Sialylexoenitols as Precursor for New Analogues of Sialidase Inhibitors

Barbara Richichi,¹ Carlotta Lunghi,¹ Athanasios Papakyriakou,³ Oscar Francesconi¹ and Cristina Nativi^{1,2*}

¹Dipartimento di Chimica "Ugo Schiff", Universita' degli Studi di Firenze, via della Lastruccia, 13 50019 Sesto F.no (FI) Italy

²CNR, Istituto di Metodologie Chimiche IMC, Area di Ricerca di Roma 1, via Salaria Km 29, 300- 00015 Monterotondo Roma, Italy.

³Chemical Biology and Designed Molecules Laboratory, NCSR "Demokritos", 15310 Ag. Paraskevi, Athens, Greece

E-mail: cristina.nativi@unifi.it

Supporting Information

Synthesis of compound 14	S 2
Synthesis of compound 16	S 2
Synthesis of compound 17	S 3
Synthesis of compound 8	S 3
Synthesis of compound 9	S 4
Synthesis of compound 11	S 4
Synthesis of compound 12	S 5
Synthesis of compound 13	S 5
Synthesis of compound 25	S 6
Synthesis of compound 28/28a	S 6
Synthesis of compound 29	S 7
Synthesis of compound 34	S 7
Synthesis of compound 27	S 8
Synthesis of compound 32	S 8
Synthesis of compound 33	S 9
Synthesis of compound 26	S 9
Synthesis of compound 30	S 9
Synthesis of compound 31	S10

Synthesis of compound 14. To a stirred suspension of N-acetyl neuraminic acid methyl ester 7 (1.00 g, 3.093 mmol) in dry CH_2Cl_2 (6.0 mL) Pyridine (1.3 mL) was added. The reaction mixture was cooled at 0°C and TBDMSOTf (2.56 mL, 11.13 mmol) was slowly added. After 10' the mixture was warmed to RT, stirred for 30 min, then diluted with CH_2Cl_2 (50 mL) and washed with a saturated solution of NH_4Cl (2 x 20 mL). The organic phase was dried over Na_2SO_4 , filtered and concentrated to dryness. The crude was purified by flash column chromatography on silica gel (petroleum ether/ AcOEt 6/1) to give 14 (1.66 g, 81%) as white solid.

M.p.:171-173 °C; $[\alpha]_D^{25} = +25.3$ (c 1.25, CHCl₃); ¹H NMR (400MHz, C₆D₆): δ 4.83 (d, 1H, $J_{OH-7} = 4.8$ Hz, OH), 4.47 (d, 1H, $J_{NH-5} = 4.0$ Hz, NH), 4.29-4.23 (m, 3H, H₅, H₆, OH), 4.17-4.08 (m, 3H, H₄, H₈, H_{9a}), 3.94 (add, 1H, $J_{7-OH} = 4.8$ Hz, J = 9.2 Hz, H₇), 3.85 (ad, 1H, $J_{9b-9a} = 8.8$ Hz, H_{9b}), 3.19 (s, 3H, CO₂CH₃), 2.33 (atd, 1H, J = 12.4 Hz, J = 1.6 Hz, H_{3a}), 2.21-2.17 (B part of an ABX system, 1H, $J_{BA} = 12.6$ Hz, $J_{BX} = 5.2$ Hz, H_{3b}), 1.55 (s, 3H, CH₃CONH), 1.08 (s, 9H, (CH₃)₃C)), 1.03 (s, 9H, (CH₃)₃C)), 0.84 (s, 9H, (CH₃)₃C)), 0.31 (s, 3H, CH₃Si), 0.23 (s, 3H, CH₃Si), 0.14 (s, 3H, CH₃Si), 0.10 (s, 3H, CH₃Si), -0.03 (s, 3H, CH₃Si), -0.09 (s, 3H, CH₃Si); ¹³C NMR (100MHz, C₆D₆): δ 171.5 (Cq), 170.9 (Cq), 95.3 (Cq), 72.6 (C₅ o C₆), 72.4 (C₈ o C₄), 68.3 (C₄ o C₈), 68.1 (C₇), 64.5 (C₉), 54.2 (C₆ o C₅), 52.8 (CO₂CH₃), 40.5 (C₃), 26.3 ((CH₃)₃C), 26.2 ((CH₃)₃C), 25.6 ((CH₃)₃C), 22.7 (CH₃CONH) 18.6 (Cq), 18.5 (Cq), 17.9 (Cq), -3.89 (CH₃Si), -3.91 (CH₃Si), -4.1 (CH₃Si), -4.65 (CH₃Si), -5.2 (CH₃Si), -5.3 (CH₃Si); ESI-MS: 666.34 [M+H]⁺; 688.67 [M+Na]⁺.

Synthesis of compound 16. To an ice-cooled suspension of 14 (0.165 g, 0.248 mmol) in *i*-PrOH (2.5 mL), NaBH₄ (0.009 g, 0.248 mmol) was added. The reaction mixture was stirred for 30 min at 0°C, then AcOH (0.015 mL, 0.248 mmol) was added dropwise. The mixture was warmed to RT, diluted with AcOEt (50 mL) and washed with a saturated solution of NaHCO₃ (1 x 10 mL) and with brine (1 x 10 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated to dryness to give 155 mg of crude 15. The crude 15 (155 mg) was dissolved in MeOH (1.2 mL), and 240 uL of a 1M suspension of NaIO₄ (0.052 g, 0.243 mmol) in H₂O were added. The mixture was warmed to 40°C and stirred for 20 h, then it was diluted with CH₂Cl₂ (30 mL) and washed with H₂O (3 x 5 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated to dryness. The crude was purified by flash column chromatography on silica gel (CH₂Cl₂/AcOEt/Tol 30/1/1) to give 16 (0.070 g, 0.116 mmol, 40% over two steps) as a white solid.

