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Abstract: The importance of solid-solution–aqueous-solution (SSAS) equilibria requires the
incorporation of solid solutions into thermodynamic models for industrially and environ-
mentally relevant applications. Insights from appropriate measurements and recent database
developments have made such extensions feasible. Examples illustrating various types of sta-
ble and metastable equilibria involving solid solutions will be given.
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INTRODUCTION 

Understanding various chemical, geochemical, and physiological processes as well as industrial and
environmental problems requires a thorough knowledge of thermodynamic principles and data govern-
ing solid-solute phase equilibria in electrolyte solutions. General equations for Gibbs functions of solid
and aqueous phases together with parameters determined in simple systems are essential for the pre-
diction of solubilities in complex mixtures over wide ranges of temperature, pressure, and concentra-
tion. Upon appropriate differentiation, these equations yield other quantities, including osmotic and
activity coefficients, excess enthalpies, entropies, heat capacities, and volumes. These thermodynamic
quantities are again related to measurable properties of the substances involved [1].

Solid-solute equilibrium chemistry has often been restricted to pure solids. However, most natu-
rally occurring minerals, as well as solid electrolytes produced industrially, are “solid solutions” (actu-
ally, homogeneous solid mixtures), whose solubilities not only depend on those of the respective com-
ponents (often called “end-members”, especially in the geochemical literature) but also on excess Gibbs
energies of mixing. Different types of data have been employed for determining excess Gibbs functions
of electrolyte solid solutions:

• thermochemical data, i.e., enthalpies of mixing and activities,
• high-temperature phase diagram data,
• low-temperature phase equilibrium data, including

- miscibility gap data,
- thermodynamic equilibrium solubilities,
- stoichiometric saturation solubilities, and
- distribution coefficient data.
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The thermodynamic implications of various types of equilibria between solid and aqueous
electro lyte solutions have been developed by Gamsjäger et al. [2–13] and others, e.g., [14–18].

THERMODYNAMICS OF SOLID-SOLUTION–AQUEOUS-SOLUTION (SSAS) EQUILIBRIA

The crucial role of thermodynamics to industrial, geochemical, environmental, and physiological sys-
tems involving chemical reactions has been widely recognized. However, the inclusion of solid solu-
tions has traditionally been limited to systems of geochemical importance. Only recently, solid solutions
are being implemented in models for hydrometallurgical applications.

The general derivation of equilibrium conditions for binary SSAS systems [3] starts from the total
Gibbs energy as a function of the composition of the solid phase, x, and the extent of the dissolution
reaction, ξ,

dG = (∂G/∂x)ξ dx + (∂G/∂ξ)x dξ = 0 (1)

This condition can be satisfied in two ways,

(∂G/∂x)ξ = 0 and (∂G/∂ξ)x = 0 (2)

dx = 0 and (∂G/∂ξ)x = 0 (3)

It has been shown [3] that conditions (2) correspond to a stable phase equilibrium characterized by
equal chemical potentials of the two components in the solid and aqueous phase, whereas conditions
(3) correspond to a constrained, metastable equilibrium involving a solid phase that reacts with constant
composition, x. Conditions (3) are equivalent to equal molar Gibbs energies of the two phases [3]; the
corresponding constrained equilibria are also known as “stoichiometric saturation” [14]. In the follow-
ing, these two types of equilibria will be discussed by means of specific examples, together with a third
type that is thermodynamically less rigorously defined.

Stable solubility equilibria

The attainment of stable equilibria involves complete recrystallization leading to a homogeneous solid
phase with equilibrium composition, which usually requires long equilibration times. This case is fre-
quently found for highly soluble, simple salts such as halogenides [6] or sulfates [18].

