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Abstract: Models that accurately predict solid–solute phase equilibria in aqueous electrolyte
solutions are of mounting importance for numerous industrial processes, especially those
operating at high temperatures, pressures, and concentrations. The incorporation of such
electrolyte models into process simulators is in great demand. This communication will focus
on thermodynamically consistent models that can simultaneously predict densities, heat
capacities, and apparent molar enthalpies of multicomponent electrolyte mixtures together
with activities of their constituents. Data optimization issues to be discussed include the
CALPHAD (CALculation of PHAse Diagrams) method applied to electrolyte systems and
the generation of robust models that extrapolate well outside the parameterization space.
Recent development of software suitable for the simulation of industrial processes involving
concentrated electrolyte solutions will be outlined. 

INTRODUCTION

By definition, electrolyte solutions take part in all hydrometallurgical processes. It should be recalled
that the electrolyte solutions in many of these processes are (a) highly concentrated, (b) mixed, and
(c) hot. It should also be recalled that, so far, there are no fundamental theories that permit the calcula-
tion of the thermodynamic properties of such electrolyte solutions from first principles. Thus, purely
empirical electrolyte models have often been used in the industrial context. Such models are usually
thermodynamically inconsistent; i.e., separate models describe properties like densities, heat capacities,
or solubilities independently of each other. Often, these models are only valid for rather narrow ranges
of conditions. This kind of approach makes it virtually impossible to simulate other process variants
operating at different conditions.

The incorporation in process simulators of thermodynamically consistent electrolyte models,
which are valid over the entire range of temperature, pressure, and composition of interest, is therefore
in great demand. These are usually semi-empirical models based on Gibbs energies, so that phase equi-
libria and thermodynamic properties can be calculated by appropriate differentiation performed by
Gibbs energy minimizers. Among such routines, ChemSage [1] and F*A*C*T [2] are very suitable for
thermodynamic calculations on electrolytes. ChemSage also contains an optimizer for the adjustment
of model parameters with respect to experimental data [3]. Other programs in the ChemSage family
include ChemApp [4] (a programmer’s library consisting of a comprehensive set of subroutines that
permits the calculation of complex, multicomponent, multiphase chemical equilibria and their associ-
ated extensive property balances) and ChemSheet [5] (a Microsoft Excel/ChemApp interface for ther-
modynamic process simulation). All these programs have been used in this work.

*Lecture presented at the 10th International Symposium on Solubility Phenomena, Varna, Bulgaria, 22–26 July 2002. Other 
lectures are published in this issue, pp. 1785–1920. 



Within the thermodynamics of chemical systems, the Gibbs energy, G, is an especially important
quantity. First, it is a function of the most convenient set of independent variables, temperature, T, pres-
sure, P, and the amounts, ni, of the chemical substances in the system. Secondly, it is directly related to
the equilibrium constants of chemical reactions in the system. Thirdly, at chemical or phase equilibrium
in homogeneous (single-phase) or heterogeneous (multi-phase) systems respectively, it assumes a min-
imum with respect to the compositional variables. The second and third of these statements are mathe-
matically equivalent. 

In the CALPHAD method, Gibbs energies of the individual phases are evaluated as functions of
temperature, pressure, and composition with respect to various kinds of experimental information
(phase equilibria, activities, enthalpies, heat capacities, densities, etc.). Using optimization routines,
parameters of the various models are adjusted so that they describe the excess properties of the various
nonideal phases as closely as possible. Since quaternary interactions are generally negligible, the opti-
mizations are performed on binary and ternary systems in order to correlate their thermodynamic prop-
erties, with the effect that the model equations can then be used to predict the thermodynamic proper-
ties of multicomponent systems. Although originally developed by Kaufman and others (e.g., [6]) to
perform equilibrium calculations on heterogeneous, high-temperature systems involving phases like
alloys, slags, oxides, or silicates, the CALPHAD method has been applied to electrolyte systems as
well. The literature on this subject has been reviewed recently [7]. 

