Selective transformations of cephalostatin analogues

Supplementary Information

Mansour M. Nawasreh

EXPERIMENTAL

Compound 4:

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.54$ (br s, 1H, 15 '-H), 5.40 (br s, 1H, 15-H) 4.88 (dd, $\left.\mathrm{J}_{16^{\prime}-17^{\prime}}=8.2 \mathrm{~Hz}, \mathrm{~J}_{16^{\prime}-15^{\prime}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 16^{\prime}-\mathrm{H}\right), 4.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 28 \mathrm{~b}-\mathrm{H}), 4.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $28 \mathrm{a}-\mathrm{H}), 4.67\left(\mathrm{dd}, \mathrm{J}_{16-17}=7.6 \mathrm{~Hz}, \mathrm{~J}_{16-15}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H}\right), 3.40-3.56(\mathrm{~m}, 5 \mathrm{H}$, $\left.26 \mathrm{a} / 26 \mathrm{~b} / 26^{\prime} \mathrm{a} / 26^{\prime} \mathrm{b} / 22-\mathrm{H}\right), 3.25\left(\mathrm{dd}, \mathrm{J}_{12^{\prime}-11^{\prime} \mathrm{a}}=10.6 \mathrm{~Hz}, \mathrm{~J}_{12^{\prime}-11^{\prime} \mathrm{b}}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, 12^{\prime}-\mathrm{H}\right)$, 2.80-3.05 (m, 4H, 1a/1'a/4a/4'a-H), 2.40-2.72 (m, 8H,1b/1'b/4b/4'b/17/17'/11a/11b$\mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}), 1.13\left(\mathrm{~d}, \mathrm{~J}_{21-20}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 21-\mathrm{H}\right), 1.06(\mathrm{~d}$, $\left.\mathrm{J}_{21^{\prime}-20^{\prime}}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 21^{\prime}-\mathrm{H}\right), 1.04\left(\mathrm{~s}, 3 \mathrm{H}, 18^{\prime}-\mathrm{H}\right), 0.92\left(\mathrm{~d}, \mathrm{~J}_{27-25}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 27-\right.$ $\mathrm{H}), 0.88\left(\mathrm{~s}, 3 \mathrm{H}, 19^{\prime}-\mathrm{H}\right), 0.87(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}), 0.81\left(\mathrm{~d}, \mathrm{~J}_{27^{\prime}-25^{\prime}}=6.3 \mathrm{~Hz}, 3 \mathrm{H}, 27^{\prime}-\mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.4$ (C, 14'-C), 157.2 (C, 14-C), 155.8 (C, 12-C), 148.7, 148.6, 148.4, 148.3 (all C, pyrazine-C), 119.8 (CH, 15'-C), 117.4 (CH, 15-C), 106.8 ($\left.\mathrm{CH}_{2}, 28-\mathrm{C}\right), 106.3$ (C, 22'-C), 89.2 (CH, 22-C), 85.9 (CH, 16'-C), 84.6 (CH, $16-\mathrm{C}), 79.0\left(\mathrm{CH}, 12{ }^{\prime}-\mathrm{C}\right), 68.1\left(\mathrm{CH}_{2}, 26-\mathrm{C}\right), 67.2\left(\mathrm{CH}_{2}, 26{ }^{\prime}-\mathrm{C}\right), 58.5(\mathrm{CH}, 17-\mathrm{C}), 56.1$ (CH, 17'-C), 53.9 (C, 13-C), 52.7 (C, 13'-C), 52.1 (CH), 45.6, 45.6 (both $\mathrm{CH}_{2}, 1 / 10-$ C), $44.4(\mathrm{CH}), 41.5(\mathrm{CH}), 41.2(\mathrm{CH}), 40.1(\mathrm{CH}), 36.0,35.9$ (both C, 10/10'-C), 35.6, 35.5 (both CH), 35.2, 35.1 (both $\mathrm{CH}_{2}, 4 / 4$ '-C), $34.9(\mathrm{CH}), 33.7(\mathrm{CH}), 32.4\left(\mathrm{CH}_{2}\right), 31.2$ $\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 30.4(\mathrm{CH}), 30.3\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 28.8$ $\left(\mathrm{CH}_{2}\right)$, $28.1\left(\mathrm{CH}_{2}\right)$, $27.8\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{3}, 18-\mathrm{C}\right), 17.8\left(\mathrm{CH}_{3}, 21-\mathrm{C}\right), 17.2\left(\mathrm{CH}_{3}, 27\right.$ C), $16.6\left(\mathrm{CH}_{3}, 27-\mathrm{C}\right), 13.9\left(\mathrm{CH}_{3}, 21^{\prime}-\mathrm{C}\right), 13.4\left(\mathrm{CH}_{3}, 18 '-\mathrm{C}\right), 11.8\left(\mathrm{CH}_{3}, 19{ }^{\prime}-\mathrm{C}\right), 11.7$ $\left(\mathrm{CH}_{3}, 19-\mathrm{C}\right)$.