M.p.: 153-155°C; $[\alpha]_D^{25}$: + 38.3 (c 1.05, CHCl₃); ¹H NMR (400 MHz, C₆D₆): δ 4.69 (d, 1H, $J_{\text{NH-4}} = 8.0$ Hz, NH), 4.48 (dd, 1H, $J_{5-4} = 10.0$ Hz, $J_{5-6} = 1.2$ Hz, H₅), 4.27 (d, 1H, $J_{\text{OH-6}} = 5.6$ Hz, OH), 4.12-4.08 (m, 1H, H₇), 4.01-3.94 (m, 2H, H₄, H_{8a}), 3.88-3.81 (m, 3H, H₃, H_{8a}, H₆), 2.84-2.79 (A part of an ABX system, $J_{\text{AB}} = 16.8$ Hz, $J_{\text{AX}} = 6.0$ Hz, H₂a), 2.36-2.30 (B part of an ABX system,

1H, $J_{BA} = 16.8$ Hz, $J_{BX} = 7.2$ Hz, H_{2b}), 1.50 (s, 3H, NHCOC H_3), 1.02 (s, 9H, (CH_3)₃C)), 0.98 (s, 9H, (CH_3)₃C)), 0.80 (s, 9H, (CH_3)₃C)), 0.29 (s, 3H, CH_3 Si), 0.20 (s, 3H, CH_3 Si), 0.10 (s, 3H, CH_3 Si), 0.08 (s, 3H, CH_3 Si), -0.15 (s, 3H, CH_3 Si), -0.16 (s, 3H, CH_3 Si); ¹³C NMR (50 MHz, C_6D_6): δ 170.9, 169.1, 76.6, 72.2, 69.3, 68.5, 65.5, 53.6, 39.6, 26.29, 26.25, 25.7, 22.7, 18.6, 18.5, 17.9, -4.1, -4.2, -4.3, -4.7, -5.1, -5.2; ESI-MS: 606.42 [M+H]⁺; 628.60 [M+Na]⁺.

Synthesis of compound 17. A solution of 16 (0.180 g, 0.297mmol) in dry pyridine (0.7 mL) was cooled to -78° C and 1.48 mL of Tebbe's reagent (0.5M in toluene) were slowly added. The reaction mixture was then warmed to rt and stirred for 30 min. After this time, the mixture was cooled to -40° C and 3.5 mL of a 0.1 M NaOH were added dropwise. The mixture was stirred for 10 min, diluted with Et₂O (30 mL), warmed to RT and filtered through a pad of Celite. The filtrate was concentrated to dryness to give a crude which was purified by flash column chromatography on silica gel (petroleum ether/AcOEt/NEt₃ 8/1/0.1) to afford **17** (0.123 g, 67%) as a white glassy solid.

[α]_D²⁵: -36.73 (*c* 0.325, Hexane); ¹H NMR (400MHz, C₆D₆): δ 4.90 (d, 1H, $J_{NH-5} = 8.8$ Hz, NH), 4.64-4.63 (m, 2H, H_{1a}, OH), 4.22 (ddd, 1H, $J_{8-9a} = 3.2$ Hz, $J_{8-9b} = 2.4$ Hz, $J_{8-7} = 9.2$ Hz, H₈), 4.15-4.14 (m, 1H, H_{1b}), 4.11-4.09 (m, 1H, H₅), 4.07-4.03 (A part of an ABX system, 1H, $J_{AB} = 10.8$ Hz, $J_{AX} = 3.2$ Hz, H_{9a}), 3.93-3.89 (B part of an ABX system, 1H, $J_{BA} = 10.8$ Hz, $J_{BX} = 2.4$ Hz, H_{9b}), 3.80-3.76 (m, 1H, H₇), 3.75 (dd, 1H, $J_{6-5} = 10.8$ Hz, $J_{6-7} = 1.2$ Hz, H₆), 3.60 (td, J = 10.4 Hz, J = 4.8 Hz, 1H, H₄), 2.45-2.40 (A part of an ABX system, 1H, $J_{AB} = 13.6$ Hz, $J_{AX} = 5.2$ Hz, H_{3a}), 2.21-2.14 (m, 1H, H_{3b}), 1.53 (s, 3H, NHCOCH₃), 1.02 (s, 9H, (CH₃)₃C)), 0.99 (s, 9H, (CH₃)₃C)), 0.81 (s, 9H, (CH₃)₃C)), 0.25 (s, 3H, CH₃Si), 0.22 (s, 3H, CH₃Si), 0.12 (s, 3H, CH₃Si), 0.09 (s, 3H, CH₃Si), -0.11 (s, 3H, CH₃Si), -0.15 (s, 3H, CH₃Si); ¹³C NMR (50 MHz, C₆D₆): δ 170.9, 156.4, 94.2, 77.6, 725., 70.5, 68.3, 64.9, 53.8, 39.1, 26.2, 26.0, 25.4, 22.5, 18.4, 17.7, -4.0, -4.1, -4.3, -4.7, -5.2, -5.3; ESI-MS: 604.34 [M+H]⁺; 626.4 [M+Na]⁺.

Synthesis of compound 8. To a stirred solution of N-acetyl neuraminic acid methyl ester 7 (0.500 g, 1.546 mmol) in dry DMF (3 mL), Imidazole (0.210 g, 3.092 mmol) and TBDPSiCl (0.80 mL, 3.092 mL), were added. The reaction mixture was stirred for 20 h at RT then diluted with CH_2Cl_2 (30 mL) and washed with a saturated solution of NH_4Cl (2 x 10 mL). The organic phase was dried over Na_2SO_4 , filtered and concentrated to dryness. The crude was purified by flash column chromatography on silica gel (petroleum ether/AcOEt 2/1) to afford 8 (0.900 g, 73%) as a white solid.