The semi-empirical ion-interaction model developed by Pitzer [8] has convincingly demonstrated
a capability to correlate, in a thermodynamically consistent way, the properties of electrolyte solutions
within the experimental uncertainty of high-precision measurements over wide ranges of temperatures,
pressures, and concentrations up to saturation. However, despite its success, the Pitzer model has severe
limitations, as extrapolations outside the parameterization space are usually poor. These issues have
been addressed in a recent review [7] and will be further investigated in this communication.

PARAMETER OPTIMIZATION 

The ChemSage optimizer [3] employs a Bayes algorithm to derive model parameters with respect to a
variety of experimental data. In this method, the objective function consists of two parts: the weighted
sums of squares of the differences (i) between experimental data and calculated values and (ii) between
calculated and so-called a priori parameters. The latter may be known from previous experiments or the-
oretical considerations. Thus, the two parts of the objective functions can be weighted independently,
depending on whether more confidence is placed in the new measurements or the original model param-
eters. When no a priori information on the parameters is available, then the sum (ii) vanishes and the
Bayes algorithm becomes equivalent to the standard least squares method. The ChemSage optimizer
also calculates uncertainties and correlation coefficients of parameters.

The ChemSage optimizer is capable of adjusting Pitzer parameters for electrolytes with respect
to the following kinds of experimental data:

• osmotic coefficients and water activities;
• relative apparent molar enthalpies, enthalpies of dilution [3,7];
• (apparent molar) heat capacities [9,10]; and
• densities and (apparent) molar volumes [3,9].

HIGH-TEMPERATURE THERMODYNAMICS OF ELECTROLYTES

Standard partial molar heat capacities and volumes

The standard partial molar quantities of electrolytes show a characteristic temperature dependence
(Fig. 1a). The rapid change in Cp° as the temperature approaches 300 °C can be qualitatively explained
in terms of electrostatic interactions using the simple Born expression [13]. The behavior originates
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from the strong temperature dependence of the first and second temperature derivatives of the dielec-
tric constant of water. 

While numerous correlative equations have been proposed for partial molar quantities at infinite
dilution (see below), the revised equations of Helgeson, Kirkham, and Flowers (HKF), as embodied in
the SUPCRT92 software [12], are the best known and most comprehensive predictive equations for
these properties. For well-studied systems like NaCl(aq), the agreement between experiment and HKF
prediction is very good (Fig. 1a), whereas the accuracy of the HKF predictions cannot, of course, be
verified when high-temperature data are lacking. Recently, Sedlbauer et al. have proposed a new pre-
dictive expression for partial molar volumes of nonelectrolytes at infinite solution that is based on fluc-
tuation solution theory [14]. 

Excess Gibbs energies 

The Pitzer equations are the best-known and most precise thermodynamically consistent correlative
equations for excess thermodynamic quantities of aqueous electrolytes. However, their predictive capa-
bilities in terms of extrapolations outside the parameterization space are rather poor. Pitzer parameters
do not have a fundamental temperature or pressure dependence. Moreover, Pitzer parameters are
strongly correlated (statistically), so that it is not very useful to report their uncertainties without infor-
mation on the correlation [15]. Consequently, different sets of parameters may describe the data used
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Fig. 1 (a) Standard partial molar heat capacity of NaCl(aq) at 1 bar or saturation pressure. Line [11]; squares,
calculated with SUPCRT92 [12]. (b) Squares, circles, and triangles, Pitzer parameters for apparent molar heat
capacities of NaCl(aq) at 1 bar or saturation pressure [11], multiplied by –T 2; lines, calculated according to eq. 10.
In both cases, the boxes indicate the temperature ranges in which the quantities are reasonably constant.



for parameterization equally well, however, extrapolations to higher concentrations generally lead to
different results.