Compound 5:

Preparation of the salicylic acid-borane complex: In a dry flask flushed several times with argon, the salicylic acid solution (173 mg dissolved in 3.0 mL abs. THF at $0{ }^{\circ} \mathrm{C}$) was treated with 1.3 mL of BH_{3}. THF (1.0 M solution) in slow addition. The solution was stirred for 30 min until no more gas was evolved.

To a solution of (3), prepared by dissolving $106 \mathrm{mg}(126 \mu \mathrm{~mole}, 1 \mathrm{eq})$ in 2.0 mL abs. THF in a dry 50 mL round bottom flask at $0^{\circ} \mathrm{C}$, the salicylic acid-borane complex was slowly added and stirred for 1 h at $0^{\circ} \mathrm{C}$. After conducting the reaction for four weeks at $2{ }^{\circ} \mathrm{C}$, it was quenched with slow addition of 1.0 mL of 6.0 M NaOH solution followed by oxidation with 2.0 mL of $35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution with vigorous stirring for 2 h. Extracting the solution with chloroform twice followed by washing the organic phase with saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and drying with MgSO_{4}. Removing the solvent and separating the crude material on silica gel column chromatography which eluted with EA/PE (1:2) yielded 36 mg of (5) (34\%), 24 mg of the less polar methylene alcohol (in-between product) in addition to 10 mg of the starting material (3).

