Supporting Information

Fluorescent Amyloid β peptide ligand derivatives as potential diagnostic tools for Alzheimer disease

Cristina Airoldi ${ }^{1}$, Francisco Cardona ${ }^{1,2}$, Erika Sironi ${ }^{1}$, Laura Colombo ${ }^{3}$, Mario Salmona ${ }^{3}$, Ilaria Cambianica ${ }^{4}$, Francesca Ornaghi ${ }^{4}$, Giulio Sancini ${ }^{4}$, Francesco Nicotra ${ }^{1}$, Barbara La Ferla ${ }^{1 *}$
${ }^{1}$ Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; ${ }^{2}$ Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal; ${ }^{3}$ Department of Molecular Biochemistry and Pharmacology, Mario Negri Institute for Pharmacological Research, Via La Masa 19, 20156 Milan, Italy; ${ }^{4}$ Department of Experimental Medicine, University of Milano - Bicocca, via Cadore 48, 20052 Monza, MB, Italy

Contents:

Pages S2-S12: Experimental protocols NMR and Mass for all new compounds.
Pages S13: NMR binding studies
Sections Staining
Pages S14-15: Transport experiments

Synthesis

General Remarks

All solvents were dried with molecular sieves for at least 24 h prior to use. Thin layer chromatography (TLC) was performed on silica gel 60 F254 plates (Merck) with detection using UV light when possible, or by charring with a solution of concd. $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(5: 45: 45)$ or a solution of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24}(21 \mathrm{~g}), \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}(1 \mathrm{~g})$, concd. $\mathrm{H}_{2} \mathrm{SO}_{4}(31 \mathrm{~mL})$ in water (500 mL). Flash column chromatography was performed on silica gel 230-400 mesh (Merck). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $25^{\circ} \mathrm{C}$ unless otherwise stated, with a Varian Mercury 400 MHz instrument. Chemical shift assignments, reported in ppm, are referenced to the corresponding solvent peaks. HRMS were recorded on a QSTAR elite LC/MS/MS system with a nanospray ion source. Optical rotations were measured at room temperature using an Atago Polax-2L polarimeter and are reported in units of 10^{-1} deg $\cdot \mathrm{cm} 2 \cdot \mathrm{~g}^{-1}$.

General synthetic strategy for the synthesis of protected compounds 22 and 23: Airoldi, C.; Cardona, F.; Sironi, E.; Colombo, L.; Salmona, M.; Silva, A.; Nicotra, F.; La Ferla, B. Chemical Communications 2011, 47, 10266.

A mixture containing the appropriate O-hydroxybenzaldehyde (19-20) (2.5 equiv.), trimethylorthoformiate (2.5 equiv.) and scandium triflate ($3 \% \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is stirred at r.t. for 20 min . The mixture is then cooled at $0^{\circ} \mathrm{C}$ and tri- O-benzyl-D-galactal (21) is added. The reaction is then left stirring at r.t. for 30 min . The reaction is then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and the solvent is removed under reduced pressure. The crude is purified by flash chromatography, Toluene/AcOEt (9.75:0.25) to afford pure compounds (22-23).

Compounds (22): yield 91\%, C5 R/S 95/5

(22R)

22R
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6), 7.31-7.21(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}), 6.99(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 8), 6.72$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 9), 5.61(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 10 \mathrm{a}), 4.96$ (d, $J=11.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.74(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5), 4.62-4.33\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.18(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$, H2), 3.80 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 3$), 3.66 (dd, $J=11.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4$), 3.61 (dd, $J=6.3,4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.57 (s, 3H,OMe), $3.33-3.23$ (m, 1H, H4a), 2.31 (s, 3H, Me). ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $149.98,139.05,138.93,138.16,130.59,129.64,128.61,128.43,128.40,128.36,128.13,127.97$, $127.75,127.52,126.52,121.97,115.37,97.63,76.92,76.33,75.66,75.16,73.93,73.71,72.69$, $71.65,69.15,57.1,34.78,20.99 .[\alpha]_{\mathrm{D}}{ }^{20}=-5,2\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ; \mathrm{MS}: \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}=567.3$, $[\mathrm{M}+\mathrm{Na}]^{+}=589.3,[\mathrm{M}+\mathrm{K}]^{+}=605.2$; found $[\mathrm{M}+\mathrm{H}]^{+}=567.6,[\mathrm{M}+\mathrm{Na}]^{+}=589.5,[\mathrm{M}+\mathrm{K}]^{+}=$ 605.6.
(22S)