About two dozen electrolytes have been experimentally studied over wider temperature, pressure,
and concentration ranges. Various temperature functions have been proposed for the Pitzer parameters
derived in these studies, one of them is the following equation [11]

X(T) = w1 + w2(T/K)–1 + w3 ln(T/K) + w4(T/K) + w5(T/K)2 + w6(680 – T/K)–1 +
w7(T/K – 227)–1. (1)

Equation 1 has also been used [11] for standard partial molar quantities (Fig. 1a). 
For most electrolytes studied to date, high-temperature data are lacking and Pitzer parameters for

osmotic and activity coefficients, apparent molar enthalpies and heat capacities, are only available at
25 °C. This has led the present author to investigate various methods to extrapolate these 25 °C data to
higher temperatures [7]. The so-called constant heat capacity model (hereafter referred to as the CHC
model) has proven promising and will be further investigated here.

Constant heat capacity model

The Pitzer equations for excess Gibbs energies, relative apparent molar enthalpies, and apparent molar
heat capacities have been reviewed many times (e.g., [7,8]), so only the essential points are mentioned
here. The excess Gibbs energy of a binary electrolyte is given by

GE/(wwRT) = –Aφ (4I b–1) ln(1 + bI1/2) + 2νMνX [m
2BMX + m3νMzMCMX] (2)

In eq. 2, ww is the mass of the solvent, m is the molality of the solute, I is the molality-based ionic
strength, Aφ is the Debye–Hückel coefficient for the osmotic function (at 25 °C, Aφ = 0.3915 kg1/2

mol–1/2 [16]), νi and zi are the stoichiometric coefficient and the formal charge of the ion i, respectively.
The temperature-independent constant b equals 1.2 for all solutes. BMX is an ionic strength-dependent
function of three adjustable parameters β(0)

MX, β(1)
MX, and β(2)

MX (the latter is only needed for 2-2 and
higher electrolytes), while in the original Pitzer equations CMX is an ionic strength independent param-
eter. 

Standard thermodynamic procedures yield the expression for the apparent molar heat capacity

φCp = (Cp – n1 Cp1°)/n2 = Cp2° – T2{∂2(GE/T)/∂T2 + (2/T)[∂(GE/T)/∂T]}P,m/(wwm) (3)

In eq. 3, Cpi° is the standard partial molar heat capacity of component i, (the indices 1 and 2 denote sol-
vent and solute, respectively). Applying eq. 3 to eq. 2 results in

φCp = Cp2° + ν|zMzX| AJ (2b)–1 ln(1 + bI1/2) – 2νMνXRT2[mBJ
MX + m2νMzMCJ

MX], (4)

where
BJ

MX = (∂2BMX/∂T2)P,m + (2/T) (∂BMX/∂T)P,m, so that (5)

β(i)J
MX = (∂2β(i)

MX/∂T2)P + (2/T) (∂β(i)
MX/∂T)P, for i = 0, 1, 2, and (6)

CJ
MX = (∂2CMX/∂T2)P + (2/T) (∂CMX/∂T)P (7)

In eq. 4, AJ is the Debye–Hückel coefficient for heat capacity, which has the value AJ /R = 3.94 kg1/2

mol–1/2 at 25 °C [16].
It can be seen from eq. 4 that CHCs (apart from the variation with temperature of AJ) ensue when

(i) Cp2° and (ii) T2XJ
MX are temperature independent (XJ

MX denotes any Pitzer heat capacity parame-
ter defined by eqs. 6–7).

Figures 1a and 1b show that for NaCl(aq) [11], these quantities are indeed essentially constant
over wide ranges of temperature. The CHC model [7] thus seems to be a very reasonable approxima-
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tion. In this model, the temperature dependence of a Pitzer parameter is given by (the logarithmic term
ensues when the heat capacity is assumed constant)

X(T) = X0 + a(1/T – 1/T0) + b ln(T/T0). (8)

In eq. 8, X(T) denotes the interaction parameter at temperature T, X0 is its value at T0 = 298.15 K, 
a = XJT0

3 – XLT0
2, and b = XJT0

2. The constants a and b are expressed in terms of enthalpy and heat
capacity parameter values valid at T0, which are denoted as XL and XJ, respectively. If there are no heat
capacity parameters available, it is further assumed that XJ = 0 and thus a = –XLT0