IR: $\left(\mathrm{CHCl}_{3} / \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}\right)$; $3617 \mathrm{br}(\mathrm{O}-\mathrm{H}), 2931 \mathrm{~s}(\mathrm{C}-\mathrm{H}), 1649 \mathrm{w}(\mathrm{C}=\mathrm{C}), 1634 \mathrm{w}(\mathrm{C}=\mathrm{C})$, $1458 \mathrm{~s}(\mathrm{C}-\mathrm{H}), 1400 \mathrm{~s}$ (pyrazine), $1242 \mathrm{~s}(\mathrm{C}-\mathrm{O})$.
LC-MS (ESI/positive) $847.7230\left(\mathrm{MH}^{+}\right)$base peak. Single Mass Analysis: found $846.5986\left(\mathrm{C}_{55} \mathrm{H}_{79} \mathrm{~N}_{2} \mathrm{O}_{5}\right)$, calculated 847.5989 (-0.4 PPM).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.45$ (br s, $1 \mathrm{H}, 15 \mathrm{'}^{-\mathrm{H}}$), $5.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 15-\mathrm{H}), 4.85(\mathrm{dd}$, $\left.\mathrm{J}_{16-17}=8.0 \mathrm{~Hz}, \mathrm{~J}_{16-15}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H}\right), 4.83($ brs, $1 \mathrm{H}, 28 \mathrm{a}-\mathrm{H}), 4.78\left(\mathrm{dd}, \mathrm{J}_{16-17}=9.4\right.$ $\mathrm{Hz}, \mathrm{J}_{16^{\prime}-15^{\prime}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H}$), 4.70 (brs, 1H, 28b-H), 3.42-3.57 (m, 4H, 26a/26b/ 26'a/26'b-H), 3.33 (m, 1H, 22'-H), 3.27 (m, 1H, 12'-H), 2.90-2.99 (m, 3H, 17'/1a/1'aH), $2.81\left(\mathrm{~m}, 2 \mathrm{H}, 4 \mathrm{a} / 4^{\prime} \mathrm{a}-\mathrm{H}\right), 2.35-2.65\left(\mathrm{~m}, 6 \mathrm{H}, 1 \mathrm{~b} / 1^{\prime} \mathrm{b} / 4 \mathrm{~b} / 4^{\prime} \mathrm{b} / 11 \mathrm{a} / 11 \mathrm{~b}-\mathrm{H}\right), 2.32\left(\mathrm{tr}, \mathrm{J}_{17}\right.$ $\left.{ }_{20}=\mathrm{J}_{17-16}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 17-\mathrm{H}\right), 2.27(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J} 21-20$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 21-\mathrm{H}), 1.06\left(\mathrm{~d}, \mathrm{~J}_{21^{\prime}-20^{\prime}}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, 21^{\prime}-\mathrm{H}\right), 1.05(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}), 1.03(\mathrm{~s}$, $\left.3 \mathrm{H}, 18^{\prime}-\mathrm{H}\right), 1.00\left(\mathrm{~m}, 1 \mathrm{H}, 9^{\prime}-\mathrm{H}\right), 0.92\left(\mathrm{~d}, \mathrm{~J}_{27^{\prime}-25^{\prime}}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 27^{\prime}-\mathrm{H}\right), 0.89(\mathrm{~s}, 3 \mathrm{H}, 19-$ H), 0.87 (s, 3H, 19'-H), 0.81 (d, J $\left.\mathrm{J}_{27-25}=6.4 \mathrm{~Hz}, 27-\mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.9$ (C, 14-C), 157.7 (C, 14'-C), 155.2 (C, 12-C), 148.6, 148.5, 148.4, 148.3 (all C, pyrazine-C), $119.8\left(\mathrm{CH}, 15{ }^{\prime}-\mathrm{C}\right), 117.7(\mathrm{CH}, 15-\mathrm{C}), 107.4(\mathrm{C}, 22-\mathrm{C}), 106.0\left(\mathrm{CH}_{2}\right.$, 28-C), 87.1 (CH, 22'-C), 86.0 (CH, 16'-C), 84.2 (CH, 16-C), 79.4 (CH, 12'-C), 68.2 ($\left.\mathrm{CH}_{2}, 26{ }^{\prime}-\mathrm{C}\right), 67.1\left(\mathrm{CH}_{2}, 26-\mathrm{C}\right), 59.3\left(\mathrm{CH}, 17^{\prime}-\mathrm{C}\right), 54.7(\mathrm{CH}, 9-\mathrm{C}), 53.9(\mathrm{CH}, 17-\mathrm{C})$, 53.4 (C, 13-C), 52.9 (C, 13'-C), 51.9 (CH, 9'-C), 45.7, 45.6 ($\left.2 \mathrm{xCH}_{2}, 1 / 1^{\prime}-\mathrm{C}\right), 44.1$ $(\mathrm{CH}, 21-\mathrm{C}), 41.4(\mathrm{CH}), 41.3(\mathrm{CH}), 41.2(\mathrm{CH}), 36.0(\mathrm{C}), 35.9(\mathrm{C}), 35.8(\mathrm{CH}), 35.2$, $34.6\left(2 \mathrm{xCH}_{2}, 4 / 4{ }^{\prime}-\mathrm{C}\right), 33.8(\mathrm{CH}), 32.3(\mathrm{CH}), 31.4\left(\mathrm{CH}_{2}\right), 30.4(\mathrm{CH}), 30.3\left(\mathrm{CH}_{2}\right), 30.2$ $\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 27.9$
$\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{3}, 18-\mathrm{C}\right), 17.2,16.9,16.6$ (all CH $\left.3,18 ' / 21 / 21^{\prime}-\mathrm{C}\right), 14.0,13.9$ (both $\mathrm{CH}_{3}, 27 / 27^{\prime}-\mathrm{C}$), 11.8, 11.7 (both $\mathrm{CH}_{3}, 19 / 19$ '-C).