M.p.: 108-109 °C; $[\alpha]_D^{25}$: -5.3 (c 1.00, CHCl₃); ¹H NMR (400 MHz, CD₃CN): δ 7.72-7.68 (m, 8H, Ph), 7.61-7.39 (m, 12H, Ph), 6.23 (d, 1H, $J_{\text{NH-5}} = 9.2$ Hz, NH), 4.54 (bs, 1H, OH), 4.27 (d,

1H, J = 4.4 Hz, OH), 4.24-4.18 (m, 1H, H₄), 3.95 (m, 1H, H₅), 3.84 (dd, 1H, $J_{6-7} = 10.8$ Hz, $J_{6-5} = 0.8$ Hz, H₆), 3.81-3.80 (m, 2H, H_{9a}, H_{9b}), 3.70 (s, 1H, CO₂CH₃), 3.65-3.58 (m, 2H, H₇, H₈), 2.88 (d, 1H, J = 6.4 Hz, OH), 2.05-2.00 (m, 2H, H_{3a}, H_{3b}), 1.74 (s, 3H, NHCOCH₃), 1.04 (s, 9H, (CH₃)₃C)), 1.03 (s, 9H, (CH₃)₃C)); ¹³C NMR (50 MHz, CDCl₃): δ 172.1, 169.8, 135.7, 135.6, 135.4, 135.2, 133.1, 133.0, 132.9, 132.6, 130.1, 129.9, 129.6, 127.9, 127.8, 127.5, 95.0, 71.2, 69.5, 68.5, 67.9, 64.9, 53.8, 53.1, 39.6, 26.9, 26.8, 22.9, 19.4, 19.3; ESI-MS: 800.32 [M+H]⁺; 822.70 [M+Na]⁺; 1621.96 [2M+Na]⁺.

Synthesis of compound 9. To a stirred solution of **8** (0.850 g, 1.06 mmol) in acetone (10 mL), 2,2-dimethoxypropane (10 mL) and (\pm)-camphor-10-sulfonic acid (0.050 g, 0.212 mmol) were added. The reaction mixture was stirred at RT for 1 h, then neutralized with Et₃N and diluted with CH₂Cl₂ (50 mL). The organic phase was washed with H₂O (3 x 10 mL), then dried over Na₂SO₄, filtered and concentrated to dryness to give 895 mg of crude **9** which was used without any further purification for the following reaction.

¹H NMR (400 MHz, CDCl₃): δ 7.71-7.56 (m, 8H, Ph), 7.46-7.33 (m, 12H, Ph), 4.41 (d, 1H, $J_{\text{NH-5}} = 8.8$ Hz, NH), 4.31-4.24 (m, 1H, H₈), 4.13-4.02 (m, 2H, H₅, H₆), 4.0 (td, 1H, J = 4.8 Hz, J = 10.4 Hz, H₄), 3.88-3.84 (A part of an ABX system, 1H, $J_{\text{AB}} = 10.0$ Hz, $J_{\text{AX}} = 5.6$ Hz, H_{9a}), 3.71 (s, 3H, CO₂CH₃), 3.71-3.62 (m, 2H, H_{9b}, H₇), 3.23 (bs, 1H, OH), 2.20-2.15 (m, 1H, H_{3a}), 2.05-2.00 (B part of an ABX system, 1H, $J_{\text{BA}} = 12.4$ Hz, $J_{\text{BX}} = 4.4$ Hz, H_{3b}), 1.55 (s, 1H, CH₃CONH), 1.37 (s, 6H, (CH₃)₂C), 1.32 (s, 6H, (CH₃)₂C), 1.03 (s, 9H, (CH₃)₃C), 0.96 (s, 9H, (CH₃)₃C); ¹³C NMR (50 MHz, CDCl₃): δ 169.9 (Cq), 169.5 (Cq), 135.7 (CH, Ph), 135.4 (CH, Ph), 133.5 (Cq), 133.2 (Cq), 133.1 (Cq), 132.8 (Cq), 129.9 (CH, Ph), 129.7 (CH, Ph), 129.6 (CH, Ph), 127.7 (CH, Ph), 127.5 (CH, Ph), 109.4 (Cq), 94.4 (Cq), 76.4 (C₈), 70.9 (C₆ o C₅), 70.9 (C₇), 68.6 (C₄), 62.9 (C₉), 53.2 (C₅ o C₆), 53.1 (CO₂CH₃), 39.3 (C₃), 26.9 (CH₃), 26.1 (CH₃), 25.9 (CH₃), 23.5 (Cq), 19.3 (Cq), 19.2 (Cq); ESI-MS: 840.19 [M+H]⁺; 862.72 [M+Na]⁺; 1702.08 [2M+Na]⁺.

Synthesis of compound 11. To an ice-cooled suspension of crude 5 (895 mg) in *i*-PrOH (8.0 mL), NaBH₄ (0.040 g, 1.06 mmol) was added. The reaction mixture was stirred for 1 h at 0°C, then AcOH (0.020 mL, 0.337 mmol) was added dropwise. The mixture was warmed to RT, diluted with CH₂Cl₂ (50 mL) and washed with a saturated solution of NaHCO₃ (1 x 10 mL) and with brine (2 x 10 mL). The organic phase was dried over Na₂SO₄, filtered, and concentrated to dryness to give 780 mg of crude 10. The crude 10 (780 mg) was dissolved in MeOH (16.0 mL) then H₂O (1.6 mL) and NaIO₄ (234 mg, 1.10 mmol) were added. The mixture was warmed to 40°C and stirred for 20 h, then it was diluted with CH₂Cl₂ (60 mL) and washed with H₂O (2 x 10 mL). The organic phase was

dried over Na_2SO_4 , filtered and concentrated to dryness. The crude was purified by flash column chromatography on silica gel (petroleum ether/ AcOEt 3/1) to give **11** (0.114 g, 14% over three steps) as a white solid.