$22 S$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.13(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}), 7.01(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 8), 6.82(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H} 6$), 6.75 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 9), 5.66$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 10 \mathrm{a}), 4.92(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.65-4.42\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.37-4.30(\mathrm{~d}, J=2.0 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{H} 5), 4.26-4.17(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H} 2), 3.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3), 3.72-3.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.38(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOMe}), 3.36-3.29(\mathrm{dd}, J=2.38$, $11.78 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4), 3.06-2.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4 \mathrm{a}), 2.26(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $151.53,138.81,138.10,137.77,131.35,131.03,129.91,128.64,128.60,128.54,128.49,128.26$, 128.21, 128.01, 127.93, 127.82, 118.18, 116.64, 94.89, 75.00, 74.84, 74.80, 73.79, 71.55, 71.47, $71.35,68.96,56.42,37.60,29.93,20.77 .[\alpha]_{\mathrm{D}}{ }^{20}=-2,1\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ; \mathrm{MS}: \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}=$ $567.3,[\mathrm{M}+\mathrm{Na}]^{+}=589.3,[\mathrm{M}+\mathrm{K}]^{+}=605.2$; found $[\mathrm{M}+\mathrm{H}]^{+}=567.6,[\mathrm{M}+\mathrm{Na}]^{+}=589.5,[\mathrm{M}+\mathrm{K}]^{+}$ $=605.6$.

Compound (23): yield 45\%, C5 R/S 100/0

23
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6), 7.37-7.20(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}), 6.81(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7$), 6.66 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 9$), 5.63 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 10 \mathrm{a}), 4.97$ (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.74(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5), 4.62-4.34\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.19(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2)$, 3.81 (s, 1H, H3), 3.66 (dd, $J=11.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4), 3.62$ (dd, $J=6.2,4.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.56 (s , $3 \mathrm{H}, \mathrm{OMe}$), $3.34-3.21$ (m, 1H, H4a), 2.31 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 152.11, 139.20, 139.07, 139.00, 138.19, 128.61, 128.44, 128.41, 128.37, 128.12, 127.97, 127.94, 127.75, $127.51,126.10,122.28,119.48,116.04,97.74,76.22,75.74,75.16,74.03,73.70,72.84,71.69$, 69.16, 57.06, 34.89, 21.41. $[\alpha]_{D}{ }^{20}=-6,2\left(c=1, \mathrm{CHCl}_{3}\right) . \mathrm{MS}: \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{K}]^{+}=605.2$; found $[$ $[M+K]^{+}=605.2$.

General synthetic strategy for the synthesis of compounds 5 and 12 (C5 R only): Airoldi, C.; Cardona, F.; Sironi, E.; Colombo, L.; Salmona, M.; Silva, A.; Nicotra, F.; La Ferla, B. Chemical Communications 2011, 47, 10266.

To a 6 mM solution of the protected compound in $\mathrm{AcOEt} / \mathrm{MeOH} 1: 1$, previously degassed, $\mathrm{Pd}(\mathrm{OH})_{2}$ $5 \% \mathrm{~mol}$ is added and the reaction mixture is stirred under H_{2} atmosphere for $45 \mathrm{~min} .-1.5 \mathrm{~h}$. Then the catalist is removed by filtration and the solvent evaporated under reduced pressure to afford pure compounds (5 and 12).

Compound (5): yield 95\%

5
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 6), 6.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 8), 6.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H} 9$), 5.57 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 10 \mathrm{a}), 3.98(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2), 3.83-3.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 3$ and H4), 3.77 (dd, $J=6.0,2.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.68 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $2.96-2.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4 \mathrm{a}), 2.26(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 150.14,130.22$, 129.54, 126.29, 120.97, 115.09, 96.65, $77.67,72.66,67.62,67.37,61.64,57.73,34.59,19.57 .[\alpha]_{\mathrm{D}}{ }^{20}=+13,3\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ; \mathrm{MS}: \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}=319.1,[\mathrm{M}+\mathrm{K}]^{+}=335.1$; found $[\mathrm{M}+\mathrm{Na}]^{+}=319.4,[\mathrm{M}+\mathrm{K}]^{+}=335.4$.