HMBC Experiment: (18-H, C-14), (18-H, C-12), (17-H, C-12), (21-H, C-17), (21-H, C-22), (18'-H, C-14'), (16'-H, C-14'), (17'-H, C-22'), (21'-H, C-17'), (21'-H, C-22'). Notes and spectral comparison between (4) and (5): from 1D-NMR, it was noticed that 15^{\prime} and $16^{\prime}-\mathrm{H}$ in (4) are about 0.1 ppm down-fielded than their corresponding values in (5). However, the highest ${ }^{13} \mathrm{C}$-chemical shift difference between (4) and (5) was recorded for $\mathrm{C}-14$ which was about 2.7 ppm . On the other hand, a remarkable difference in the chemical shift between the two protons at $\mathrm{C}-28$ was noticed. The $\left|\mathrm{J}_{\text {geminal }}\right|$ between 28a and 28b-H in the closed-half of (5) was about 8-folds larger than that in the opened-half of (4). This established a quick technique to determine the opened-side in such analogues rather than 2D-NMR analysis.

Compound 7:

A solution of compound (6), resulted from dissolving 60 mg ($68.6 \mu \mathrm{~mol}$) in 5.0 mL abs. THF at $0^{\circ} \mathrm{C}$, was treated with 3-methoxycatechol-borane complex (15 mg of the ligand dissolved in 1.0 mL of abs. THF and 0.1 mL of BH_{3}.THF). After stirring for one day at $(0-5)^{\circ} \mathrm{C}$, the substrate was further treated with 5-chlorosalicylic acidborane complex (120 mg of the ligand ($670 \mu \mathrm{~mol}$) in 3.0 mL abs. THF and 1.0 mL BH_{3}.THF (1.0 M) prepared using the above-mentioned standard procedure. The reaction was conducted in refrigerator at $5^{\circ} \mathrm{C}$ for further 3 days before quenching it with 0.6 mL of 6.0 M NaOH solution followed by adding 0.6 mL of $35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution and stirring for 1 h . Washing with saturated sodium carbonate solution twice to get ride of the free ligand followed by removing the solvent under low pressure, resulted in a light yellow crude material which after column chromatographic separation (silica gel, EA/PE (1:2) elution) yielded $47 \mathrm{mg}(78 \%)$ of the mono-opened product (7) in addition to 8 mg of the untransformed in-between product.

IR: $\left(\mathrm{CHCl}_{3} / v_{\text {max }} / \mathrm{cm}^{-1}\right) ; 3610 \mathrm{br}(\mathrm{O}-\mathrm{H}), 2931 \mathrm{~s}(\mathrm{C}-\mathrm{H}), 1728 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1648 \mathrm{w}(\mathrm{C}=\mathrm{C})$, $1602 \mathrm{w}(\mathrm{C}=\mathrm{C}), 1458 \mathrm{~m}(\mathrm{C}-\mathrm{H}), 1400 \mathrm{~s}$ (pyrazine), $1241 \mathrm{~s}(\mathrm{C}-\mathrm{O})$.