M.p.: 74-76 °C; $[\alpha]_D^{25}$: + 3.7 (c 0.80, CHCl₃); ¹H NMR (400 MHz, C₆D₆): δ 7.69-7.57 (m, 8H, Ph), 7.16-7.10 (m, 12H, Ph), 4.51 (d, 1H, $J_{NH-4} = 8.8$ Hz, NH), 4.48-4.44 (m, 2H, H₅, H₇), 4.36 (ad, 1H, J = 7.6 Hz, H₆), 4.28-4.23 (A part of an ABX system, 1H, $J_{AB} = 10.0$ Hz , $J_{AX} = 8.0$ Hz, H_{8a}), 4.23-4.20 (B part of an ABX system, 1H, $J_{BA} = 10.0$ Hz, $J_{BX} = 5.6$ Hz, H_{8b}), 4.17-4.13 (m, 1H, H₃), 3.96-3.90 (m, 1H, H₄), 2.90-2.85 (A part of an ABX system, 1H, $J_{AB} = 15.6$ Hz, $J_{AX} = 4.8$ Hz, H_{2a}), 2.66-2.61 (B part of an ABX system, 1H, $J_{BA} = 15.6$ Hz, $J_{BX} = 6.4$ Hz, H_{2b}), 1.56 (s, 3H, CH₃CONH), 1.29 (s, 6H, (CH₃)₂C), 1.22 (s, 6H, (CH₃)₂C), 1.08 (s, 9H, (CH₃)₃C), 1.04 (s, 9H, (CH₃)₃C); ¹³C NMR (50 MHz, CDCl₃): δ 169.8, 169.2, 135.7, 135.6, 135.3, 133.1, 132.8, 132.7, 130.2, 130.0, 129.7, 127.9, 127.8, 127.6, 109.6, 76.6, 76.0, 75.7, 68.4, 62.3, 54.6, 38.7, 26.9, 26.8, 26.2, 25.3, 23.2, 19.2; ESI-MS: 780.25 [M+H]⁺; 802.68 [M+Na]⁺.

Synthesis of compound 12. To a stirred solution of 11 (0.114 g, 0.146 mmol) in glacial AcOH (2.0 mL), H₂O (0.50 mL), was slowly added. The reaction mixture was warmed to 60°C and stirred for 3 h. After this time, the solvent was co-evaporated with toluene under reduced pressure to give crude 12 (0.096 g, 90%) as a white solid, which was used without any further purification for the following reaction.

¹H NMR (200 MHz, CDCl₃): δ 7.72-7.61 (m, 6H, Ph), 7.51-7.34 (m, 14H, Ph), 5.08 (d, 1H, J = 4.6 Hz, NH), 4.19-4.06 (m, 3H), 3.96-3.87 (m, 2H), 3.81-3.73 (m, 2H), 3.44 (d, 1H, J = 9.2 Hz, OH), 3.11-3.00 (A part of an ABX system, 1H, $J_{AB} = 17.6$ Hz, $J_{AX} = 5.4$ Hz), 2.81-2.69 (B part of an ABX system, 1H, $J_{BA} = 18.0$ Hz, $J_{BX} = 7.2$ Hz), 2.37 (s, 1H, OH), 1.63 (s, 3H, CH_3 CONH), 1.07 (s, 9H, (CH_3)₃C), 1.03 (s, 9H, (CH_3)₃C); ¹³C NMR (50 MHz, CDCl₃): δ 172.1, 168.7, 135.5, 135.4, 135.3, 132.8, 132.7, 132.5, 132.2, 130.4, 130.2, 129.6, 129.4, 128.1, 128.0, 127.6, 77.0, 69.4, 68.2, 68.1, 65.3, 52.3, 39.2, 26.9, 26.8, 22.9, 19.4, 19.2.

Synthesis of compound 13. A solution of **12** (0.096 g, 0.136 mmol) in dry pyridine (0.3 mL) was cooled to -78° C and 680 uL of Tebbe's reagent (0.5 M in Toluene) were slowly added. The reaction mixture was then warmed to rt and stirred for 45 min. After this time, the mixture was cooled to -40° C and 2.0 mL of a 0.1 M NaOH were added dropwise. The mixture was stirred for 10 min, diluted with Et₂O (20 mL), warmed to rt and filtered through a pad of Celite. The filtrate was concentrated to dryness to give a crude which was purified by flash column chromatography on silica gel (petroleum ether/EtOAc/NEt₃ 3/1/0.1) to afford **13** (0.022 g, 23%) as a yellow oil.

Selected data: ¹H NMR (200 MHz, C₆D₆): δ 7.76-7.69 (m, 3H, Ph), 7.62-7.52 (m, 3H, Ph), 7.21-7.08 (m, 14H, Ph), 4.92 (d, 1H, *J* = 4.6 Hz), 4.63 (bs, 1H), 4.39-4.29 (m, 2H), 4.12-4.10 (m, 2H), 4.04 (bs, 1H), 3.72-3.62 (m, 2H), 3.48-3.44 (m, 1H), 2.59-2.50 (A part of an ABX system, 1H, *J*_{AB} = 13.2 Hz, *J*_{AX} = 5.0 Hz), 2.42-2.30 (m, 1H, H_{2b}), 1.25 (s, 3H, CH₃CONH), 1.06 (s, 9H, (CH₃)₃C), 1.00 (s, 9H, (CH₃)₃C).

Synthesis of compound 25. A solution of 21 (1.5 g, 7.04 mmol) in ethylacetoacetate (18 mL) was stirred for 1 h at rt, then the reaction mixture was cooled at 0°C and 100 mL of hexane were added. The suspension was filtered to give 1.2 g (57%) of 25 as mixture of keto-enol tautomers.

¹H NMR (200 MHz, CDCl₃): δ 13.9 (s, 1H, OH), 7.98-7.72 (m, 4H, PhtN keto + PhtN enol), 4.25 (q, J = 7.2 Hz, 2H, CH₂CH₃ keto), 4.21-4.16 (m, 4H, CH₂CH₃ enol), 2.77 (s, 3H, CHPhtNS), 1.32 (t, J = 7.0 Hz, 3H, CH₂CH₃ keto), 1.28 (t, J = 7.2 Hz, 3H, CH₂CH₃ enol); ¹³C NMR (50 MHz, CDCl₃): δ 188.6, 172.3, 167.6, 134.9, 134.4, 132.2, 124.3, 123.6, 96.72, 62.0, 21.6, 14.0.

Synthesis of compounds 28 and 28a. To a stirred solution of 17 (0.196 g, 0.324 mmol) in CHCl₃ (1.0 mL), pyridine (1.0 mL) and 22 (0.122 g, 0.454 mmol) were added. The mixture was warmed at 50°C for 20 h then it was diluted with CHCl₃ (30 mL) and washed with a saturated solution of NH₄Cl (1 x 10 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated to dryness. The crude was purified by flash column chromatography on silica gel (petroleum ether/AcOEt 6/1) to give a diastereomeric mixture of 28 and 28a (0.170 g, 69%) in ratio 7:1. The mixture 28 and 28a was used without any further purification for the following reaction.