Compound (12): yield 97\%

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6), 6.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7), 6.60$ (s, $1 \mathrm{H}, \mathrm{H} 9), 5.57(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 10 \mathrm{a}), 4.85(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5), 3.98(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3)$, $3.83-3.73$ (m, 4H, CH2O, H2, H4), 3.67 (s, 3H, OMe), $2.96-2.85$ (m, 1H, H4a), 2.25 (s, 3H, Me). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 156.14,143.22,133.19,129.62,125.66,122.29,119.72,100.65$, 81.54, 76.64, 71.24, 65.63, 61.61, 38.51, 23.91. $[\alpha]_{D}{ }^{20}=+8,3\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ; \mathrm{MS}: \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}=319.1$; found $[\mathrm{M}+\mathrm{Na}]^{+}=319.3$.

Compound (6)

To a solution of compound $\mathbf{5}(90 \mathrm{mg} / 0,303 \mathrm{mmol})$ and $2,4,6$-trimethylpyridine $(0,424 \mathrm{mmol} / 56 \mathrm{uL})$ in dry DMF $(1,68 \mathrm{~mL})$ with stirring at $-45^{\circ} \mathrm{C}$ a solution of Bromoacetyl Bromide $(0,394 \mathrm{mmol} / 34 \mathrm{uL})$ in
dry Toluene (200 uL) was added. Stirring was continued for 40 min . at $-45^{\circ} \mathrm{C}$, and the the mixture was allowed to warm to room temperature. Toluene $(12 \mathrm{~mL})$ was added, and the solids filtered off, and the filtrate concentrated. The residue was purified by flash chromatography Toluene/EtOAc (7:3) and EtOAc, affording $54 \%(68 \mathrm{mg})$ of a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22$ (s, $1 \mathrm{H}, \mathrm{H}-6), 7.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 6.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 5.55(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $10 \mathrm{a}), 4.81(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.50\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.28(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2)$, $4.04-3.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.95-3.84\left(\mathrm{~m}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right.$ and $\left.\mathrm{H}-3\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 2.98 - $2.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 171.71, 153.78, 134.36, 133.53, 130.41, 125.02, 119.10, 100.24, 81.30, 75.25, 74.11, 73.98, 68.85, 61.41, 52.39, $52.18,51.96,51.75,51.54,51.32,51.11,43.85,29.27,23.52$.

Compound (1)

A solution of 7-hydrox ycoumarin-4-trifluoromthyl ($41 \mathrm{mg} / 0,18 \mathrm{mmol}$) in dry DMF (2 mL) was added to a stirred solution of compound $\mathbf{6}(50 \mathrm{mg} / 0,12 \mathrm{mmol})$ in dry DMF $(1 \mathrm{~mL})$. To the reaction mixture was added $\mathrm{CsCO}_{3}(43 \mathrm{mg} / 0,13 \mathrm{mmol})$ and the resulting solution was stirred at r.t. for 1 h , after which was poured into a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{H}_{2} \mathrm{O}$. The organic phase was washed with 1 M NaOH solution and aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried and concentrated under reduce pressure. The crude product was purified by flash chromatography Toluene/EtOAc (6:4), affording 37% (25 mg) of a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 7.61$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), $7.25-7.12$ (m, 2H, H-8', H-6), 7.09 (dd, $J=9.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$), 6.95 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 6.86\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 6.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 5.57(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-10 \mathrm{a}), 5.03\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCOCH}_{2}-\right), 4.82(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.39-4.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.30-$ $4.2(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}, \mathrm{H}-3), 4.10-3.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.62-3.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 2.90 - 2.76 (m, 1H, H-4a), 2.21 (s, 3H, CH ${ }_{3}$).

Compound (8)

A solution of compound $5(482 \mathrm{mg} / 1,63 \mathrm{mmol})$ in dry Pyridine $(3,3 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ in a ice bath with stirring. A solution of p-toluensulfonyl chloride ($574 \mathrm{mg} / 3 \mathrm{mmol}$) in dry Pyridine $(3,8 \mathrm{~mL})$ was then added dropwise and stirring was continued at r.t. until the reaction seemed completed by TLC. After 12 h , the solvent was then removed in vacuum to afford a crude product which was purified by flash chromatography, Petroleum Ether/ EtOAc (5:5), yielding 98\% (719mg) of a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OTs}$), 7.34 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OTs}$), 7.19 (s, 1H, H-6), 7.01 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 6.71 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 5.46 (d, $J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-10 \mathrm{a}$), 4.76 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.39-4.21$ (m, 2H, CH2O), 3.94 (m, 2H, H-4 and H-2), 3.83 (s, 1H, H-3), 3.69 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 2.82 (m, 1H, H-4a), $2.44(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.60,145.05,133.05,131.06,130.51,130.05,128.31,126.68,120.04$, $116.11,95.95,78.50,77.54,77.22,76.91,69.55,68.98,66.88,66.63,59.64,34.70,21.85,20.87$. $[\alpha]_{\mathrm{D}}{ }^{20}=+4,1\left(\mathrm{c}=1, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right) ; \mathrm{MS}: \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}=473.5$; found $[\mathrm{M}+\mathrm{Na}]^{+}=473.1$