LC-MS (ESI/ positive): $979.5726\left(\mathrm{MH}^{+}\right)$, base peak. FAB-MS: (NBA-Matrix) m/z (\%); $878\left(\mathrm{M}^{+}, 100\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 15 \mathrm{H}-\mathrm{H}), 5.34(\mathrm{~m}, 1 \mathrm{H}, 15-\mathrm{H}), 4.88(\mathrm{dd}$, $\left.\mathrm{J}_{16^{\prime}-17^{\prime}}=8.4 \mathrm{~Hz}, \mathrm{~J}_{16^{-15}}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 16^{\prime}-\mathrm{H}\right), 4.76\left(\mathrm{dd}, \mathrm{J}_{16-17}=6.7 \mathrm{~Hz}, \mathrm{~J}_{16-15}=2.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 16-\mathrm{H}$), 3.74 (s, 3H, 28-H), 3.40-3.52 (m, 5H, 26a/26b/26'a/26'b/22-H), 3.24 (dd,
$\left.\mathrm{J}_{12^{\prime}-11^{\prime} \mathrm{a}}=11.2 \mathrm{~Hz}, \mathrm{~J}_{12^{\prime}-11^{\prime} \mathrm{b}}=4.6 \mathrm{~Hz}, 1 \mathrm{H}, 12^{\prime}-\mathrm{H}\right), 2.91\left(\mathrm{br} \mathrm{d}, \mathrm{J}_{1^{\prime} \mathrm{a}-\mathrm{l}^{\prime} \mathrm{b}}=16.5 \mathrm{~Hz}, 1 \mathrm{H}, 1^{\prime} \mathrm{a}-\mathrm{H}\right)$, 2.82 (m, 2H, 4a/4'a-H), 2.34-2.69 (m, 9H, 1a/1b/1'b/4b/4'b/17/17'/11-H), 1.25 (s, 3H, $18-\mathrm{H}), 1.06\left(\mathrm{~d}, \mathrm{~J}_{21^{\prime}-20^{\prime}}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 21^{\prime}-\mathrm{H}\right), 1.03\left(\mathrm{~s}, 3 \mathrm{H}, 18^{\prime}-\mathrm{H}\right), 0.97\left(\mathrm{~d}, \mathrm{~J}_{21-20}=6.6\right.$ $\mathrm{Hz}, 3 \mathrm{H}, 21-\mathrm{H}), 0.91\left(\mathrm{~d}, \mathrm{~J}_{27-25}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 27-\mathrm{H}\right), 0.88(\mathrm{~s}, 3 \mathrm{H}, 19 \mathrm{H}-\mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}, 19-$ H), $0.81\left(\mathrm{~d}, \mathrm{~J}_{27^{\prime}-25^{\prime}}=6.2 \mathrm{~Hz}, 27^{\prime}-\mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3(\mathrm{C}, 12-\mathrm{C})$, 157.2 (C, 14'-C), 148.6, 148.5, 148.4, 148.3 (all C, pyrazine-C), 135.2 (C, 14-C), 119.7 (CH, 15'-C), 113.3 (CH, 15-C), 106.7 (C, 22'-C), 91.6 (CH, 22-C), 90.2 (CH, $16-\mathrm{C}), 84.5\left(\mathrm{CH}, 16{ }^{\prime}-\mathrm{C}\right), 79.0\left(\mathrm{CH}, 12^{\prime}-\mathrm{C}\right), 68.1\left(\mathrm{CH}_{2}, 26-\mathrm{C}\right), 67.2\left(\mathrm{CH}_{2}, 26{ }^{\prime}-\mathrm{C}\right), 60.1$ (CH), 58.4 (CH, 17-C), 57.4 (C, 13-C), 56.0 (CH, 17'-C), 52.7 (C, 13'-C), $52.4(\mathrm{CH})$, $52.0\left(\mathrm{CH}_{3}, 28-\mathrm{C}\right), 52.1\left(\mathrm{CH}, 9{ }^{\prime}-\mathrm{C}\right), 45.6,44.6$ (both $\left.\mathrm{CH}_{2}, 1 / 1^{\prime}-\mathrm{C}\right), 44.4(\mathrm{CH}), 42.7$ (CH), 41.7 (CH), 41.5 (CH), 38.7 (CH, 8-C), 37.1 (C, 10-C), 36.0 (C, 10'-C), 35.8, 35.2 (both $\left.\mathrm{CH}_{2}, 4 / 4{ }^{\prime}-\mathrm{C}\right), 33.7(\mathrm{CH}), 32.2\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 31.0(\mathrm{CH}), 30.4(\mathrm{CH})$, $29.9\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{3}, 18-\mathrm{C}\right), 29.2\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 26.5$ $\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{2}\right), 18.5\left(\mathrm{CH}_{3}, 27-\mathrm{C}\right), 17.2\left(\mathrm{CH}_{3}, 27^{\prime}-\mathrm{C}\right), 16.6\left(\mathrm{CH}_{3}, 21-\mathrm{C}\right), 14.1\left(\mathrm{CH}_{3}\right.$, 19-C), $13.9\left(\mathrm{CH}_{3}, 21^{\prime}-\mathrm{C}\right), 13.3\left(\mathrm{CH}_{3}, 18{ }^{\prime}-\mathrm{C}\right), 11.8\left(\mathrm{CH}_{3}, 19{ }^{\prime}-\mathrm{C}\right)$.