Selected data: ¹H NMR (400 MHz, C₆D₆): δ 4.45 (d, $J_{NH-5} = 8.0$ Hz, 1H, NH, **28**), 3.11-3.07 (A part of an AB system, $J_{AB} = 13.2$ Hz, 1H, H_{1a}, **28a**), 2.70-2.67 (A part of an AB system, $J_{AB} = 12.8$ Hz, 1H, H_{1a}, **28**), 2.65 (s, 3H, CH₃C=), 2.58-2.55 (B part of an AB system, $J_{BA} = 13.2$ Hz, 1H, H_{1b}, **28a**), 2.39 (dd, $J_{3a-3b} = 12.8$ Hz, $J_{3a-4} = 4.4$ Hz, 1H, H_{3a}, **28**), 2.33-2.30 (B part of an AB system, $J_{BA} = 12.8$ Hz, 1H, H_{1b}, **28**), 2.19-2.14 (A part of an ABX system, $J_{AB} = 13.6$ Hz, $J_{AX} = 6.0$ Hz, 1H, H_{3a}, **28a**), 2.06-2.00 (B part of an ABX system, $J_{BA} = 13.2$ Hz, $J_{BX} = 9.2$ Hz, 1H, H_{3b}, **28a**), 1.56 (s, 3H, NHCOCH₃, **28**), 1.37 (dd, $J_{3b-3a} = 12.8$ Hz, $J_{3b-4} = 11.2$ Hz, 1H, H_{3b}, **28**), 1.07 (s, 9H, (CH₃)₃C, **28**), 1.06 (s, 9H, (CH₃)₃C, **28**), 1.01 (t J = 4.0 Hz, CH₂CH₃) 0.85 (s, 9H, (CH₃)₃C, **28**), 0.23 (s, 3H, CH₃Si, **28**), 0.22 (s, 3H, CH₃Si, **28**), 0.19 (s, 3H, CH₃Si, **28**), 0.14 (s, 3H, CH₃Si, **28**), -0.02 (s, 3H, CH₃Si, **28**), -0.07 (s, 3H, CH₃Si, **28**); ¹³C NMR (100 MHz, C₆D₆): δ 171.4 (Cq), 165.0 (Cq), 157.6 (Cq), 98.3 (Cq), 98.2 (Cq), 73.1, 72.4, 68.7, 67.8, 64.8, 60.8, 54.1, 41.8 (C₃), 33.2 (C₁), 26.4 ((CH₃)₃C), 26.24 ((CH₃)₃C), 26.21 ((CH₃)₃C), 25.85 ((CH₃)₃C), 25.80 ((CH₃)₃C), 25.6 ((CH₃)₃C), 25.6 ((CH₃)₃C), 25.80 ((CH₃)₃C), 25.6 ((CH₃)₃C), 25.6 ((CH₃)₃C), 25.80 ((CH₃)₃C), 25.6 ((CH₃)₃C), 25.6 ((CH₃)₃C), 25.6 ((CH₃)₃C), 25.80 ((CH₃)₃C), 25.6 ((CH₃)₃C), 25.6 ((CH₃)₃C), 25.80 ((CH₃)₃C), 25.6 ((CH₃)₃C), 25.6 ((CH₃)₃C), 25.6 ((CH₃)₃C), 25.80 ((CH₃)₃C), 25.6 ((CH₃)₃C), 25.80 ((CH₃)₃C), 25.6 ((CH₃)₃C), 25.6 ((CH₃)₃C), 25.80 ((CH₃)₃C), 25.80

22.7 (*C*H₃CONH), 21.7(*C*H₂*C*H₃), 18.6 (*C*q), 18.5 (*C*q), 17.9 (*C*q), 14.1 (*C*H₃*C*=), -3.9 (*C*H₃Si), -4.0 (*C*H₃Si), -4.1 (*C*H₃Si), -4.6 (*C*H₃Si), -5.1 (*C*H₃Si), -5.3 (*C*H₃Si); ESI-MS: 764.19 [M+H]⁺; 786.41 [M+Na]⁺; 1549.87 [2M+Na]⁺.

Synthesis of compound 29. To a stirred solution of mixture of 28 and 28a (0.149 g, 0.195 mmol) in AcOH (3.0 mL), 2.0 mL of H₂O were added. The reaction mixture was warmed at 60°C for 4 h, then the solvent was co-evaporated with toluene under reduced pressure. The crude was purified by flash column chromatography on silica gel (AcOEt/MeOH 10/1) to give 29 (0.065 g, 48% over two steps) as a white glassy solid.

 $[\alpha]_D^{25}$: -30.42 (*c* 0.94, CH₃OH); ¹H NMR (400 MHz, CD₃OD): δ 4.38-4.22 (m, 3H, H₄, CH₂CH₃), 4.03-4.01 (m, 2H, H₅, H₆), 3.89-3.81 (m, 2H, H₈, H_{9a}), 3.74-3.69 (m, 1H, H_{9b}), 3.65 (ad, *J* = 8.0 Hz, 1H, H₇), 3.09-3.06 (A part of an AB system, *J_{AB}* = 13.2 Hz, 1H, H_{1a}), 3.03-3.00 (B part of an AB system, *J_{BA}* = 13.2 Hz, 1H, H_{1b}), 2.49-2.04 (m, 1H, H_{3a}), 2.45 (s, 3H, CH₃C=), 2.16 (s, 3H, NHCOCH₃), 1.82 (dd, *J_{3b-4}* = 11.2 Hz, *J_{3b-3a}* = 13.2 Hz, 1H, H_{3b}), 1.42 (t, *J* = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (100 MHz, CD₃OD): δ 170.9 (Cq), 162.8 (Cq), 154.0 (Cq), 95.3 (Cq), 92.5 (Cq), 69.2 (C₆ o C₅), 68.2 (C₈), 65.8 (C₇), 63.6 (C₄), 61.0 (C₉), 58.0 (CH₂CH₃), 50.1 (C₅ o C₆), 39.0 (C₃), 29.6 (C₁), 18.7 (CH₃CONH), 17.4 (CH₃C=), 10.5 (CH₂CH₃); ESI-MS: 444.27 [M+Na]⁺.