Compound (9)

To a solution of compound $\mathbf{8}$ ($100 \mathrm{mg} / 0,22 \mathrm{mmol}$) in dry DMF (1 mL), a solution of NaN_{3} ($101 \mathrm{mg} / 1,55 \mathrm{mmol}$) in dry DMF $(0,5 \mathrm{~mL})$ was added and stirring was continued at $100^{\circ} \mathrm{C}$ for 12 h . Upon cooling to r.t., the colorless precipitate was filtrate ad the solvent was evaporated to dryness. The crude product was purified by flash chromatography, Petroleum Ether/EtOAc (6:4) affording $60 \%(42 \mathrm{mg})$ of a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6), 7.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-8), 6.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 5.56(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{a}), 4.80(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 5), $4.16(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.98(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 3.72(\mathrm{~s}, 3 \mathrm{H}$,
OCH_{3}), 3.71 - $3.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.51\left(\mathrm{dd}, J=12.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.93-2.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 4a), $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.67,131.05,130.53,126.71,120.06$, $116.14,96.06,78.53,77.57,77.25,76.93,70.67,67.25,67.15,59.72,51.50,34.69,20.92 .[\alpha]_{D}{ }^{20}=-$ $10,3\left(\mathrm{c}=1, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right) ; \mathrm{MS}: \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}=344.3$; found $[\mathrm{M}+\mathrm{Na}]^{+}=344.1$.

Compound (10)

To a solution of compound 9 ($30 \mathrm{mg} / 0,093 \mathrm{mmol}$) in MeOH (6 mL) was added Lindlar catalyst (5\%), and the mixture was hydrogenated at 1 atm and r.t. for 30 min . Filtration and concentration gave amine 10 in a quantitative yield ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.23(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.98$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 6.64$ (dd, $J=8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 5.59 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{a}$), 4.86 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.97-3.90 (m, 1H, H-2), $3.88-3.77$ (m, 1H, H-4), 3.74 (dd, $J=9.7,5.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.68 (s, 3H, OMe), $3.06-3.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right.$), $2.97-2.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}), 2.87$ (dd, $\left.J=13.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.29-2.23\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Compound (2)

Working in anhydrous conditions, compound $\mathbf{1 0}$ ($30 \mathrm{mg} / 0,093 \mathrm{mmol}$), 7 -hydroxycoumarin- 4 -acetic acid $(24,6 \mathrm{mg} / 0,112 \mathrm{mmol})$ and $\operatorname{HBTU}(53,1 \mathrm{mg} / 0,14 \mathrm{mmol})$ were dissolved in dry DMF $(1,3 \mathrm{ml})$. To this reaction mixture DIPEA ($48 \mu \mathrm{~L} / 0,28 \mathrm{mmol}$) was added at r.t. and after 10 min . DIC $(0,14 \mathrm{mmol} / 22 \mu \mathrm{~L})$ was added at $0^{\circ} \mathrm{C}$. The final reaction mixture was stirred at room temperature until the reaction seemed completed by TLC. After 12h, the solvent was then removed in vacuum to afford a crude product, which was purified by flash chromatography, $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9,5: 0,5)$, yielding $43 \%(20 \mathrm{mg})$ of a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$
$\left.5^{*}\right), 7.23$ (s, 1H, H-6), 6.97 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 6.76 (d, $\left.J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{`}\right), 6.63$ (m, 2H, H9 and H-8`), 6.16 (\(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-3^{`}\)), 5.54 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{a}$), 4.85 (d, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 4.02 (m, 1H, H-2), 3.81-3.71 (m, 3H, H-4 and $\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), 3.67 (bs, $4 \mathrm{H}, \mathrm{OCH}_{3}$ and $\mathrm{H}-3$), 3.57 (dd, $J=$ $13.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.44 (dd, $J=13.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 2.90-2.84 (m, 1H, H-4a), 2.26 (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD} 3 \mathrm{OD}$) $\delta 170.35,162.86,156.03,150.04,130.21,129.55,126.27$, $126.16,120.88,115.22,114.65,110.71,110.37,102.95,96.59,77.58,70.49,68.05,67.12,67.00$, $57.64,48.44,48.23,48.02,47.81,47.59,47.38,47.17,40.72,34.36,29.59,19.57 .[\alpha]_{\mathrm{D}}{ }^{20}=+16.6$ $\left(\mathrm{c}=1, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right) ; \mathrm{MS}: \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}=520.5$; found $[\mathrm{M}+\mathrm{Na}]^{+}=520.2$

