Project Details Critically evaluated rate coefficients for radical polymerizations of styrene

Project No.:
2013-047-1-400
Start Date:
01 November 2013
End Date:
Division Name:
Polymer Division
Division No.:
400

Objective

The objective is to provide a complete set of rate coefficients of all elementary reactions that are relevant for modeling of polymerization processes of a well-studied monomer of high industrial importance.

Description

Polystyrene is one of the most studied polymers in the academic world and has numerous technical applications. In order to optimize existing technical processes, to identify new and sustainable production routes, and to develop new materials with tailored properties, first-principles modeling of conventional and reversible-deactivation (otherwise known as living/controlled) radical polymerizations is an important objective for polymer science and industry. Since polymer properties are tightly correlated with the polymerization conditions, extensive modeling at largely varying conditions is required. The knowledge of reliable rate coefficients for all elementary reactions is an indispensible requirement for reaching this goal. For measurement of individual propagation rate coefficients, kp, the IUPAC Subcommittee on “Modeling of Polymerization Kinetics and Processes” recommended pulsed-laser (initiated) polymerization (PLP) in conjunction with size-exclusion chromatography (SEC) as the method of choice. Based on this method a set of benchmark data for styrene propagation rate coefficients was published in 1995 (M. Buback, R. G. Gilbert, R. A. Hutchinson, B. Klumperman, F.-D. Kuchta, B. G. Manders, K. F. O’Driscoll, G. T. Russell, J. Schweer, Macromol. Chem. Phys. 196, 3267-3280; https://dx.doi.org/10.1002/macp.1995.021961016). The exceptional number of citations (508 as of July 2013) of this IUPAC work demonstrates the high importance of this monomer for scientific and industrial applications. However, knowing one relevant parameter is not sufficient for reliable modeling or prediction, for which purposes one actually requires a complete set of parameters. Therefore, within the present project all other relevant rate coefficients will be identified and collated. Then, a critical evaluation of the methods and existing data will be performed. Finally, a complete set of reliable kinetic data for the radical polymerization of styrene will be published. The focus will be on providing data that is suitable for implementation in modeling software. The successful completion of this project will lead to the same exercise being carried out for further monomers.

Progress

Sep 2017 update – After some long periods of no activities, the project is now reactivated with the scope of being completed within two years. After collection of data until early summer 2018, discussions are planned to take place at the MACRO2018 conference which several of the project members plan to attend.

Last update 1 Sep 2017