [Fig. B2a1]. \begin{array}{c} 0 \\ respectively (Fig. B2a1]. \\ respectively (Fig. B2a1]. \\ respectively (Fig. B2a2]. \\ respectively (Fig. B2a3). \\ re$		299	This requires a three-symbol code to describe (i) the identity of the oxygen relative to its
7301 a)a) In each non-terminal phosphoryl group, the two non-bridging oxygens will be labelled 1 and 2 according to their CIP <i>pro-R</i> and <i>pro-S</i> chiralities respectively. Hence in ppGpp (PDB ligand: G4P), PAS will have non-bridging oxygens 01A5 and 02A5 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively, and PA3 will have non-bridging oxygens respectively. Fig. B2a1].Other original original original original original original original original original original oxygens 01A3 and 02A3 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively. Fig. B2a1].Other original origin	5	300	congeners and (ii) two symbols for the identity of the parent phosphorus atom (v.s.).
$ \begin{array}{c} PDB ligand: G4P, PA5 will have non-bridging oxygens O1A5 o2A5 oxygens respectively, and PA3 will have non-bridging oxygens O1A3 and O2A3 for the pro-R and pro-S oxygens respectively. Second PA5 will be labelled O1A5 and O2A5 for the pro-R and pro-S oxygens respectively. The correspondence of the pro-R and pro-S oxygens on PA5 will be labelled O1A5 and O2A5 for the pro-R and pro-S oxygens respectively. The correspondence of the pro-R and pro-S oxygens respectively. The correspondence of the pro-R and pro-S oxygens respectively. The correspondence of the pro-R and pro-S oxygens respectively. The correspondence of the pro-R and pro-S oxygens respectively. The correspondence of the pro-R and pro-S oxygens respectively. The correspondence of t$	7	301	a) In each non-terminal phosphoryl group, the two non-bridging oxygens will be labelled 1
		302	and 2 according to their CIP pro-R and pro-S chiralities respectively. Hence in ppGpp
11 504 12 305 13 305 13 305 13 305 13 305 13 305 13 305 13 307 14 306 15 307 15 307 16 107 Prove Prov		303	(PDB ligand: G4P), PA5 will have non-bridging 01A5 02A5
13 505 13 505 13 505 14 306 15 307 15 307 16 307 16 307 17 308 18 309 19 309 10 10 NAD ⁺ , the oxygens on PA5 will be labelled O1A5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> 10 NAD ⁺ , the oxygens on PA5 will be labelled O1A5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> 11 0 NAD ⁺ , the oxygens respectively [Fig. B2a2]. 11 10 NAD ⁺ , the oxygens on PA5 will be labelled O1A5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> 12 02A5 01A5 01B5 02B5 13 07 01A5 01B5 02B5 14 00H 15 01B5 02B5 16 01A5 01B5 02B5 17 10 01A 18 10 ppIns5p, the oxygens on PA5 will be labelled O1A5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> 18 00H 19 00H 10 ppIns5p, the oxygens on PA5 will be labelled O1A5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> 19 00H 10 ppIns5p, the oxygens on PA5 will be labelled O1A5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> 19 00H 10 ppIns5p, the oxygens on PA5 will be labelled O1A5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> 19 00H 10 ppIns5p, the oxygens on PA5 will be labelled O1A5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> 10 oxygens respectively [Fig. B2a3]. 10 ppIns5p, the oxygens on PA5 will be labelled O1A5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> 10 oxygens respectively [Fig. B2a3]. 10 ppIns5p, the oxygens on PA5 will be labelled O1A5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> 11 oxygens respectively [Fig. B2a3]. 11 oxygens respectively [Fig. B2a3]. 12 oxygens respectively [Fig. B2a3]. 13 oxygens respectively [Fig. B2a3]. 14 oxygens respectively [Fig. B2a3]. 15 oxygens respectively [Fig. B2a3]. 16 oxygens respectively [Fig. B2a3]. 17 oxygens respectively [Fig. B2a3]. 18 oxygens respectively [Fig. B2a3]. 19 oxygens respectively [Fig. B2a3]. 10 oxygens respectively [Fig. B2a3]. 10 oxygens respectively [Fig. B2a3]. 10 oxygens respectively [Fig. B2a3]. 10 oxygens Figure B2a3		304	oxygens O1A5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> $O_{A}O_{A}O_{A}O_{A}O_{A}O_{A}O_{A}O_{A}$
a 366 oxygens OIA3 and O2A3 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively [Fig. B2a1]. Figure B2a1 02A3 OTA3 309 Figure B2a1 02A3 OTA3 310 310 311 In NAD ⁺ , the oxygens on PA5 will be labelled OIA5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively, and the oxygens on PB5 will be labelled OIB5 and O2B5 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively [Fig. B2a2]. 314 316 317 Figure B2a2 $here here here here here here here her$		305	oxygens respectively, and PAS will have non-orliging
15 307 308 309 309 309 309 309 300 310 310 311 310 311 310 311 311		306	oxygens O1A3 and O2A3 for the pro-R and pro-S
Figure B2a1 Figure B2a1 Figure B2a1 C2A3 O1A3 Figure B2a1 C2A3 O1A3 Figure B2a1 C2A3 O1A3 Figure B2a1 C2A3 O1A3 Figure B2a1 C2A3 O1A3 O2A3 O1A3 O1A5 O1B5 O2B5 C2B5		307	
$\mathbf{Figure B2a1} = \mathbf{Figure B2a3} = Fi$		200	
19309Figure B2a102A301A3203102131022311311In NAD*, the oxygens on PA5 will be labelled O1A5 and O2A5 for the pro-R and pro-S24312313oxygens respectively, and the oxygens on PB5 will be labelled O1B5 and O2B5 for the pro-R and pro-S oxygens respectively [Fig. B2a2].273142831530316316316317Figure B2a2318 $Ade_{+} \bigcirc 0^{+} \bigcirc$		308	
11 310 22 311 311 In NAD ⁺ , the oxygens on PA5 will be labelled O1A5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> 312 oxygens respectively, and the oxygens on PB5 will be labelled O1B5 and O2B5 for the 313 <i>pro-R</i> and <i>pro-S</i> oxygens respectively [Fig. B2a2]. 314 315 316 317 Figure B2a2 $HO OH$ H		309	Figure B2a1 O2A3 O1A3
²²³ 311 ²²³ In NAD ⁺ , the oxygens on PA5 will be labelled O1A5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> ²²⁴ oxygens respectively, and the oxygens on PB5 will be labelled O1B5 and O2B5 for the ²²⁵ <i>pro-R</i> and <i>pro-S</i> oxygens respectively [Fig. B2a2]. ²²⁶ ²¹⁷		310	
$\begin{array}{c} 311 \\ 23 \\ 312 \\ 312 \\ 312 \\ 313 \\ 313 \\ 313 \\ 316 \\ 318 \\ 320 \\ $			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		311	
$\begin{array}{c} 113 \\ 126 \\ 131 \\$		312	oxygens respectively, and the oxygens on PB5 will be labelled O1B5 and O2B5 for the
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		313	pro-R and pro-S oxygens respectively [Fig. B2a2].
28 29 315 316 317 318 34 318 37 319 319 320 41 321 43 322 44 322 45 323 57 58 59 59 59 59 59 59 59 59 59 59		314	O2A5 O1A5 O1B5 O2B5
$\begin{array}{c} 13 \\ 13 \\ 316 \\ 317 \\ 318 \\ 320 \\ 3$			
Figure B2a2 HO OH HO OH Figure B2a3 HO OH HO OH Figure B2a3 HO OH HO OH HO OH			
318 318 319 319 320 320 320 321 42 322 43 322 44 55 56 57 $1n \text{ ppIns5p, the oxygens on PA5 will be labelled O1A5 and O2A5 for the pro-R and pro-S oxygens respectively [Fig. B2a3]. 0_{3}PO \qquad 0_{9}PO_{3} \qquad 0_{9}PO_{3$			
34 318 37 319 320 320 320 321 43 322 44 45 323 47 324 324 325 57 57 57 326 327 328 329 320 320 320 320 320 320 320 320		317	Figure B2a2 HO OH HO OH
In ppIns5p, the oxygens on PA5 will be labelled O1A5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively [Fig. B2a3]. In ppIns5p, the oxygens on PA5 will be labelled O1A5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively [Fig. B2a3]. Figure B2a3 Figure B2a3 Figure B2a3		318	
$\begin{array}{c} 37 \\ 38 \\ 320 \\ 1 \\ 321 \\ 41 \\ 321 \\ 43 \\ 45 \\ 323 \\ 46 \\ 47 \\ 324 \\ 48 \\ 99 \\ 50 \\ 57 \end{array}$ In ppIns5p, the oxygens on PA5 will be labelled O1A5 and O2A5 for the <i>pro-R</i> and <i>pro-S</i> oxygens respectively [Fig. B2a3].	35		
$\begin{array}{c} 38 \\ 320 \\ 320 \\ 321 \\ 41 \\ 321 \\ 42 \\ 43 \\ 322 \\ 44 \\ 45 \\ 323 \\ 44 \\ 45 \\ 323 \\ 47 \\ 324 \end{array}$ $\begin{array}{c} 321 \\ 45 \\ 323 \\ 47 \\ 324 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 57 \end{array}$ $\begin{array}{c} 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		320	oxygens respectively [Fig. B2a3].
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		321	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Figure B2a3 Figure B2a3 $PA5 O - P O O O O O O O O O O O O O O O O O$	43	322	
323 Figure B2a3 46 324 48 49 50 51 52 53 54 55 56			
47 324 48 49 50 51 52 53 54 55 56 57		323	Figure B2a3 $0-P_{1}$
48 49 50 51 52 53 54 55 56 57		324	
50 51 52 53 54 55 56 57			
51 52 53 54 55 56 57			
53 54 55 56 57	51		
54 55 56 57			
55 56 57			
56 57			
57 ^f For simplicity, the designation omits the prime symbol from e.g. O2A3'.	56		
		f	^f For simplicity the designation omits the prime symbol from e.g. $O2A3'$