Compound (13)

To a solution of compound $\mathbf{1 2}(500 \mathrm{mg} / 1,69 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(8,0 \mathrm{~mL})$, acetone dimetheylacetal ($6,76 \mathrm{mmol} / 0,4 \mathrm{~mL}$) and CSA ($1 \% \mathrm{mmol}$) were added under argon. The reaction mixture remained under magnetic stirring for 45 min . at room temperature, after which was added $\mathrm{Et}_{3} \mathrm{~N}$ to neutralize the CSA. The reaction was then concentrated under reduce pressure and the crude product purified by flash chromatography, Petroleum Ether/EtOAc (6:4) affording $56 \%(336 \mathrm{mg})$ of a yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) 7.30 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 6.78 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 6.63 (s, $1 \mathrm{H}, \mathrm{H}-9), 5.52$ (d, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10$), 4.68 (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 4.31 (m, 1H, H-2), 4.15 (dd, $J=5.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.12-4.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.80\left(\mathrm{dd}, J=6.1,3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{O}\right), 3.54(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $2.79-2.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar} \mathrm{CH}_{3}\right), 1.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} \mathrm{H}_{3}\right), 1.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 152.12,139.13,127.03,121.80,118.72,115.86,108.61,95.52$, 75.27, 71.43, 70.87, 69.47, 61.45, 55.97, 48.21, 48.00, 47.78, 47.57, 47.36, 47.14, 46.93, 37.67, 26.92, 24.85, 19.75.MS: m / z calcd for $[\mathrm{M}+\mathrm{Na}]^{+}=359.3$; found $[\mathrm{M}+\mathrm{Na}]^{+}=359.3$.

Compound (15)

To a 60% suspension of sodium hydride in oil ($75 \mathrm{mg}, 2,67 \mathrm{mmol}$) an argon atmosphere dry DMF $(10 \mathrm{~mL})$ was added. The suspension was cooled to $0^{\circ} \mathrm{C}$ with stirring and a solution of compound $\mathbf{1 3}$ ($300 \mathrm{mg} / 0,89 \mathrm{mmol}$) in dry DMF (3 ml) and compound 14 ($570 \mathrm{mg} / 1,79 \mathrm{mmo}$) in dry DMF (3 ml) were added. The mixture was stirred at $70^{\circ} \mathrm{C}$ for 12 h . After cooling to $0^{\circ} \mathrm{C}$, the reaction was quenched by slowly addition of $\mathrm{MeOH}(4 \mathrm{ml})$ and stirred for more 20 min . The reaction mixture was diluted with EtOAc, and washed with water, dried (NaSO4) and concentrated. The residue was purified by flash chromatography, Petroleum Ether/EtOAc (3:7), yielding 75\% of a brownish oil. MS: m / z calcd for $[\mathrm{M}+\mathrm{Na}]^{+}=516.4$; found $[\mathrm{M}+\mathrm{Na}]^{+}=516.4$.