2 and b = 0. Quite
frequently, only X0 parameters have been reported and neither XL nor XJ are available. Then, eq. 8
would result in X(T) = X0, i.e., the contribution of X0 to the excess Gibbs energy would be purely
entropic [as X(T) appears in the expression for GE/RT], whereas it would usually be expected to be
solely enthalpic. Thus, in this case, the convention used in the F*A*C*T database [2,17] is introduced,
namely that a = X0T0 by definition, so that

X(T) = X0T0/T, only if XL = XJ = 0. (9)

It has been demonstrated [7] that the CHC model is capable of predicting the ionic product of water in
0–6 mol kg–1 NaCl(aq) to 250 °C, the phase diagrams of NaCl–H2O and Na2CO3–H2O to at least
100 °C and relative apparent molar enthalpies for these two systems to about 60 °C. 

Beyond the constant heat capacity model

A close inspection of Fig. 1b reveals that at low temperatures, the Pitzer parameters for apparent
molar heat capacity change rapidly. Such behavior has been correlated by terms similar to the last
one in eq. 1. Therefore, following approximation for apparent molar heat capacity parameters X(T) is
proposed

T 2 X(T) = T0
2 X0 [1 – n/(T0 – TR) + n/(T – TR)] (10)

where X0 is the value of the parameter at T0 = 298.15 K and TR = 263 K. The curves in Fig. 1b were
calculated with n = 28 for β(0)J and CJ, and n = 14 for β(1)J. At the present stage, it is unclear whether
these two parameter values can be applied to other electrolytes as well, but it seems that this is a prom-
ising starting point for further investigations.

Instead of using a constant Cp2° value for 25 °C, it might be advantageous to combine eq. 10 with
a Cp2°(T) function predicted with the revised HKF equation.

APPLICATION TO AQUEOUS SODIUM CARBONATE

Hydrolysis constant

The hydrolysis of the carbonate ion

CO3
2– + H2O ⇔ HCO3

– + OH– (11)

is of both practical and theoretical interest. In the latter context, it leads, for example, to the “relaxation
effect” observed during the measurement of apparent molar heat capacities at low concentrations, cf.
the discussion and references given in [9]. In some practical applications, the influence of equilibrium
(eq. 11) on the densities of sodium carbonate solutions cannot be neglected, especially at higher tem-
peratures.

The equilibrium constant of reaction 11 can be obtained by combining the second dissociation
constant of carbonic acid and the ionic product of water. Both quantities have been measured at tem-
peratures up to 250 °C and in NaCl media up to 5 mol kg–1 in ionic strength [18,19]. Figures 2a and 2b
compare these data with predictions from the CHC model [7]. Figure 2a shows a very good agreement
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for the hydrolysis constant at infinite dilution to at least 225 °C (it has been noted in ref. [19] that plots
of log K vs. 1/T are in general close to linear for such reactions). In NaCl media, the hydrolysis con-
stant is well represented by the model of ref. [7] to about 150 °C (Fig. 2b). The curves in Fig. 2b have
been conveniently calculated with ChemSheet [5].

Phase diagram

The Na2CO3–H2O phase diagram calculated according to the CHC model of ref. [7] was extended to
higher temperatures to include the anhydrous Na2CO3(s) phase (Fig. 3). The ChemSage optimizer was
used to fit ∆fH°298 = –(1126.9 ± 1.5) kJ mol–1 and S°298 = (140.6 ± 3.9) J mol–1 K–1 to experimental
solubility data [20]. These values differ from calorimetrically determined quantities (∆fH°298 =
–(1129.18 ± 0.26) kJ mol–1, S°298 = (134.98 ± 0.84) J mol–1 K–1) [21] by about 2σ, thus indicating that
the thermodynamic data for solid and aqueous phases become increasingly inconsistent at higher tem-
peratures. 

It should be noted that it is extremely difficult to model solubilities that change only very slightly
with temperature, as rather small changes in the heat capacity or relative enthalpy of the solution have
a comparatively large effect on the temperature coefficient of solubility. Thus, the calculated solubili-
ties of Na2CO3 phases at higher temperatures are quite reasonable, given that the simple CHC model
has been used for the aqueous phase.