1		
2	325	b) In each non-terminal phosphoryl group (PO ₃), the bridging oxygen bonding PN to P(N+1)
3 4	326	(where $N = A$, B, etc.) in the chain should be numbered O3Nx, where x designates the
5	327	parent oxygen of the polyphosphate chain. Hence in ppGpp (PDB ligand: P4G), PA5 is
6	328	joined to PB5 by O3A5, and PA3 is joined to PB3 by 0000
7 8	329	O3A3 [Fig. B2b]. $PB5 P P PA5 \stackrel{5'}{\rightarrow} O Gua$
9	330	
10	550	O3A5 3'
11		O3A3 OH
12 13	331	
14	332	$\mathbf{Figure B2b} \qquad \begin{array}{c} \mathbf{O} - \mathbf{P} \\ \mathbf{PB3 } \mathbf{O} \end{array} $
15 16	552	0°
10	222	
18	333	
19 20		
20 21	334	B3. Terminal Phosphates in Molecules with Multiple Phosphate Chains
22	335	This requires a two-symbol code to describe (i) the identity of the oxygen relative to its congeners
23 24	336	and (ii) the identity of the parent phosphorus atom (v.s.). The three oxygens of a terminal
24 25	337	phosphoryl group (PO ₃) are pro-pro-chiral. They can thus be labelled according to CIP rules in
26	338	those (rare) cases where they are identified by isotopes ^{16}O , ^{17}O , and ^{18}O .
27 28	339	a) In cases of a terminal phosphoryl oxygen being replaced by e.g. sulfur, fluorine, or
29	340	nitrogen, the remaining two terminal oxygens are prochiral and can be appropriately
30	341	identified by CIP chirality rules. Thus, in
31 32	342	GTP γ S (PDB ligand: GSP), the sulfur has $01G$ 0 0 0
33	343	priority to be labelled S1G and the oxygens are $0, 1$ $0, 0$ 0
34 35	344	labelled O2G (<i>pro-R</i>) and O3G (<i>pro-S</i>) $S_{PG} O_{PB} O_{PB} O_{PA} O_{PA} O_{PB} O_{PB} O_{PA} O_{PB} O$
36	345	respectively [Fig. B3a].
37	346	Figure B3a HO OH
38 39	347	
40	210	b) Prochirelity identification can be applied if one of the three avegans is promoted relative to
41	348	b) Prochirality identification can be applied if one of the three oxygens is promoted relative to the other two. In the context of any promotion and productides, such promotion can often be
42 43	349	the other two. In the context of enzyme-bound nucleotides, such promotion can often be
44	350	identified by co-ordination of the terminal phosphate to a protein-bound metal ion, typically
45	351	magnesium. Thus for ATP bound in many kinases, the γ -phosphate is often coordinated
46 47	352	from one of its three oxygens to magnesium. This oxygen is thus designated O1G. The
48	353	remaining oxygens are now prochiral and can be identified in the priority series $O3B > O16 > O26 > O26 = O10 = 1$
49 50	354	O1G > O2G > O3G. CIP rules then designate O2G as the <i>pro-R</i> oxygen and O3G as the
50 51	355	<i>pro-S</i> oxygen, as illustrated for ATP bound
52	356	in phosphoglycerate kinase
53	357	[Fig. B3b; PDB entry: $1VJC$].
54 55	358	
56	359	Figure B3b O_{O3B} HO OH
57 58	360	i igui e ben a de la compañía de la
59	200	
60		13

 c) In the absence of metal ion coordination to the terminal phosphate, hydrogen bond donation from amino acids in the protein provides a means of priority identification for O1N. Hydrogen bonds are considered only if they have a length < 3.0 Å; priority will be given according to donor atom XH priority with CIP rules (S > O > N). Hydrogen bonding to the amino acid of lowest primary sequence number will identify O1G in ATP, etc. If there is still ambiguity in the assignment, then backbone NH takes priority over sidechain NH.^g This selection makes O2G and O3G prochiral and hence they can be assigned by application of CIP rules.^h Thus in human bisphosphoglycerate mutase (PDB entry: **2A9J**), the 3-phosphoglycerate has phosphoryl oxygen coordination from Arg¹⁰⁰ and Arg¹¹⁶ to O1A, from Arg¹¹⁷ and Asn¹⁹⁰ to O2A, and from Arg¹¹⁷ to O3A [Fig. B3c1]. After O1A is promoted by amino acid linkage priority, O2A and O3A are assigned by prochirality rules (O3 > O1A > O2A > O3A).

In the case of human protein tyrosine phosphatase **ptpn5** (C472S mutant), the tyrosine phosphate moiety is coordinated to residues in the loop Ala474-Arg478 (PDB entry: **2CJZ**). Consideration of hydrogen bonds ≤ 3.0 Å shows oxygen O1P coordinated to Gly⁴⁷⁶ and Ile⁴⁷⁷; oxygen O2P coordinated to Ala⁴⁷⁴ and Arg⁴⁷⁸; and oxygen O3P coordinated to Arg⁴⁷⁸. Thus we can now designate O1A as being coordinated to the lowest numbered amino acid, Ala⁴⁷⁴ (it is labelled as O2P in **2CJZ**).^j The oxygen atom priority is O4' > O1A > O2A > O3A, in which O2A and O3A are designated by CIP rules for prochirality as shown (O2A being *pro-R* and O3A is *pro-S*) [Fig. B3c2]. (**NB** There are hydrogen H-bonds from Ser⁴⁷²(OH) to O2P and O3P but both are longer than 3.0 Å and thus are ignored).