Compound (16)

To a solution of compoud $\mathbf{1 3}$ ($100 \mathrm{mg} / 0,22 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ (10:2) (10 mL), p-toluenesulfonic acid $(0,42 \mathrm{mg} / 0,002 \mathrm{mmol})$ was added. The final reaction mixture was stirred at room temperature until the reaction seemed completed by TLC. After 30min., Et3N is added and the solvent was then removed in vacuum to afford a crude product which was purified by flash chromatography, Petroleum Ether/EtOAc (2:8), yielding 85% of a brownish oil ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.79$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 6.65 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-9$), 5.57 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-10 \mathrm{a}), 4.79\left(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.19(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.96(\mathrm{dd}, J=14.6,3.8 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4$), 3.83 (dd, $J=9.0,5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$ '’), $3.77-3.57$ ($\mathrm{m}, 13 \mathrm{H}$, triethyleneglycol, $\mathrm{CH}_{3} \mathrm{O}$), $3.40\left(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7^{\prime}\right)$), $2.94(\mathrm{dd}, J=11.5,6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4 \mathrm{a}), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR
($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.71,139.79,126.07,122.23,117.45,116.30,96.15,78.29,78.29,77.33$, $77.33,77.01,77.01,76.69,76.69,70.63,70.42,70.02,67.37,67.12,59.27,50.66,34.58,29.69$.

Compound (17)

To a solution of compound $\mathbf{1 6}(80 \mathrm{mg} / 0,20 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}: \mathrm{MeOH}(1: 1)(5 \mathrm{~mL})$ was added Lindlar catalyst (5\%), and the mixture was hydrogenated at 1 atm and r.t. for 1 h . Filtration and concentration gave amine $17 \mathrm{in} 80 \%$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 6), 6.78 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 6.64 (bs, $1 \mathrm{H}, \mathrm{H}-9$), 5.57 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{a}$), 4.78 (d, $J=4.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.17$ (t, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} 2 \mathrm{PEG}$), $4.00-3.58(\mathrm{~m}, 15 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{CH} 2 \mathrm{O}, 5 \mathrm{CH} 2 \mathrm{PEG}$, $\mathrm{CH}_{3} \mathrm{O}$), $3.54(\mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} 2 \mathrm{PEG}$), $3.05-2.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}), 2.88(\mathrm{bs}, 2 \mathrm{H}, \mathrm{CH} 2 \mathrm{PEG}), 2.28(\mathrm{~s}, 3 \mathrm{H}$, CH 3). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.18,137.10,123.49,119.60,115.04,113.67,93.76,75.59$, $74.76,74.45,74.13,69.93,68.25,67.99,67.93,67.92,67.75,67.57,64.57,64.28,56.63,38.73,32.05$, 18.59. $\mathrm{MS}: \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{H}]_{+}=429$; found $[\mathrm{M}+\mathrm{H}]_{+}=428.9$

Compound (4)

$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

To a vigorously stirring suspension of compound $\mathbf{1 8}$ ($72 \mathrm{mg} / 0,27 \mathrm{mmol}$) in $1: 1 \mathrm{t}-\mathrm{BuOH} / \mathrm{H} 2 \mathrm{O}$, Copper(II) sulfate pentahydrate $(9 \mathrm{mg} / 0,035 \mathrm{mmol})$ and sodium ascorbate $(14 \mathrm{mg} / 0,069 \mathrm{mmol})$ were added. The reaction mixture was stirred for 10 min at room temperture and then compound 16 ($110 \mathrm{mg} / 0,23 \mathrm{mmol}$) was added. The suspension was stirred vigorously at r.t. for 12 h . At this time TLC indicated completion of the reaction. Distilled water was added, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried, filtered and evaporated to afford a brownish oily solid. The product was then purified using column chromatography using CHCl_{3} as
eluant, which afforded the expected compound $\mathbf{4}$ as a brownish solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8,26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 8$ '), 7.65 (dd, $J=9.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 7.25 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.14 (d, $J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$ '), 7.07 (dd, $J=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$), 6.72 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 6.68 (s, 1H, H-3'), 6.47 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-9$), 5.52 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{a}$), 5.32 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-9$ '), 4.80 (d, $J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5$), $4.67-4.57$ (m, 2H, H-6''), 4.08 (t, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}{ }^{\prime}$), $3.95-3.87$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-7^{\prime}$ '), 3.79 - 3.52 (m, 15H, H-3'',H-4', H-5', H-1', H-2, H-3, H-4, OCH ${ }_{3}$), $2.95-2.85$ (m, 1H, H-4a), 2.22 (s, 3H, ArCH_{3}). ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 162.28, 156.17, 151.80, 142.19, 139.03, 125.96, 125.70, 125.46, 121.79, 112.24, 115.37, 113.56, 107.00, 102.22, 96.43, 76.35, 70.90, 70.51, $70.33,70.40,70.09,70.04,68.87,67.41,66.94,66.90,61.60,61.62,57.49,50.17,34.30,19.76 .{ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-62.0$. $\mathrm{MS}: \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{H}]_{+}=721.7$; found $[\mathrm{M}+\mathrm{H}]^{+}=721.7$.