Synthesis of compound 34. To a stirred solution of 29 (0.045 g, 0.107 mmol) in THF (3.0 mL), 534 uL of 1M solution of LiOH (0.534 mmol) in H₂O were added. The reaction mixture was warmed at 50°C for 14 h then 1M solution of H₃PO₄ was added to reach pH 5. The solvent was coevaporated with toluene under reduced pressure to give a crude which was suspended in dry MeOH and filtered through a PTFE membrane (pore size 0.20 uM). The filtrate was concentrated to dryness to give 38 mg of 34 (88%) as white glassy solid.

[α]_D²⁵: -28.25 (*c* 0.4, CH₃OH); ¹H NMR (400 MHz, CD₃OD): δ 4.29-4.23 (m, 1H, H₄), 4.01-3.90 (m, 3H, H₅, H₆, H₈,), 3.88-3.85 (A part of an ABX system, $J_{AB} = 11.6$ Hz, $J_{AX} = 3.2$ Hz, 2H, H_{9a}), 3.59-3.55 (B part of an ABX system, $J_{BA} = 11.2$ Hz, $J_{BX} = 5.6$ Hz, 1H, H_{9b}), 3.63 (dd, J =8.4 Hz, J = 0.8 Hz, 1H, H₇), 3.06-3.02 (A part of an AB system, $J_{AB} = 12.8$ Hz, 1H, H_{1a}), 3.02-2.99 (B part of an AB system, $J_{BA} = 12.8$ Hz, 1H, H_{1b}), 2.40 (dd, $J_{3a-3b} = 12.8$ Hz, $J_{3a-4} = 4.8$ Hz, 1H, H_{3a}), 2.31 (s, 3H, CH₃C=), 2.16 (s, 3H, CH₃CONH), 1.80 (dd, $J_{3b-3a} = 13.2$ Hz, $J_{3b-4} = 11.6$ Hz, 1H, H_{3b}); ¹³C NMR (50 MHz, CD₃OD): δ 170.9 (Cq), 144.2 (Cq), 103.1 (Cq), 90.4 (Cq), 68.6 (C₆), 67.6 (C₈), 66.1 (C₇), 64.2 (C₄), 61.3 (C₉), 50.2 (C₅), 39.3 (C₃), 30.3 (C₁), 18.6 (CH₃CONH), 16.3 (CH₃C=); ESI-MS: 416.27 [M+Na]⁺; 432.18 [M+K]⁺. Synthesis of compound 27. To an ice-cooled solution of 20 (0.900 g, 4.05 mmol) in CHCl₃ (3 mL), 21 (0.776 g, 3.65 mmol) was added. The reaction mixture was stirred for 1 h at this temperature then concentrated to dryness to give 1.53 g of crude 27 as mixture of keto-enol tautomers which was used without any further purification for the following reaction.

Selected data: ¹H NMR (200 MHz, CDCl₃): δ 13.9 (s, 1H, OH enol), 7.49-7.90 (m, 2H, PhtN keto + PhtN enol), 7.81-7.76 (m, 2H, PhtN keto), 7.44-7.41 (m, 2H, Ha, Hd keto), 7.32 (at, J = 8.0 Hz, 1H, Hc keto), 7.14-7.08 (m, 1H, Hb keto), 5.5 (s, 1H, PhtNSC*H* keto), 4.23-4.06 (m, 2H, C*H*₂CH₃ keto + C*H*₂CH₃ enol), 3.83 (s, 3H, OCH₃ keto), 1.13 (t, J = 7.2 Hz, 3H, CH₂C*H*₃ keto), 1.12 (t, J = 7.2 Hz, 3H, CH₂C*H*₃ enol); ¹³C NMR (50 MHz, CDCl₃): δ 190.0, 167.5, 166.2, 159.8, 135.8, 134.6, 134.2, 131.9, 129.8, 129.6, 123.9, 123.5, 121.1, 121.0, 112.3, 62.9, 59.4, 55.4, 53.4, 13.6.

Synthesis of compound 32. To a stirred solution of 17 (0.200 g, 0.331 mmol) in pyridine (1.0 mL) a solution of crude 24 (0.159 g, 0.397 mmol) in CHCl₃ (1.0 mL) was added. The mixture was warmed at 50°C for 20 h then it was diluted with CHCl₃ (30 mL) and washed with a saturated solution of NH₄Cl (1 x 10 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated to dryness. The crude was purified by flash column chromatography on silica gel (petroleum ether/AcOEt 6/1) to give 254 mg of 32 as impure compound containing phtalimide. The crude 32 was used without any further purification for the following reaction.