^g In determining priorities, coordination to an isolated water is ignored, because the presence or absence of a particular isolated water in a crystal structure can be a function of the structural resolution achieved, which makes water a variable object. However, waters coordinated to metal ions can be used.

^h For CIP Rules see the IUPAC Blue Book p92. For the use of *pro-R* and *pro-S* see "Basic Terminology of Stereochemistry (IUPAC Recommendations 1996)" *Pure Appl. Chem.* **68**, 2193-2222 (1996).

^j An Appendix has been added on a simple introduction to the use of CIP Rules on prochirality and the assignment of *pro-R* and *pro-S* descriptions.

1		
2	393	B4. Terminal Phosphates in Molecules with Multiple Phosphate Chains
3 4	394	This requires a three-symbol code to describe (i) the identity of the oxygen relative to its
5	395	congeners and (ii) two symbols for the identity of the parent phosphorus atom (v.s.).
6 7	396	a) The rules described above (section B3) for single phosphate chains will apply with the
8	397	addition of a descriptor symbol designating the point of attachment of that chain to the
9 10	398	parent molecule. Thus, for human aldolase reductase (PDB entry: 2J8T) the bound NADP ⁺
11	399	(PDB ligand: NAP) has the oxygens of PA2 1×262
12	400	coordinating no metal and hydrogen $Lys^{262} \bigoplus_{NH_2} \xi$
13 14	401	bonded to Lvs^{262} Ser ²⁶³ Val ²⁶⁴
15	402	Thr ²⁶⁵ and Arg ²⁶⁸ Thus the $1/1/10^{16}$ OH $1/10^{16}$ H
16	403	oxygen coordinating Ser ²⁶³ takes $O_{PB5} O_{PA5} O_{PA5} O_{O2A2} O_{O2} O_{O2A2} O_{O3A2} O_{O3A2$
17 18	404	priority and is named O1A2. The $\int \int \int$
19	405	oxygen atom priorities for PA2 are thus O2
20 21	406	> O1A2 > O2A2 > O3A as shown [Fig. B4a] Ade OH-O'
22	407	
23	407	
24 25	408	Figure B4a H ₂ N
26	409	1121
27 28		D5 Included Sharely Discourse of an
20 29	410	B5. Isolated Single Phosphates
30		
31 32	411	This requires prioritisation of two oxygens by their coordination features thus allowing the
33	412	third and fourth oxygens to be assigned their prochirality by CIP rules.
34	413	a) Isolated phosphate with no metal ions. In a structure of the small G protein Rab-5c with
35 36	414	GDP and Pi ligands in the catalytic site (PDB entry: 1Z0D), the isolated phosphate (PDB
37	415	ligand: PO4) is not metal coordinated. Thus the relative priorities of its 4 oxygens are
38 39	416	determined by H-bonds to amino acid residues. Ignoring H-bonds ≥ 3.0 Å, the structure
39 40	417	identifies O1 coordinated to Ser ³⁰ (OH), O2 coordinated to Gly ⁷⁹ (NH), and O3 coordinated
41	418	to Lys ³⁴ (NH ₃ ⁺). O4 is only coordinated to ligands at distances \geq 3.0 Å (<i>oxygens numbered</i>
42 43	419	as in 1Z0D) (Fig. B4b left). Hence, the priority order is $O1 > O3 > O2 > O4$. Assigning the
44	419	top two oxygen priorities as O1P and O2P respectively (Fig. B4b right) makes the two
45	420	remaining oxygens a prochiral pair. Promoting the 'front' oxygen to ¹⁸ O gives phosphorus
46 47	421	S chirality, thus identifying it as <i>pro-S</i> . By a similar analysis, the 'rear' oxygen is <i>pro-R</i> .
48	422	Hence, the rear oxygen can be designated O3P and the front oxygen is O4P (Fig. B4b right)
49 50	423	(NB The PDB file
50 51	424 425	Ser ³⁰ OH Leu ⁸⁰ Ser ³⁰ OH Leu ⁸⁰
52		$\begin{array}{c c} \text{(In B T In E T D B file} \\ assigns PA and PB to \\ the GDP ligand \\ \end{array} \qquad \qquad$
53 54	426	assigns PA and PB to the GDP ligand). Lys^{34} NH_3 O $P_{IIIII}O$ Gly^{79} Lys^{34} NH_3 O RH_3 O O RH_3
54 55	427	$Lys^{34} \longrightarrow 0^{79} Gly^{79} Lys^{34} \longrightarrow 0^{79} Gly^{79} Gly^{79}$
56	128	Figure B4b
57 58	428	rigure D4D
59		
60		15 0 40757 December 71 meter Deck NO (040) 405 0700
		P.O. 13757, Research Triangle Park, NC (919) 485-8700

 IUPAC

462	b) There may be less common species where there is no metal ion coordinating the
463	trifluoroberyllate. In these, the hydrogen bonding priorities set out in B3c can be applied.
105	unitacio con finato. In anose, ano ngarogen containg prioritaes set cat in Dee can ce appried.
1.6.4	
	c) In an example of multiple metal coordination, and where the distances of separation from
	both metals to fluorine are less than the sum of the two van der Waals radii, the
466	coordinating metal with higher atomic number will take priority.
167	
407	
468	C2. Trigonal Bipyramidal Phosphate Transition State Analogues – Trifluoromagnesates
469	and Aluminium Trifluorides
470	This many income the second of the describes (i) the identity of the fluencing velocity to its
	This requires a two-symbol code to describe (i) the identity of the fluorine relative to its
471	congeners and (ii) the identity of the core metal ion.
470	
	a) For AlF ₃ (PDB code: AF3), MgF ₃ (PDB code: MGF), and ScF ₃ tbp transition state
	analogues (TSA), the three fluorines are invariably equatorial with two axial oxygen
474	ligands to the 5-coordinate metal. Priority identification can be applied when one of the
475	three fluorines is promoted relative to the other two and directional priority for the two
476	axial ligands is established. In the context of enzyme-bound trifluoromagnesates and
	aluminates, such promotion is readily identified by closest proximity of one fluorine to a
	protein-bound metal ion, typically a catalytic magnesium. The direction of viewing is
	determined by CIP priority of one of the apical oxygens over the second and viewing
	down the priority O-metal bond. Thus in the small G protein, Ras (PDB entry: 10W3),
	MgF ₃ is axially coordinated to GDP via O3B and to a water, and CIP priority gives
482	$O3B > OH_2$. Thus the fluorine coordinated to the catalytic magnesium is designated
483	F1Mg. F2Mg and F3Mg are then identified in a clockwise progression from F1Mg when
484	viewed from O3B to Mg [Fig. C2a]. ¹
485	Ma
486	
487	
	 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

Figure C2a

¹ NB These fluorines are labelled F2, F1, and F3 respectively in PDB entry: **10W3** (*Viewing indicated by* magenta arrow).