Compound (3)

Working in anhydrous conditions, compound $17(50 \mathrm{mg} / 0,13 \mathrm{mmol})$, 7 -hydroxycoumarin- 4 -acetic acid $(31 \mathrm{mg} / 0,16 \mathrm{mmol})$ and $\operatorname{HBTU}(68,26 \mathrm{mg} / 0,20 \mathrm{mmol})$ were dissolved in dry DMF $(2 \mathrm{ml})$. To this reaction mixture DIPEA $(0,39 \mathrm{mmol} / 67 \mu \mathrm{~L})$ was added at r.t. and after 10 min . DIC $(0,20 \mathrm{mmol} / 31 \mu \mathrm{~L})$ was added at $0^{\circ} \mathrm{C}$. The final reaction mixture was stirred at room temperature until the reaction seemed completed by TLC. After 12h, the solvent was then removed in vacuum to afford a crude product which was purified by flash chromatography, $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Acetone (5:5), yielding $20 \%(15 \mathrm{mg})$ of a brown color solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.61$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 7.28 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.80\left(\mathrm{dd}, J=9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 6.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 6.70$ (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$ '), 6.56 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$), 6.19 (bs, 1H, H-9), 5.54 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{a}$), 4.10 (t , $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \mathrm{C}_{2 \mathrm{PEG}}$), 4.86 ($1 \mathrm{H}, \mathrm{H}-5$, under $\mathrm{H}_{2} \mathrm{O}$ signal), $3.85-3.48$ (m, 18H, H-9', H-2. H-3, H-4, $4 \mathrm{CH}_{2} \mathrm{PEG}, \mathrm{OCH}_{3}, \mathrm{CH}_{2} \mathrm{O}$), $3.43-3.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} 2 \mathrm{PEG}$), $2.97-2.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}), 2.24(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 169.56,162.02,161.61,155.36,151.85,151.24,139.06,126.13$, 125.72, 121.57, 118.06, 115.39, 112.97, 111.71, 111.59, 102.21, 96.44, 77.34, 70.81, 70.39, 70.30, $70.17,70.09,69.85,68.94,67.39,66.91,57.44,48.21,47.99,47.78,47.57,47.35,47.14,46.93,39.37$, $38.78,34.30,19.77 . \mathrm{MS}: \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}=629$; found $[\mathrm{M}+\mathrm{Na}]^{+}=629$.

NMR binding studies

NMR experiments were recorded on a Varian $400-\mathrm{MHz}$ Mercury. A batch of A $\beta 1-42$ was selected that contained pre-amyloidogenic seeds highly toxic to N 2 a cells. Immediately before use, lyophilized $\mathrm{A} \beta 1-42$ was dissolved in 10 mM NaOD in $\mathrm{D}_{2} \mathrm{O}$ at a concentration of $160 \mu \mathrm{M}$, then diluted $1: 1$ with 20 mM phosphate buffer, pH 7.4 containing one of the tested compounds. Compounds 2, 3 and 4 were dissolved in $\mathrm{PB}, \mathrm{pH} 7.4$, and added to the peptide solution; for compound 45% of d-DMSO was added. The pH of each sample was verified with a Microelectrode (Mettler Toledo) for 5 mm NMR tubes and adjusted with NaOD or DCl . All pH values were corrected for isotope effect. Basic sequences were employed for ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}, 2 \mathrm{D}-\mathrm{TOCSY}, 2 \mathrm{D}-$ NOESY and STD experiments. For STD, a train of Gaussian-shaped pulses each of 50 ms was employed to saturate selectively the protein envelope; the total saturation time of the protein envelope was adjusted by the number of shaped pulses and was varied between 3 s and 0.3 s .

Sections staining

Brain tissue from Tg CRND8 mice encoding a double mutant form of amyloid precursor protein 695 (KM670/671NL + V717F) under the control of the PrP gene promoter (Chishti et al., 2001) were dissected and were fixed in Carnoy's and embedded in paraffin.
Procedures involving animals and their care were conducted in conformity with the institutional guidelines that are in compliance with national (D.L. No. 116, G.U. Suppl. 40, Feb. 18, 1992, Circolare No. 8, G.U., 14 Luglio 1994) and international laws and policies (EEC Council Directive 86/609, OJ L 358, 1 Dec.12, 1987; NIH Guide for the Care and use of Laboratory Animals, U.S. National Research Council, 1996). All efforts were made to minimize the number of animals used and their suffering.