The dotted lines in Fig. 3 were calculated according to model 10 for temperature-dependent heat
capacities as proposed in this work. The values of the parameter n derived above for NaCl(aq) were
employed for both Na2CO3(aq) and NaHCO3(aq). Standard partial molar heat capacities of
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Fig. 2 Hydrolysis constant of carbonate, (a) at infinite dilution, (b) in NaCl media. Experimental data: circles
[18,19]. Solid lines, calculated from the CHC model with data of ref. [7]. 



Na2CO3(aq) and NaHCO3(aq) were calculated with SUPCRT92 {the 25 °C value for Na2CO3(aq) was
slightly adjusted in accordance with ref. [9]}. The model for the apparent molar heat capacities of
Na2CO3(aq) at 25 °C was based on the most recent measurements [9]. The calculated phase diagram
looks reasonable up to ca. 140 °C. The values of ∆fH°298 and S°298 for Na2CO3(s), which were fitted
to solubility data, are closer to the quantities reported in ref. [21] than those determined in conjunction
with the CHC model (see above). However, calculated solubilities deviate significantly from experi-
mental values above 150 °C, indicating increasing inconsistencies at these temperatures.

Relative apparent molar enthalpies

Polya et al. [22] have recently measured molar enthalpies of dilution of Na2CO3(aq) between m = 0.008
mol kg–1 and m = 1.45 mol kg–1 at temperatures from T = 298 K to T = 523 K at pressures of P = 7
MPa and P = 40 MPa. Polya et al. correlated their data by a Pitzer model with parameters for 298.15 K
taken from ref. [23]. In addition, they derived 13 enthalpy parameters for each pressure. 

Figure 4a shows relative apparent molar enthalpies of Na2CO3(aq) at P = 1 bar [22] compared to
values calculated according to (i) the CHC model [7] and (ii) model (10) for temperature-dependent
heat capacities proposed as described above. The agreement with the experimental relative apparent
molar enthalpy values is clearly improved, although a discrepancy that increases with temperature still
remains.

Figure 4a demonstrates the dangers inherent in the Pitzer model with respect to extrapolations
outside the parameterization space. The dotted line, calculated according to the model of ref. [22],
shows an upturn at m > 1.45 mol kg–1, which not only disagrees with other enthalpy measurements [24]
but also leads to completely incorrect solubility predictions. It is, thus, very important that models for
solubility calculations are parameterized up to saturation (or even beyond when supersaturated solu-
tions can be investigated).

Apparent molar heat capacities

The model according to eq. 10, as described in the previous section, was used to calculate apparent
molar heat capacities of Na2CO3(aq) between 25 °C and 50 °C (Fig. 4b). The φCp data of refs. [25,26]
were measured by static calorimetry. It is difficult to assess their accuracy at higher temperatures, but it
can be seen from Fig. 4b that the 25 °C data agree well with values measured recently with a Picker
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Fig. 3 Temperature-composition phase diagram of the Na2CO3–H2O system at P = 3.02 atm. Experimental data:
squares, stable equilibria; circles, metastable equilibria [20]. Solid and dashed lines, indicating stable and
metastable equilibria, respectively, were calculated from the CHC model; dotted lines, model according to eq. 10,
see text.



flow calorimeter [9]. It should be noted that the upturn in the φCp values at low molalities results from
the “relaxation effect” mentioned earlier.

It was possible to achieve almost perfect agreement with these experimental values by fitting a
heat capacity model with different temperature dependence to the data (not shown). However, it turned
out that this model is inconsistent with the temperature dependence of apparent molar enthalpy data of
ref. [22]. To reproduce experimental solubility data satisfactorily, this model also requires thermody-
namic quantities of solids, especially of Na2CO3(s), that are inconsistent with calorimetrically deter-
mined values [21].