1 2	489	
2 3	490	b) In case of multiple metal ion coordination, and where both distances of separation are less
4 5	491	than the sum of the two van der Waals radii, the coordinating metal with highest atomic
6	491 492	number will take priority. In cases where two fluorines are coordinated to two equivalent
7		
8 9	493	metals, as for cAPK (PDB entry: $1L3R$) in which the tbp complex of ADP•MgF ₃ is
9 10	494	liganded to two catalytic magnesiums, F1Mg is prioritised as the fluorine coordinated to the
11	495	magnesium of higher priority. Metal priority shall be determined by its amino acid
12	496	coordination (see Section B3c). Viewing priority is determined by $O3B > O-Ser^{21'}$. In
13 14	497	cAPK, one catalytic magnesium is coordinated to Asn^{171} , to Asp^{184} , and to a water; the
15	498	second magnesium is coordinated to Asp ¹⁸⁴ and to two waters. Hence, the magnesium
16	499	linked to Asn^{171} has priority and is thus coordinated Asn^{171} Asp^{184}
17 18	500	to F1Mg; F2Mg and F3Mg follow in clockwise
19	501	progression [Fig. C2b]. $NH_2 O O O O O O O O O O O O O O O O O O O$
20	502	Mg1 Mg Mg OH ₂
21 22	503	Mg2
23	504	
24		Ade O P P $Ser^{21'}$
25		
26 27	505	Figure C2b HO OH F_{F3Mg}
28		roing
29	506	
30 31	500	
32		
33	507	c) In the absence of fluorine coordination to a metal, hydrogen bonding to amino acids can be
34 35	508	used to determine fluorine priority (see section B4c). ^m
36	508	used to determine informe priority (see section D4C).
37		
38 39	509	d) A significant number of structures in the PDB (>24) have a trigonal bipyramidal complex
40	510	assigned as tetrafluoromagnesate ⁽²⁻⁾ (PDB ligand: MF4). The best resolved of these (PDB
41		entry: 1WPG , 2.30 Å resolution) has electron density and bond lengths that can be equally
42 43	511	
43 44	512	well assigned as a regular Asp ³⁵¹ -CO ₂ ⁻ .MgF ₃ ⁻ .OH ₂ complex. This can be labelled as for C_{22} (shows) using a galaxies to a set latin Ma to give priority to E1 \mathbb{R}
45	513	C2a (above) using coordination to a catalytic Mg to give priority to F1. ⁿ
46 47	514	
47		
49		
50		
51 52		
53		
54		
55 56		^m No example of a tbp complex of AF3 or MGF (PDB ligand identities for AlF ₃ and MgF ₃ ⁻ respt.) having a coordinating divalent metal at good resolution has been lodged in the PDB prior to December 2015).
57		
58		ⁿ No analytical work has been yet presented to identify the number of fluorides, <i>e.g.</i> by ¹⁹ F NMR.
59		

ⁿ No analytical work has been yet presented to identify the number of fluorides, *e.g.* by ¹⁹F NMR.

1 2		
3 4	515	C3. Octahedral phosphate transition state mimics
4 5	516	This requires a two-symbol code to describe (i) the identity of the fluorine relative to its
6	517	congeners and (ii) the identity of the core metal ion.
7 8	517	congeners and (ii) the identity of the core metal ton.
9 10	518	a) For tetrafluoroaluminate, AlF_4^- octahedral TSA analogues (PDB ligand: ALF), the four
11	519	fluorines are invariably equatorial with two trans-oxygen ligands to the 6-coordinate
12	520	aluminium. Priority identification can be applied by promoting one of the four fluorines
13 14	521	relative to the other three. In the context of enzyme-bound tetrafluoroaluminates, such
15	522	promotion is invariably identified by closest proximity of one fluorine to a protein-bound
16	523	metal ion, usually magnesium. The direction of viewing is determined by CIP priority of
17 18	524	one of the apical oxygens over the second and viewing down the priority O-metal bond.
19	525	Thus in the structure of β PGM (PDB entry: 4C4R) the fluorine coordinated to the catalytic
20	526	magnesium is identified as F1Al while F2Al, F3Al, and F4Al follow in clockwise
21 22	527	progression viewed from $Asp^8 \Box d\Box$, which has priority
23	528	over glucose O6. (NB The corresponding PDB
24 25	529	designations are F2, F1, F3, and F4
25 26	530	respectively) ^p [Fig. C3a].
27		
28 29	531	
23 30		Figure C3a HO F3AI F2AI
31	532	Figure C3a HO
32 33		
34	533	b) There are (DDP to 2015) > 2 examples of established relatifly a really minute complexes having
35 36	535 534	b) There are (PDB to 2015) \geq 3 examples of octahedral trifluoroaluminate complexes having three fluorings in equatorial positions with the fourth equatorial ligand identified as evugen
37	535 535	three fluorines in equatorial positions with the fourth equatorial ligand identified as oxygen.
38		An example of this is the transition state analogue for enzymatic hydrolysis of dUTP (PDB entry: 4DL 9). A vial priority for viaving is established by the CIP precedence of
39 40	536 537	entry: 4DL8). Axial priority for viewing is established by the CIP precedence of $O3A > OWat^{401}$ [Fig. C3b]. One fluorine is coordinated to two catalytic magnesiums and so
41		OSA > Owat [Fig. CS0]. One informe is coordinated to two catalytic magnesiums and so
42	538	is designated F1B. A progression viewed in the priority direction then identifies the
43 44	539	bridging oxygen as the second priority ligand, O1B, which F^{2D} and F^{2D} as we let us the electronic direction of F^{3B} F2B
45	540	with F2B and F3B completing the clockwise $dUrd - O$ F^{3B} F
46	541	equatorial sequence.
47 48		
49		
50	5.40	$\begin{array}{c} \text{GSA} > \text{Owat} [\text{Fig. C3b}]. \text{ One fluorine is coordinated to two catalytic magnesiums and so}\\ \text{is designated F1B. A progression viewed in the priority direction then identifies the}\\ \text{bridging oxygen as the second priority ligand, O1B,}\\ \text{with F2B and F3B completing the clockwise}\\ \text{equatorial sequence.} \qquad \qquad$
51 52	542	Figure C3b
53		
54 55		
55 56		
57		
58 59		^p In cases where there are no other fluorines in the system, the Al designation may be omitted.
60		

2 3	543	c)	In case of multiple metal coordination, the coordinating metal with highest atomic number
4	544		will take priority, where the distance of separation is less than the sum of the two van der
5 6 7	545		Waals radii (as for C2b above).
8	546	d)	In the absence of fluorine coordination to a metal, hydrogen bonding to amino acids will be
9	547		used to determine fluorine priority. Thus in the fructose 2,6-bisphosphatase reaction of the
10 11	548		enzyme PFKFB3, an AlF ₄ ⁻ complex with His ²⁵³ N \square \square has been described (PDB entry:
12	549		3QPW . Fig. C3c). This octahedral complex is completed by water coordination <i>trans</i> to the
13	550		histidine nitrogen. The four fluorines are coordinated F^1 to water, F^2 to Arg^{252} and Gln^{388} ,
14 15	551		F^3 to His ³⁸⁷ and water, and F^4 to Arg ²⁵² and Asn ²⁵⁹ (<i>this fluorine numbering in superscript</i>
16	552		is as used in 3QPW). As F^2 is coordinated to Ne of Arg ²⁵² and F^4 is coordinated to Arg ²⁵² -
17 18	553		N \Box 1, F ² takes priority as its H-bonding is to the nitrogen nearer to C α of the lowest
19	554		numbered coordinating amino acid. Hence F1Al is coordinated to Arg ²⁵² and Gln388 and
20	555		the progression to F2AI, F3AI, and F4AI proceeds clockwise as viewed from the water
21 22	556		apex of the octahedral complex (CIP priority
23	557		is $O > N$, magenta arrow) [Fig. C3c]. ^q
24			H F3AI Asn ²⁵⁹
25 26	558		
27			His ²⁵³ N, ,, , , , , , , , , F, F4AI
28 29	559		
30			
31 32	560		
32 33			
34	561		Figure C3c
35 36	562		His ³⁸⁷ Gln ³⁸⁸ Arg ²⁵²
37	563		
38 39	564		
40	504		
41 42			
43			
44			
45			
46 47			
48			
49			
50 51			
51 52			
53			

^q Coordination to an oxygen of an isolated water is ignored. This is because the presence or absence of water in a PDB structure may be a function of the resolution of the structure, and therefore may vary from one structure to another of the same protein-ligand complex. Also note the use of PDB style numbering for atoms in amino acids (which avoids the use of Greek symbols).