Seven-micrometer-thick serial sections of paraffin-embedded blocks from the temporal cortex were mounted on gelatin coated microscope slides and used for staining. Paraffin sections were subjected to two incubations of 5 min in xylene, an incubation of 10 min each in $100 \%-96 \%-70 \%$ EtOH for the complete dewaxing and two successive incubations of 5 min in water. Tissue sections were covered with a solution $3 \mu \mathrm{M}$ of thioflavine T or $6 \mu \mathrm{M}$ of compound 3 dissolved in water. After 30 min of incubation, the sections were washed 3 times for 5 min in water and 5 min each in $70 \%-96 \%-100 \% \mathrm{EtOH}$. The sections were then incubated 5 min in xylene before adding the coverslip. Sections were visualized by fluorescent fluoromicroscope M-3204CCCD (OlympusBX61) equipped with the filters FITC (Ex 488 nm) for detecting thioflavine T and DAPI (Ex 405 nm) for detecting test compounds.

Transport Experiments

Trans-endothelial-electrical resistance (TEER) were measured by EVOMX meter, STX2 electrode, World Precision Instruments, Sarasota, Florida.
Fluorescence measurements were done using a Cary Eclipse spectrofluorimeter (Varian Inc., Palo Alto, California).

The radioactivity assay were achieved by means of a Tri-Carb 2200 CA Liquid Scintillation Analyzer (Packard Instrument Co. Inc., Rockville, MD)

The differences were evaluated for statistical significance using Student's t-test.

For transport experiments across a cell monolayer, hCMEC/D3 were seeded in a 12-well Transwell® inserts coated with type I collagen. 0.5 mL of cell suspensions containing $2.0 \cdot 105$ cells were added to the upper (donor) chamber which was inserted into the lower (acceptor) chamber containing 1.0 mL of the culture medium. A cell monolayer was usually formed 14 days after seeding judged by three criteria: (1) the cells formed a confluent monolayer without visible spaces between cells under a light microscope; (2) the height of the culture medium in the upper chamber had to be at least 2 mm higher than that in the lower chamber for at least 24 h ; and (3) a constant TEER (trans endothelial electrical resistance) value, measured using an EVOM Endohm chamber. Wells were used when TEER value was higher than $50 \Omega \cdot \mathrm{~cm}^{2}$. Trans-endothelial permeability coefficient (PE) was calculated as reported by Bickel U. (NeuroRx: The Journal of the American Society for Experimental NeuroTherapeutics ,Vol. 2, 15-26, January 2005):

After adding the test substance to the donor compartment, repeated samples are taken from the donor compartment over the desired time course. The concentration measured in these samples and the known volumes of the compartments
($\mathrm{V}_{\text {donor }}$ and $\mathrm{V}_{\text {acceptor }}$) are used to calculate the incremental clearance volumes $\Delta \mathrm{V}_{\mathrm{Cl}}$ for each time point:
$\Delta \mathrm{V}_{\mathrm{Cl}}=\mathrm{C}_{\text {acceptor }} \cdot \mathrm{V}_{\text {acceptor }} / \mathrm{C}_{\text {donor }}$

As long as the concentration in the acceptor compartment is small and $\Delta \mathrm{V}_{\mathrm{Cl}}$ increases in linear manner, the
slope of the line can be interpreted as the PS product for unidirectional transfer. With the known exchange surface,

S , (filter area) the permeability may be obtained as $\mathrm{P}=\mathrm{PS} / \mathrm{S}$. Finally, a correction needs to be made for
the permeability of the cell-free filter:
$1 / \mathrm{P}_{\text {endothel }}=1 / \mathrm{P}_{\text {totall }}-1\left(\mathrm{P}_{\text {filter }}\right)$

With $\mathrm{P}_{\text {endothel }}$ being equal to PE .

After adding the test substance to the upper compartment, samples were taken from the lower compartment at different times ($0-60-180 \mathrm{~min}$) for liquid scintillation counting (C14 sucrose) and for fluorescence assays (compound 3). At the end of the experiments, TEER and [14C]sucrose PE were re-determined in order to prove no occurrence of adverse effects on tight junction function due to sample application.