¹H NMR (400 MHz, C₆D₆): δ 7-18-7.17 (m, 1H, *m*-OMe-C₆H₄), 7.13-7.07 (m, 2H, *m*-OMe-C₆H₄), 6.68-6.65 (m, 1H, *m*-OMe-C₆H₄), 4.51 (d, $J_{NH-5} = 8.8$ Hz, 1H, NH), 4.35-4.27 (m, 2H, H₆, H₄), 4.18 (A part of an ABX system, $J_{AB} = 10.8$ Hz, $J_{AX} = 2.8$ Hz, 1H, H_{9a}), 4.14-4.06 (m, 2H, H₅, H₇), 3.90-3.75 (m, 5H, OH, H_{9b}, H₈, CH₂CH₃), 3.36 (s, 3H, OCH₃), 2.86-2.83 (A part of an AB system, $J_{AB} = 13.2$ Hz, 1H, H_{1a}), 2.66 (dd, $J_{3a-3b} = 13.6$ Hz, $J_{3a-4} = 4.8$ Hz, 1H, H_{3a}), 2.45-2.42 (B part of an AB system, $J_{BA} = 12.8$ Hz, 1H, H_{1b}), 1.48 (s, 3H, NHCOCH₃), 1.46-1.41 (dd, $J_{3b-3a} = 13.2$ Hz, $J_{3b-4} = 10.8$ Hz, 1H, H_{3b}), 1.01 (s, 9H, (CH₃)₃C), 0.87 (s, 9H, (CH₃)₃C), 0.84 (s, 9H, (CH₃)₃C), 0.70 (t, J = 7.2 Hz, 3H, CH₂CH₃), 0.14 (s, 3H, CH₃Si), 0.11 (s, 3H, CH₃Si), 0.10 (s, 3H, CH₃Si), 0.03 (s, 3H, CH₃Si), 0.02 (s, 3H, CH₃Si), 0.00 (s, 3H, CH₃Si); ¹³C NMR (100 MHz, C₆D₆): δ 171.3 (Cq), 165.0 (Cq), 159.8 (Cq), 156.0 (Cq), 139.0 (Cq), 128.9 (CH, *m*-OMe-C₆H₄), 121.9 (CH, *m*-OMe-C₆H₄), 115.6 (CH, *m*-OMe-C₆H₄), 114.2 (CH, *m*-OMe-C₆H₄), 101.6 (Cq), 99.5 (Cq), 73.1 (C₆), 72.2 (C₇), 69.0 (C₈), 67.7 (C₄), 64.9 (C₉), 60.8 (CH₂CH₃), 55.0 (OCH₃), 54.3 (C₅), 41.0 (C₃), 32.7 (C₁), 26.24 ((CH₃)₃C), 26.21 ((CH₃)₃C), 25.7 ((CH₃)₃C), 22.8 (CH₃CONH), 18.6 (Cq), 18.9 (Cq), 18.9 (Cq), 13.6 (CH₂CH₃), -4.00 (CH₃Si), -4.04 (CH₃Si), -4.5 (CH₃Si), -5.21 (CH₃Si), -5.21 (CH₃Si), -5.29 (CH₃Si); ESI-MS: 878.51 [M+Na]⁺; 894.41 [M+K]⁺.

Synthesis of compound 33. To a stirred solution of crude 32 (0.254 g) in CH_2Cl_2 (1.0 mL), AcOH (6.5 mL) and H_2O (1.5 mL) were added. The reaction mixture was warmed at 60°C for 16 h, then the solvent was co-evaporated with toluene under reduced pressure. The crude was purified by flash column chromatography on silica gel (AcOEt/MeOH 10/1) to give 33 (0.101 g, 60% over two step) as a white glassy solid.

[α]_D²⁵: +33.10 (*c* 0.435, CH₃OH);¹H NMR (400 MHz, CD₃OD): δ 7.45-7.41 (m, 1H, *m*-OMe-C₆H₄), 7.16-7.10 (m, 3H, *m*-OMe-C₆H₄), 4.30 (td, J = 11.2 Hz, J = 4.8 Hz, 1H, H₄), 4.23 (dd, $J_{6.5} = 10.8$ Hz, $J_{6.7} = 1.6$ Hz, H₆), 4.13 (q, J = 6.4 Hz, 1H, CH₂CH₃), 4.08 (at, J = 7.2 Hz, 1H, H₅), 4.01-3.97 (m, 1H, H₈), 3.97 (s, 3H, OCH₃), 3.94-3.91 (A part of an ABX system, $J_{AB} = 11.2$ Hz, $J_{AX} = 3.2$ Hz, 1H, H_{9a}), 3.79-3.75 (B part of an ABX system, $J_{BA} = 11.2$ Hz, $J_{BX} = 5.6$ Hz, 1H, H_{9b}), 3.74 (dd, J = 8.8 Hz, J = 1.2 Hz, 1H, H₇), 3.30-3.26 (A part of an AB system, $J_{AB} = 13.2$ Hz, 1H, H_{1a}), 3.23-3.19 (B part of an AB system, $J_{BA} = 13.2$ Hz, 1H, H_{1b}), 2.57 (dd, $J_{3a-3b} = 13.2$ Hz, $J_{3a-4} = 5.2$ Hz, 1H, H_{3a}), 2.19 (s, 3H, NHCOCH₃), 1.95 (dd, $J_{3b-3a} = 13.2$ Hz, $J_{3b-4} = 11.2$ Hz, 1H, H_{3b}), 1.12 (t, J = 7.6 Hz, 3H, CH₂CH₃); ¹³C NMR (50 MHz, CD₃OD): δ 175.2 (Cq), 167.6 (Cq), 160.7 (Cq), 156.0 (Cq), 139.6 (Cq), 129.9 (CH, *m*-OMe-C₆H₄), 122.1 (CH, *m*-OMe-C₆H₄), 115.6 (CH, *m*-OMe-C₆H₄), 115.3 (CH, *m*-OMe-C₆H₄), 102.8 (Cq), 96.7 (Cq), 73.4 (C₆), 72.0 (C₈), 70.0 (C₇), 67.5 (C₄), 65.2 (C₉), 62.3 (CH₂CH₃), 55.8 (OCH₃), 54.2 (C₅), 43.1 (C₃), 33.9 (C₁), 22.6 (NHCOCH₃), 13.9 (CH₃C=); ESI-MS: 536.14 [M+Na]⁺.

Synthesis of compound 26. To an ice-cooled solution of 19 (0.910 g, 4.33 mmol) in $CHCl_3$ (2 mL), 21 (0.830 g, 3.90 mmol) was added. The reaction mixture was stirred for 1 h at this temperature then concentrated to dryness to give 1.09 g of crude 26 which was used without any further purification for the following reaction.

Selected data: ¹H NMR (200 MHz, CDCl₃): δ 7.89-7.74 (m, 6H), 7.78-7.09 (m, 2H), 5.48 (s, 1H, CHPhtNS), 4.24-4.08 (m, 2H, CH₂CH₃) , 1.13 (t, J = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (50 MHz, CDCl₃): δ 188.6, 168.8, 167.5, 166.1, 134.9, 134.7, 134.2, 132.0, 131.4, 131.2, 124.3, 124.0, 116.4, 115.9, 63.0, 59.3, 13.6.