Compound 9:

A solution of ($\mathbf{8}$) ($55 \mathrm{mg}, 60.8 \mu \mathrm{~mol}$, dissolved in 2 mL abs. THF at $0^{\circ} \mathrm{C}$) was treated with the diaminobenzonitrile-borane complex. This complex was prepared from dissolving 80 mg of diaminobenzonitrile ($600 \mu \mathrm{~mol}$) in 3 mL abs.THF at $0^{\circ} \mathrm{C}$ followed by slow addition of 0.6 mL of BH_{3}. THF (1 M solution) then stirring for 30 min . The combined solution was stirred for 1 h at $0^{\circ} \mathrm{C}$ and conducted in refrigerator at $8^{\circ} \mathrm{C}$ for one week which then resulted in a multi-spot products with one major (TLC follow). The reaction was worked up by adding 2 mL of 5.0 M NaOH solution and 2 mL of $35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution and stirring vigorously for 2 h followed by extracting the resulted products with chloroform twice. Removing the solvents from the combined organic phase after drying with MgSO_{4} and chromatographic separation of the crude material on column chromatography (silica gel, 1:2 EA:PE eluent) resulted in 20 mg of (9) (36\%) in addition to 12 mg of (10) and 7 mg of the starting material (8). IR ($\mathrm{CHCl}_{3} / \nu_{\max }\left(\mathrm{cm}^{-1}\right)$): $3612 \mathrm{br}(\mathrm{O}-\mathrm{H}), 2930 \mathrm{~s}(\mathrm{C}-\mathrm{H}), 1725 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1647 \mathrm{w}(\mathrm{C}=\mathrm{C})$, $1458 \mathrm{~m}(\mathrm{C}-\mathrm{H}), 1399 \mathrm{~s}$ (pyrazine), 1243 (C-O).