Volumetric properties

Krumgalz et al. [27] have reviewed the literature on low-temperature density data for Na2CO3(aq) and
NaHCO3(aq) and have derived volumetric Pitzer models valid from 15 to 60 °C and 5 to 45 °C, respec-
tively. To represent the standard partial molar volumes and volumetric Pitzer parameters, Krumgalz et
al. have used a power series in temperature. Such functions generally have poor extrapolative capabili-
ties, as can be seen from the dotted lines in Figs. 5a and 5b.

Sharygin and Wood [28] have measured densities of Na2CO3(aq) and NaHCO3(aq) between 
m = 0.1 mol kg–1 and m = 1.0 mol kg–1 at temperatures from T = 298 K to T = 623 K and pressures
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Fig. 4 (a) Relative apparent molar enthalpies of Na2CO3(aq) at P = 1 bar. Experimental data: squares [24]; circles,
corrected for hydrolysis [24]; all other symbols [22]. Dashed lines, CHC model [7]; solid lines, temperature-
dependent heat capacity parameters according to eq. 10; dotted line, Pitzer parameters of ref. [22]. (b) Apparent
molar heat capacities of Na2CO3(aq). Experimental data: squares, 25 °C; circles, 35 °C; triangles, 50 °C; filled
symbols [9]; open symbols [25,26]. Lines were calculated according to model 10 as explained in the text.



of P = 10 MPa and P = 28 MPa. Their data have been used in this work to extend the model of ref. [27]
to higher temperatures and pressures. Thereby, only the standard partial molar volumes of Na2CO3(aq)
and NaHCO3(aq) were treated as pressure dependent, while the volumetric Pitzer parameters were not.
For the standard partial molar volumes, temperature functions similar to eq. 1 were used (Fig. 5a). In
analogy to the volumetric Pitzer parameters for NaCl(aq) [11], a temperature dependence similar to eq.
10 was assumed for the β(1)V parameter of Na2CO3(aq), which is shown as an example in Fig. 5b.

The hydrolysis of carbonate and its influence on Na2CO3(aq) densities are taken into account.
Figures 6a and 6b show that apparent molar volumes are well represented to at least 175 °C. It should
be noted that the HKF (SUPCRT92) predictions for V° deviate significantly from the values chosen for
the present model (Fig. 5a).
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Fig. 5 (a) Standard partial molar volume and (b) β(1)V parameter of Na2CO3(aq). Squares and dotted line, values
and functions, respectively, from ref. [27]. Circles, values obtained by extrapolation to I = 0 of data reported by
[28]. Solid lines, temperature functions proposed in this study, dashed line, SUPCRT92 [12].



CONCLUSION

Thermodynamically consistent evaluations, based on various kinds of data measured over wide ranges
of temperature, pressure, and concentration (up to saturation), have been reported only for very few
electrolyte systems. For the majority of systems, data are only available for 25 °C. In these cases, the
CHC model [7] or its extension (eq. 10) can be used to generate a temperature-dependent model that is
valid to ca. 100 °C. 

There are intermediate cases for which a few sets of different kinds of data have been measured
over limited ranges of conditions. Usually, inconsistencies exist among these data sets, as have been
identified in this work for Na2CO3(aq). The strategies outlined in this work might help to derive ther-
modynamically consistent models for such systems.

Thermodynamically consistent electrolyte models are a prerequisite for the simulation and the
optimization of hydrometallurgical processes. For such simulations, ChemApp can be favorably used
as has been demonstrated recently for the Na2SO4 → K2SO4 conversion [30]. Process operations like
heating, cooling, dissolution, precipitation, evaporation, etc. have been coded in order to calculate the
associated material streams and extensive property balances. A new feature of ChemApp permits the
incorporation of any functional form for the model parameters as defined by the user. A library of such
subroutines with reliable Gibbs energy models for water, steam, and various electrolytes has been devel-
oped.

The simulation of other industrially relevant hydrometallurgical processes is currently under
investigation.
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Fig. 6 Apparent molar volumes of Na2CO3(aq), (a) at 25 °C, (b) at 100 °C (open symbols) and 175 °C (filled
symbols). Experimental values: circles, 1 bar [29]; diamonds, 100 bar [28], triangles, 280 bar [28]. The lines were
calculated according to the present Pitzer model.
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