 IUPAC

565	6.	RECOMMENDATIONS FOR LABELLING VANADATE AND TUNGSTATE
566		ANALOGUES OF PHOSPHATES

568 C4. Vanadates

569 Orthovanadate, VO_4^{3-} is encountered as an analogue of phosphate in a variety of forms. They are 570 invariably trigonal bipyramidal and thus mimic a five-coordinate phosphoryl transfer process.

a) Monosubstituted Vanadate(V). In isolation, vanadate (PDB ligand: VO4) can mimic the transition state for phosphoryl group transfer as a trigonal bipyramidal complex substituted by either one or two axial oxygen ligands that represent nucleophile and leaving group. A typical example is the Xac nucleotide pyrophosphatase/phosphodiesterase structure (PDB entry: **2GSO**) where the vanadate is axially coordinated to Thr⁹⁰. The three equatorial oxygens are numbered O1V, O2V, and O3V with the axial oxygen O4V being *trans* to the hydroxylic oxygen of Thr⁹⁰ [Fig. C4a]. The equatorial oxygen coordinated to two zinc ions takes priority and is O1V. The direction of viewing is determined by the priority Thr⁹⁰ oxygen > OV4 (magenta arrow). Thus a clockwise progression identifies O2V at the front and O3V at the rear of the trigonal planar array. **Figure C4a b)** Disubstituted Vanadate. A transition state analogue complex for phosphorylation of glucose 1-phosphate on O6 by $\Box \alpha$ -phosphoglucomutase has vanadate linearly coordinated by oxygen-3 of Ser¹¹⁶ and by oxygen-6 of glucose 1-phosphate (PDB entry: 1C4G). CIP priority analysis gives O6G > O3S. The three equatorial oxygens take priority from O1V by its coordination to cobalt, substituting for the native catalytic magnesium. Assignment of O2V and O3V follows a clockwise progression Ser¹¹⁶ when viewed from O6G (magenta arrow) OPO₃ **O**3V [Fig. C4b]. NH 035 N ····OH **O6G** HÔ 7. ОH **Figure C4b**

1		
2	596	For the nucleoside-diphosphate kinase from B. burgdorferi, a vanadate transition state
3 4	597	complex links ADP and His ¹³⁴ as axial ligands (PDB entry 4DZ6). There is no catalytic
5	598	metal to coordinate the three equatorial oxygens. Thus, oxygen H-bonded to Lys ¹³ takes
6	599	priority as O1V over oxygen O2V H-bonded to Arg ⁹⁴ , while O3V is not H-bonded to any
7 8	600	amino acid. These assignments are in accord with those in the PDB entry.
8 9	000	uninto dola. These assignments are in decord with those in the TDD endy.
10 11 12	601	
13	602	c) Trisubstituted Vanadate. Tyrosyl-DNA phosphodiesterase (Tdp1) is a DNA repair
14	603	enzyme that catalyzes the hydrolysis of a phosphodiester bond linking a tyrosine residue to a
15 16	604	
16 17		DNA 3'-phosphate. Orthovanadate is central in a transition state analogue structure in which
18	605	vanadium is linked to the tyrosine oxygen, to the 3'-oxygen of the scissile nucleotide, and to
19	606	His^{262} of the enzyme (PDB entry: 1RFF). Axial ligand priority is Tyr-O > HisN \Box 2.
20 21	607	Equatorial ligand priority is assigned to Thd-O3'.
22	608	Hence O2V and O3V follow in a clockwise His^{263} , N , O^{O3V} , Tyr
23	609	progression when viewed from the Tyr-oxygen
24 25	610	[Fig. C4c].
26	611	
27 28	612	
20 29	613	Figure C4c
30 31 32 33	614	R
34	615	c) Cyclic Trisubstituted Vanadate. Trisubstituted vanadate provides a transition state
35	616	analogue structure for hairpin ribozyme cleavage of a phosphodiester (PDB entry: 1M5O).
36 37	617	The axial O2' has CIP priority over the axial O5'. Priority in the three equatorial oxygens is
38	618	taken by the ribose O3' leading to assignment
39	619	of Q1V followed by Q2V in a algolarying
40 41	620	progression [Fig. C4d].
41	020	progression [1 ig. $C+u$].
43	(01	
44	621	Gua O5' O3' O3' Ade
45 46	622	
47 48	623	Figure C4d
49 50 51	624	
52 53 54	625	
55 56 57	626	
58 59 60	627	22

1 2	628	
3 4 5	629	C5. Tungstates
6 7 8 9 10	630 631 632	Tungstate(VI) ion, $WO_4^{=}$ (PDB ligand code: WO4) is a mimic of tetrahedral phosphate in a small but significant range of structures in the PDB. In such systems, two oxygens need to be assigned priority to enable the remaining two to be assigned by prochirality rules.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	 633 634 635 636 637 638 639 640 	b) Isolated Tungstate(VI) with two metal ions. In a structure of purple acid phosphatase (PDB entry: 3KBP), an isolated tungstate(VI) ion mimics phosphate. It is coordinated both to zinc and to iron. Zinc, with atomic number 30, takes CIP priority over iron (atomic number 26) and so the two tungstate oxygens coordinated to these metal ions are labelled O1W and O2W respectively (Fig. C5a). The remaining two tungstate oxygens are now prochiral and can be labelled O3W and O4W by CIP rules described above.
26 27 28 29 30 31	641 642	Figure C5a Asp ¹⁶⁴ FeO O2W O4W
32 33 34 35	643 644	Isolated Tungstate(VI) with one metal ion . In a structure of a tungstate complex of CheYN59D/E89R, the isolated tungstate(VI) ion is coordinated to manganese and several
36 37 38	645 646 647	amino acids (PDB entry: 3RVS). Thus O1W is identified by its coordination to tungsten. Coordination to oxygen gives precedence over coordination to nitrogen. Coordination to oxygen is only considered if the distance of the heavy atoms ≤ 3.0 Å (see Section B3c).
39 40 41 42	648 649	Hence O2W is coordinated to Asp59 and takes precedence over the third oxygen that is coordinated to Thr87. The remaining two tungstate oxygens are now prochiral and can be
43 44 45	650 651	labelled O3W and O4W by CIP rules described above (Fig. C5b).
46 47 48 49	652	Asp ⁵⁷ 0 3.16Å 0 02W
50 51 52	653	Thr ⁸⁷ O ² O ^{3W} O
53 54 55	654 655	Figure C5b Asp ⁵⁹
56 57 58	656	
59 60		P.O. 13757, Research Triangle Park, NC (919) 485-8700 23