LC-MS (ESI/positive): $923.5833\left(\mathrm{MH}^{+}\right)$. Single Mass Analysis: found 923.5784 $\left(\mathrm{C}_{56} \mathrm{H}_{79} \mathrm{~N}_{2} \mathrm{O}_{9}\right)$, calculated 923.5786 (-0.2 PPM)
${ }^{1} \mathbf{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.33\left(\mathrm{~m}, 1 \mathrm{H}, 15^{\prime}-\mathrm{H}\right), 4.88\left(\mathrm{dd}, \mathrm{J}_{16^{\prime}-17^{\prime}}=7.2 \mathrm{~Hz}, \mathrm{~J}_{16^{\prime}-15^{\prime}}\right.$ $\left.=2.8 \mathrm{~Hz}, 1 \mathrm{H}, 16{ }^{\prime}-\mathrm{H}\right), 4.39\left(\mathrm{tr}, \mathrm{J}_{16-17}=\mathrm{J}_{16-15}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H}\right), 4.05\left(\mathrm{dd}, \mathrm{J}_{15-16}=7.2\right.$ $\mathrm{Hz}, \mathrm{J}_{15-14}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{H}$), 3.75 (s, 3H, 28-H), 3.72 ($\mathrm{s}, 3 \mathrm{H}, 28 \mathrm{'}^{-\mathrm{H}}$), 3.35-3.52 (m, 4H, 26a/ 26'a/26b/26'b-H), 2.78-2.88 (m, 2H, 4'a/4'b-H), 2.32-2.70 (m, 7H, 1a/1'a/1b/ 1'b/4a/ 4b/11-H), 2.25 (m, 1H, 17-H), 1.24 (s, 3H, 18'-H), 0.97 (d, J $21-20=6.7 \mathrm{~Hz}, 3 \mathrm{H}$, $21-\mathrm{H}), 0.95\left(\mathrm{~d}, \mathrm{~J}_{21}-20=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 21^{\prime}-\mathrm{H}\right), 0.83(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{H}), 0.82\left(\mathrm{~s}, 3 \mathrm{H}, 19^{\prime}-\mathrm{H}\right)$, $0.80,0.79\left(2 \mathrm{~d}, \mathrm{~J}_{27-25}=\mathrm{J}_{27^{\prime}-25^{\prime}}=6.5 \mathrm{~Hz}, 6 \mathrm{H}, 27 / 27^{\prime}-\mathrm{H}\right), 0.78(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{H}) .{ }^{13} \mathbf{C}$ NMR: $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=175.0$ (C, 12-C), 174.6 (C, 12'-C), 164.7 (C, 14'-C), 148.5, 148.4, 148.2, 148.1 (all C, pyrazine-C), 113.9 (CH, 15'-C), 109.4 (C, 22'-C), 107.6 (C, 22-C), 87.9 (CH, 16'-C), $81.9(\mathrm{CH}, 16-\mathrm{C}), 71.9(\mathrm{CH}, 15-\mathrm{C}), 67.3,66.8$ (both CH_{2}, 26/26'-C), 61.1 (CH, 9-C), 58.8 (CH, 9'-C), 56.9 (C, 13'-C), 56.5 (CH, 17'-C), 55.8 $(\mathrm{CH}), 55.6(\mathrm{CH}), 54.6(\mathrm{CH}, 17-\mathrm{C}), 53.3(\mathrm{C}, 13-\mathrm{C}), 52.6\left(\mathrm{CH}_{3}, 28-\mathrm{C}\right), 52.4(\mathrm{CH}, 11$ C), $51.9\left(\mathrm{CH}_{3}, 28{ }^{\prime}-\mathrm{C}\right), 46.1(\mathrm{CH}), 44.6,43.2$ (both $\left.\mathrm{CH}_{2}, 1 / 1^{\prime}-\mathrm{C}\right), 42.8\left(\mathrm{CH}, 20^{\prime}-\mathrm{C}\right)$, $41.8(\mathrm{CH}), 40.5(\mathrm{CH}), 38.5(\mathrm{CH}), 37.2\left(\mathrm{CH}, 8^{\prime}-\mathrm{C}\right), 36.1\left(\mathrm{C}, 10^{\prime}-\mathrm{C}\right), 35.6(\mathrm{C}, 10-\mathrm{C})$, $35.0\left(\mathrm{CH}_{2}, 4\right.$ - C$), 32.0\left(\mathrm{CH}_{2}, 4-\mathrm{C}\right), 31.8\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 30.3,30.2$ (both CH), $28.9\left(\mathrm{CH}_{3}, 18\right.$ '-C), $28.7\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 27.8$ $\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{3}, 18-\mathrm{C}\right), 17.2,17.1$ (both $\mathrm{CH}_{3}, 27 / 277^{\prime}-\mathrm{C}$), 14.0, 13.9 (both CH_{3}, 21/21'-C), 12.0, 11.6 (both $\mathrm{CH}_{3}, 19 / 19^{\prime}-\mathrm{C}$).