Synthesis of compound 30. To a stirred solution of 17 (0.200 g, 0.331 mmol) in $CHCl_3$ (1.0 mL), Pyridine (1.0 mL) and crude 23 (0.180 g, 0.463 mmol) were added. The mixture was warmed at 50°C for 22 h then it was diluted with $CHCl_3$ (30 mL) and washed with a saturated solution of NH₄Cl (1 x 10 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated to dryness. The crude was purified by flash column chromatography on silica gel (petroleum ether/AcOEt 8/1)

to give 30 (0.242 g) as impure compound containing phtalimide. The crude 30 was used without any further purification for the following reaction.

¹H NMR (400 MHz, C₆D₆): δ 7.47-7.43 (m, 2H, *p*-F-C₆H₄), 6.93-6.89 (m, 2H, *p*-F-C₆H₄), 4.62 (d, *J*_{NH-5} = 8.0 Hz, 1H, NH), 4.42-4.35 (m, 2H, H₆, H₄), 4.22-4.18 (A part of an ABX system, *J*_{AB} = 10.8 Hz, *J*_{AX} = 2.8 Hz, 1H, H_{9a}), 4.11-3.99 (m, 2H, H₅, H₇), 3.93-3.77 (m, 5H, H₈, H_{9b}, OH, CH₂CH₃), 2.82-2.79 (A part of an AB system, *J*_{AB} = 12.8 Hz, 1H, H_{1a}), 2.58 (dd, *J*_{3a-3b} = 13.6 Hz, *J*_{3a-4} = 4.8 Hz, 1H, H_{3a}), 2.47-2.44 (B part of an AB system, *J*_{BA} = 12.8 Hz, 1H, H_{1b}), 1.53 (s, 3H, CH₃CONH), 1.49-1.43 (m, 1H, H_{3b}), 0.91 (s, 9H, (CH₃)₃C), 0.89 (s, 9H, (CH₃)₃C), 0.88 (s, 9H, (CH₃)₃C), 0.74 (t, *J* = 7.2 Hz, 3H, CH₂CH₃), 0.17 (s, 6H, CH₃Si), 0.14 (s, 6H, CH₃Si), 0.13(s, 6H, CH₃Si); ¹³C NMR (100 MHz, C₆D₆): δ 171.2 (Cq), 164.9 (Cq), 163.66 (d, *J* = 248.0 Hz, Cq, *p*-F-C₆H₄), 155.1 (Cq), 133.65 (d, *J* = 3.0 Hz, Cq, *p*-F-C₆H₄), 131.41 (d, *J* = 7.6 Hz, CH, *p*-F-C₆H₄), 155.1 (Cq), 60.9 (CH₂CH₃), 54.7 (C₅), 41.2 (C₃), 33.8 (C₁), 26.1 ((CH₃)₃C), 26.0 ((CH₃)₃C), 25.8 ((CH₃)₃C), 25.7 ((CH₃)₃C), 22.8 (CH₃CONH), 18.5 (Cq), 18.2 (Cq), 18.1 (Cq), 13.7 (CH₂CH₃), -4.03 (CH₃Si), -4.09 (CH₃Si), -4.1 (CH₃Si), -4.5 (CH₃Si), -5.2 (CH₃Si); ESI-MS: 866.51 [M+Na]⁺.

Synthesis of compound 31. To a stirred solution of 30 (0.242 g, 0.286 mmol) in CH_2Cl_2 (1.0 mL), AcOH (5.7 mL) and H_2O (1.4 mL) were added. The reaction mixture was warmed at 60°C for 24 h, then the solvent was co-evaporated with toluene under reduced pressure. The crude was purified by flash column chromatography on silica gel (AcOEt/MeOH 10/1) to give 31 (0.101 g, 61% over two step) as a white glassy solid.

 $[\alpha]_D^{25}$: +23.03 (*c* 0.66, CH₃OH); ¹H NMR (400 MHz, CD₃OD): δ 7.44-7.40 (m, 2H, *p*-F-C₆H₄), 7.10-7.04 (m, 2H, *p*-F-C₆H₄), 4.13 (td, J = 11.2 Hz, J = 5.2 Hz, 1H, H₄), 4.06 (dd, *J*₆₋₅ = 10.4 Hz, *J*₆₋₇ = 1.2 Hz, 1H, H₆), 3.96 (q, *J* = 7.2 Hz, 2H, CH₂CH₃), 3.89 (at, *J* = 10.4 Hz, 1H, H₅), 3.82-3.77 (m, 1H, H₈), 3.76-3.72 (A part of an ABX system, *J*_{AB} = 11.2 Hz, *J*_{AX} = 3.2 Hz, 1H, H_{9a}), 3.61-3.54 (m, 2H, H_{9b}, H₇), 3.12-3.08 (A part of an AB system, *J*_{AB} = 13.6 Hz, 1H, H_{1a}), 2.40-2.35 (dd, *J*_{3a-3b} = 13.2 Hz, *J*_{3a-4} = 5.2 Hz, 1H, H_{3a}), 2.02 (s, 3H, CH₃CONH), 1.77 (dd, *J*_{3b-3a} = 12.8 Hz, *J*_{3b-4} = 11.2 Hz, 1H, H3b), 0.98 (t, *J* = 7.2 Hz, 3H, CH₂CH₃); ¹³C NMR (50 MHz, CD₃OD): δ 175.1 (Cq), 167.4 (Cq), 164.54 (d, *J* = 245.8 Hz, Cq, *p*-F-C₆H₄), 155.4 (Cq), 134.75 (d, *J* = 3.0 Hz, Cq, *p*-F-C₆H₄), 132.06 (d, *J* = 8.3 Hz, CH, *p*-F-C₆H₄), 115.67 (d, *J* = 22.0 Hz, CH, *p*-F-C₆H₄), 103.1 (Cq), 96.8 (Cq), 73.3 (C₆), 72.0 (C₈), 70.0 (C₇), 67.5 (C₄), 65.1 (C₉), 62.3 (CH₂CH₃), 54.2 (C₅), 43.0 (C₃), 33.9 (C₁), 22.6 (CH₃CONH), 13.9 (CH₂CH₃); ESI-MS: 524.15 [M+Na]⁺; 1024.81 [2M+Na]⁺.