1

1 2		
3	657	Isolated Tungstate(VI) with no metal ion . For an isolated WO ₄ ⁻ species, a similar
4 5	658	procedure of prioritisation by amino acid coordination can be used to identify O1W and
6	659	O2W. Then O3W and O4W can be assigned by the prochirality procedure. Thus in a
7	660	structure of Varsinia antarocolitica PTPase
8 9	661	complexed with tungstate (PDB entry 3F9A) Ala ⁴⁰⁵ O
10	662	an isolated tungstate is encircled by a loop of Gly^{406} N H Arg^{404}
11	663	amino acids 404-409 with three of its oxygens $O = \bigcirc O$
12 13	664	
14	665	coordinated to nitrogens. As isolated water coordination is ignored, ^r priority is given to Val^{407}
15	666	
16 17	667	coordination from Val ⁴⁰⁷ to O2W. Honos
18	668	O3W and O4W are now prochiral and can be Gly^{408} NH Arg^{409}
19	669	assigned using CIP rules (Fig. C5c). ¹
20 21	00)	
22		
23 24	670	Figure C5c
24 25	c - 1	
26	671	
27 28	672	c) Tungstate(VI) coordinated to a substrate ligand. A compound example of tungstate
.0 29	673	as a dual analogue of phosphate is found in the structure of a protein of the histidine triad
0	674	family in which adenosyl 5'-ditungstate (PDB ligand: ADW), an analogue of ADP, is
81 82	675	coordinated to His ¹¹² (PDB entry: 1KPE). This situation calls for labelling of both
33	676	
84		tungstens and of seven oxygens, since the first tungstate is a trigonal bipyramidal TSA of $P\alpha\Box$ and the second tungstate is a tetrahedral analogue of P β of ADP. Tungsten WA is
35 36	677 678	equatorially linked to the adenosyl 5'-oxygen and axially linked to His ¹¹² -N \Box 2. As in the
37	679	case of polyphosphates (Section B1c), the bridging oxygen to WB is designated O3A.
8		
9 0	680 681	That enables assignment of the two prochiral equatorial oxygens as O1A and O2A (when viewed in the avial direction O2A to Na2). For WP, avvian O2A has highest CIP priority.
1		viewed in the axial direction O3A to Ne2). For WB, oxygen O3A has highest CIP priority
2 3	682 682	because it is coordinated to WA. The oxygen coordinated to Gly ¹⁰⁵ takes precedence over the oxygen coordinated to Ser ¹⁰⁷ and
3 4	683 684	the oxygen coordinated to Ser ¹⁰⁷ and is therefore identified as O1B. This $O^{1A}O_{C}O^{02A}$
5	684 685	
6 7	685	enables the prochiral pair of $N = N - N - N - O - O - O - O - O - O - O -$
8	686	O2D as a basis (Eig. $O54$) His ¹¹² O
9	687	$5' \bigcirc 05' \qquad 0 \bigcirc 0 \longrightarrow HO \longrightarrow OSH $
0 1	688	Adenosyl O2B O3B
52		HN — Ser ¹⁰⁷
53	689	Figure C5d X O
54 55		
56		
57 59		^r Note that once coordination has reduced the number of non-prioritised oxygens to two, this pair is assigned by application of CIP rules on prochirality.
58 59		assigned by application of CIP rules on prochirality.
50 50		

Note that once coordination has reduced the number of assigned by application of CIP rules on prochirality.

3 4

5

6

7

8

9

10

11 12

13

18 19

20

23

24

35

36

37

690	7.	SUMMARY
070		Seminit

The recommendations presented here have been developed to describe molecules derived from orthophosphoric acid and its derivatives, analogues, and transition state analogues. In our hands, they have worked well for the most demanding species we have examined, e.g. **C3c** and **C5d**. However, we recognise that they may be equally relevant to other species with tetrahedral geometry, such as sulfates and sulfonamides, or with tbp or octahedral geometries. We also recognise that there may be existing, or as yet non-existant, structures that could require an extension of these recommendations, and we are receptive for advice on such problems.

14 698 15

16 699 17

700

701 8. REFERENCES AND NOTES

- ²¹ 22 702 [1] J. R. Knowles. Annu. Rev. Biochem. **49**, 877-919 (1980).
 - 703 [2] G. Lowe. Accts Chem. Res. 16, 244-251 (1983).
- 704 [3] R. S. Cahn, C. Ingold, V. Prelog. (1966). Angew. Chem. Internat. Ed. Engl. 5, 385-415
 705 (1966).
- 706 [4] G. A. Orr, J. Simon, S. R. Jones, G. J. Chin, J. R. Knowles. *Proc. Natl. Acad. Sci. USA* 75, 2230-2233 (1978); K-F. Sheu, P. A. Frey. *J. Biol. Chem.* 253, 378-380 (1978); R. L. Jarvest, G. Lowe. *J. Chem. Soc. Chem. Commun.* 364-366 (1979).
- ³³₃₄ 709 [5] S. R. Jones, L. A. Kindman, J. R. Knowles. *Nature* **275**(5680), 564-565 (1978).
 - 710 [6] M. W. Bowler, M. J. Cliff, J. P. Waltho, G. M. Blackburn. New J. Chem. 34, 784-794
 711 (2010).
- ³⁸ 712 [7] S. C. Kamerlin, P. K. Sharma, R. B. Prasad, A. Warshel. *Quart. Revs. Biophys.* 46, 1-132 (2013).

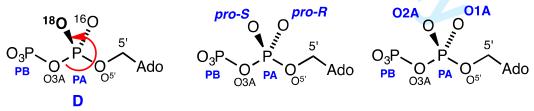
41 714 [8] N. J. Baxter, L. F. Olguin, M. Goličnik, G. Feng, A. M. Hounslow, W. Bermel, G. M. 42 43 715 Blackburn, F. Hollfelder, J. P. Waltho, N. H. Williams. Proc. Natl. Acad. Sci. USA 103, 44 716 14732-14737 (2006); N. J. Baxter, G. M. Blackburn, J. P. Marston, A. M. Hounslow, M. J. 45 717 Cliff, W. Bermel, N. H. Williams, F. Hollfelder, D. E. Wemmer, J. P. Waltho. J. Amer. 46 47 718 Chem. Soc. 130, 3952-3958 (2008); Y. Jin, M. J. Cliff, N. J. Baxter, H. R. W. Dannatt, A. M. 48

- 719 Hounslow, M. W. Bowler, G. M. Blackburn, J. P. Waltho. *Angew. Chem. Int. Ed. Engl.* 51, 12242-12245 (2012).
 51
- 52 721 [9] J. Mishra, U. S. Bhalla. *Biophys. J.* **83**, 1298-1316 (2002).
- 54 722 [10] M. A. G. Sillero, A. de Diego, E. Silles, F. Pérez-Zúñiga, A. Sillero. *FEBS Lett.* 580, 5723 5727 (2006).
- 57 724
- 58
- 59 60

[11] Nomenclature of Phosphorus-Containing Compounds of Biochemical Importance (Recommendations 1976) IUPAC-IUB Commission on Biochemical Nomenclature, Proc. Natl. Acad. Sci. USA 74, 2222-2230 (1977). [12] International Union of Biochemistry and Molecular Biology, Biochemical Nomenclature and related documents, 2nd edition, Portland Press 1992, 109-114, 256-264, and 335 [ISBN 1-85578-005-4]. (see also IUPAC-IUB Joint Commission on Biochemical Nomenclature, Pure Appl. Chem. 55, 1273-1280 (1983)). [13] Abbreviations and symbols for the description of conformations of polynucleotide chains. Recommendations 1982, Eur. J. Biochem. 131, 9-15 (1983). [14] Newsletter of the Nomenclature Committees of the International Union of Biochemistry and Molecular Biology, Eur. J. Biochem. 122, 437-438 (1982). [also ref 12, p. 265] [15] IUPAC Nomenclature of Organic Chemistry, IUPAC recommendations and preferred names 2013, Royal Society of Chemistry (2013). (a) p-93.2.4 p. 1215-1216, (b) p-93.3.3.5 p. 1222-1223, (c) p-93.3.3.7 p. 1225-1226, H. A. Favre, W. H. Powell Royal Society of Chemistry (2013). Corrections http://www.chem.gmul.ac.uk/iupac/bibliog/BBerrors.html; p432ff P-42.3-4 Phosphorus acids etc.; p915ff P-67 Phosphorus acids etc.; p992ff P-68.3 Phosphorus compounds; p1215ff P-93.2.4 Stereochemistry of phosphates etc.; p1420ff P-105 Nucleosides; p1425ff P-106 Nucleotides. [16] Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005, Royal Society of Chemistry (2005), Corrections http://www.chem.gmul.ac.uk/iupac/bibliog/RBcorrect.html which has links to later corrections. PDF http://www.iupac.org/nc/home/publications/iupac-books/books-db/book-details.html?tx wfqbe pi1[bookid]=5; p180ff, IR 9.3.3.4, octahedral coordination; p184ff, IR 9.3.3.6, bipyramidal coordination; p189ff, IR 9.3.3.8, chiral octahedral; p190ff, IR 9.3.3.10, chiral bipyramid.

IUPAC

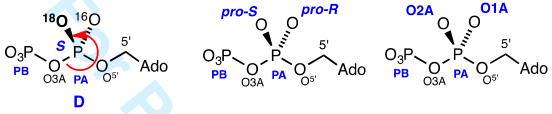
9. APPENDIX


Short procedure for identification of paired non-bridging oxygen atoms (or paired fluorine atoms) using Cahn-Ingold-Prelog Rules for prochirality (*enantiotopicity*)

1) Two non-bridging oxygens bonded to the same phosphorus are *enantiotopic* if promoting one of them from isotope-16 to isotope-18 generates the opposite enantiomer compared to promotion of the other.^s This is illustrated for methyl phenylphosphonate (Fig. X1).

Promoting the 'front' oxygen (Step **a**) gives molecule (**A**) where the phosphorus is a *stereogenic* centre and is labelled *R* in Cahn-Ingold-Prelog nomenclature. Promoting the 'rear' oxygen (Step **b**) gives molecule (**B**) where the stereogenic phosphorus is labelled *S*. This analysis is based on the CIP priority rule $O(Me) > {}^{18}O > {}^{16}O > C$; on viewing the face of the P-centered tetrahedron with the lowest priority ligand (C) at the rear (magenta arrow), a clockwise progression from high to low priority is designated *R* (as shown) and as anticlockwise progression is *S*. Because **A** and **B** are enantiomers, the two non-bridge oxygens are enantiotopic. In extension, the paired, non-bridge oxygens can be labelled (*pro-R*) for the front one (clockwise progression) and (*pro-S*) for the rear one (**C**, right).

2) Two non-bridging oxygens bonded to the same phosphorus are *diastereotopic* if promoting one of them from isotope-16 to isotope-18 generates a different diastereoisomer compared to promotion of the other.^t In the case of adenosine 5'-diphosphate (ADP), the two non-bridging paired oxygens on PA are diastereotopic. Promoting the 'front' oxygen to ¹⁸O generates a new stereogenic centre at PA (**D**; CIP label *S*) while promoting the 'rear' oxygen to ¹⁸O generates a stereogenic centre with the opposite sense at PA (**E**; CIP label *R*) [Fig. X2]. **NB.** The **D** and **E** stereoisomers are *not* mirror images because the stereochemistry of the D-ribose is unchanged. As they are *not* enantiomers they are therefore termed diastereoisomers.^u

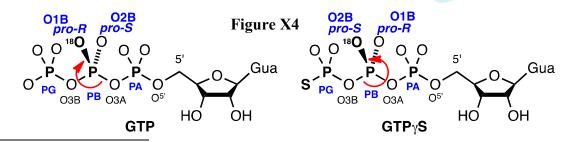


^s These oxygens are spectroscopically and chemically non-equivalent in a chiral environment.

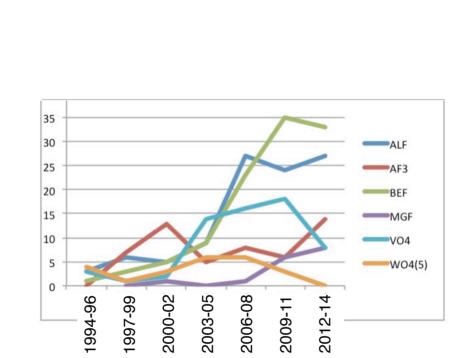
^t These oxygens are spectroscopically and chemically non-equivalent in *any* environment.

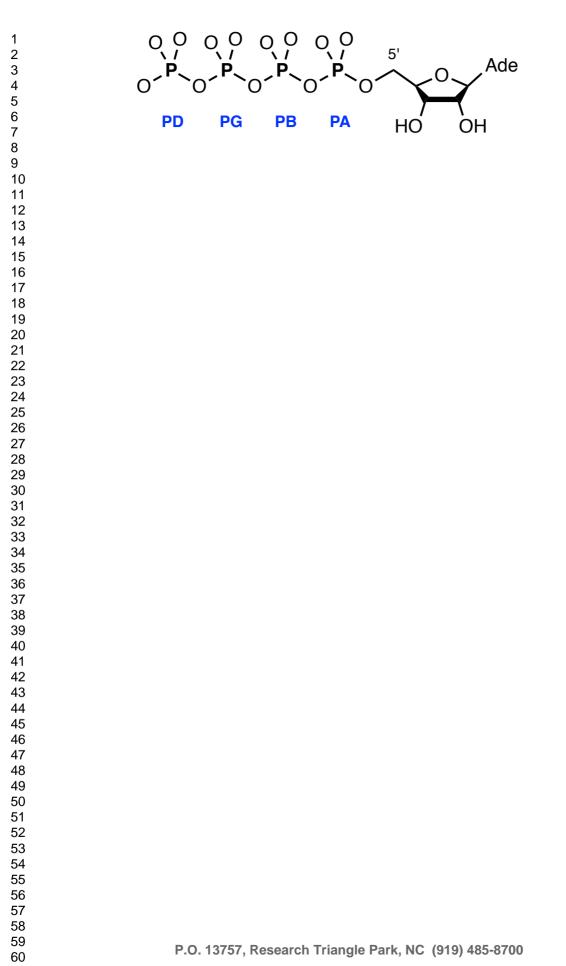
^u The term diastereoisomer simply describes all stereoisomers that are *NOT* enantiomers

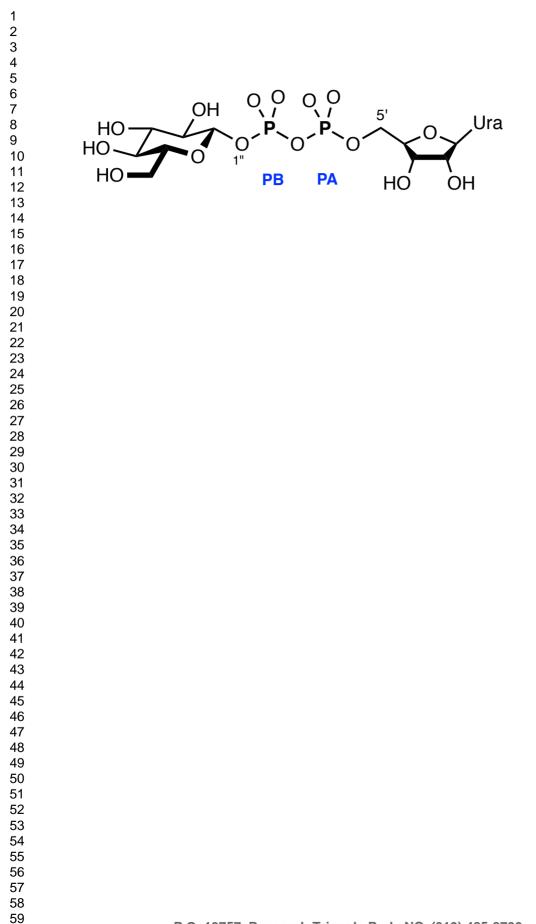
Figure X2 3) We can now apply the priority rules described in Section X1 to label the non-bridging oxygens on PA in ADP. This analysis begins with the CIP priority rule that ranks di-coordinate oxygen above mono-coordinate oxygen. Thus O5' and O3A rank above the two non-bridging oxygens. For these bridging oxygens, relative priority is determined by the next atom in the chain: priority is given to the atom with the higher atomic number. In the case of ADP, the sub-adjacent atoms along the chain are PB and C5'. Hence, O3A has priority over O5' as P has a higher atomic number than C. The CIP priority ranking is thus $O3A > O5' > {}^{18}O > {}^{16}O$ (Fig. X3).

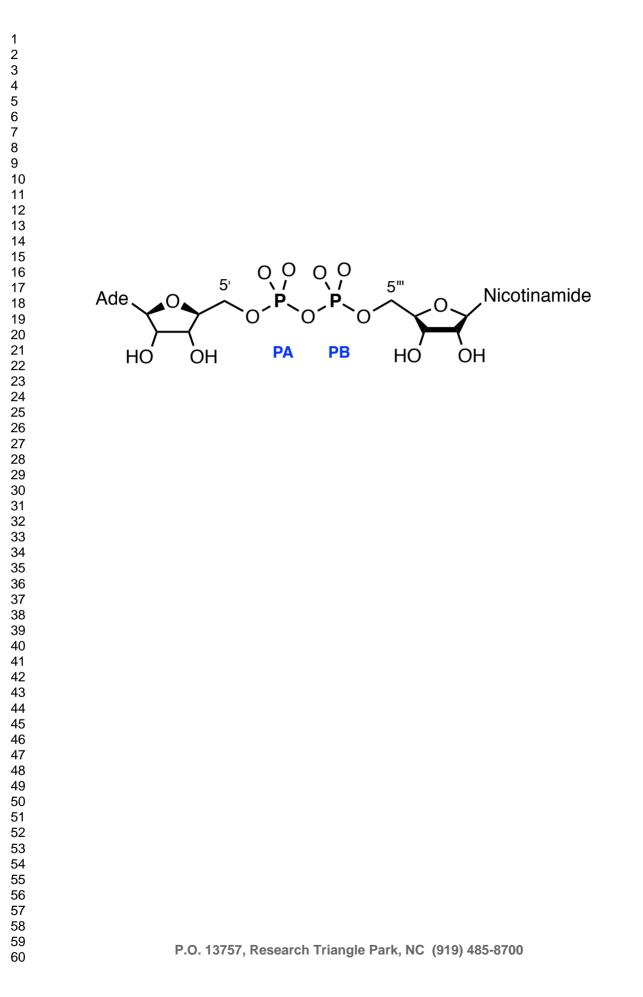


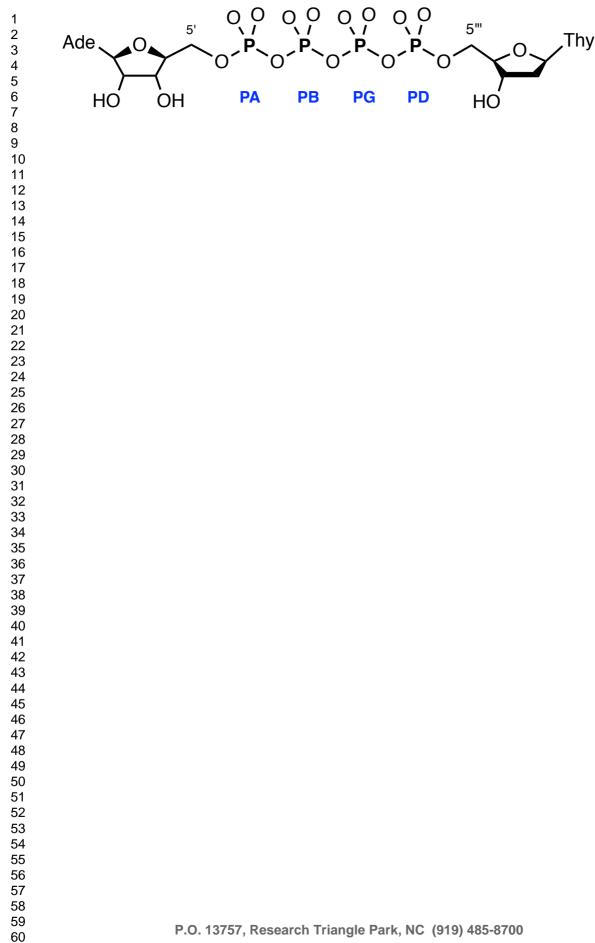
Viewing the P-centered tetrahedron in stereoisomer (**D**) from the face with ¹⁶O at the rear gives an anticlockwise progression from high to low priority ligands (Fig. X3 left) and so PA in **D** has *S* chirality. Hence, the two paired-oxygens in ADP can be labelled *pro-S* for the front one (*as its promotion to* ¹⁸O makes PA an S chiral centre) and *pro-R* for the rear one (*as its promotion to* ¹⁸O makes PA an R chiral centre) (Fig. X3 center). We can now use CIP Rule 5 that gives *R* priority over *S*. Thus the *pro-R* oxygen is labelled O1A and the *pro-S* oxygen is labelled O2A (Fig. X3 right).


4) The accurate application of the CIP rules inevitably means that there are some unexpected outcomes. For example, the stereochemistry of the non-bridging oxygens at PB in guanosine 5'-triphosphate (GTP) and in γ□□□□□□□□□□□(GSP) have opposite assignments.


For GTP, the rules for the in-chain atoms flanking PB identify O5' bonded to C5' thereby taking priority over all oxygens bonded to PG (O1G, O2G, O3G). Hence, the priority sequence for the four GTP oxygen ligands at PB is O3A > O3B and thus the front oxygen is *pro-R* and the rear oxygen is *pro-S* (Fig. X4 left). Hence the *pro-R* oxygen is labelled O1B and the *pro-S* oxygen oxygen is O2B (Fig. X4 left).




^v **NB** Labelling a non-bridge oxygen with ¹⁸O only gives it priority over the ¹⁶O oxygen. It does not change its priority relative to the non-bridging oxygens.


1 2	808	
3 4	809	By contrast, for GTPγS, the sulfur atom on PG takes CIP priority over O5' with the
5 6	810	consequence that O3A takes priority over O3B (Fig. X4 right). The result is that in
7	811	GTP γ S (as presented) the rear oxygen is <i>pro-R</i> (and thus O1B) and the front oxygen is
8	812	pro-S (and thus O2B) (Fig. 4X right). This is the opposite 3D spatial outcome compared
9 10	813	to GTP.
11 12	814	We can note that a similar situation will hold for GTP γ F but not for γ -amino-GTP.
13	815	
14 15		
16		We can note that a similar situation will hold for GTPγF but not for γ-amino-GTP.
17 18		
19		
20		
21 22		
23		
24 25		
26		
27 28		
20 29		
30		
31 32		
33		
34 35		
36		
37 38		
39		
40		
41 42		
43		
44 45		
46		
47 48		
48 49		
50		
51 52		
53		
54 55		
55 56		
57		
58 59		
59 60		