Aqueous mixtures of sulfuric acid and metal sulfates are not only relevant for “acid mine
drainage” (or other situations where sulfides oxidize in natural environments), but also for acid pressure
leaching of latertites or oxidative leaching of sulfide ores. Kobylin et al. have recently developed a
Pitzer model for the Fe2+−Ni2+−Mn2+−H+−SO4

2−−H2O system [19–21]. Combined with a Pitzer model
for the Zn2+−H+−SO4

2−−H2O system [22], the solubility of Ni(1–x)ZnxSO4�7H2O will be predicted and
compared with experimental data [23].

Stable solubility equilibria have been represented graphically in so-called Lippmann diagrams
[15], in which “total solubility constants” are plotted vs. mole fractions in the solid and “activity frac-
tions” in the aqueous phase. For a binary solid solution of 1:1 electrolytes MA and NA, M(1–x)NxA, the
total solubility product, ΣKsp, and the activity fraction, xact, are defined as

ΣKsp = ({M+} + {N+}) {A–} (4)

xact = {N+}/({M+} + {N+}) = {N+}{A–}/ΣKsp (5)

respectively. In eqs. 4 and 5, { } denote activities of ions in the aqueous phase. The equilibrium condi-
tions (2) require that eq. 4 is equal to

ΣKsp = (1 – x)γMAKMA + xγNAKNA (6)
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where γi and Ki are the activity coefficent in the solid phase and the (“partial”) solubility product of
component i, respectively. The activity coefficients are related to the molar excess Gibbs energy of the
solid phase by eq. 7.

GE(s)/RT = (1 – x) lnγMA + x lnγNA (7)

Equations 5 and 6 define the (lower) “solutus” and (upper) “solidus” curves of the Lippmann diagram,
respectively. To relate these quantities to concentrations (i.e., solubilities), activity coefficients of the
aqueous species are generally required. Since solubility measurements on sparingly soluble salts are
often performed in a background electrolyte medium of constant ionic strength, e.g., [2–4,8,11], activ-
ity coefficients are kept constant and activities can be replaced by concentrations. This means that the
activity fractions (eq. 5) become mole fractions and the solubility constants are defined in terms of con-
centrations.

A more convenient representation for highly soluble electrolytes is in terms of φΣm (where φ is
the osmotic coefficient and Σm is the total molality of the two components) and mole fractions in both
the solid and the aqueous phase [7]. The product φΣm is a thermodynamic potential, which ensures that
this solubility diagram is thermodynamically equivalent to a Type II phase diagram, i.e., it is topologi-
cally equivalent to the familiar T–x and P–x diagrams [7]. The φΣm diagram for Ni(1–x)ZnxSO4�7H2O
has been calculated with ChemSage [24] and is shown in Fig. 1. ChemSage belongs to the
FactSage/ChemApp software family of Gibbs energy minimizers [25]. These programs are capable of
calculating phase equilibria and thermodynamic properties for multicomponent systems involving a
variety of nonideal phases. For systems of interest to this study, these can be represented by, e.g., the
Pitzer model for the aqueous phase and a “subregular” or more complex substitutional model for the
solid phase. For a subregular mixture, GE(s) is given by 

GE(s)/RT = x(1 – x)[a0 + a1(1 – 2x)] (8)

where a0 and a1 are dimensionless parameters that can be temperature dependent. For a regular mix-
ture (a1 = 0), the thermodynamic conditions for diffusional stability of a phase require that a0 < 2; other -
wise, a separation in two phases (demixing) is thermodynamically favored [26]. For alkali halide solid
solutions, the excess Gibbs energies, enthalpies, and volumes are generally positive, which has been
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Fig. 1 φΣm diagram for Ni(1–x)ZnxSO4�7H2O solubilities. Experimental data: solid squares, solid phase; open
squares, aqueous phase [23].



correlated with a volume mismatch arising from differences in the end-member lattice parameters
[27,28]. In this way, a consistent thermodynamic description of both solid–aqueous and solid–liquid
phase diagrams for binary alkali halide systems was achieved [6,28]. Similar correlations between inter-
action parameters and the volume mismatch of the two end-members have been proposed for other sys-
tems [29].

However, for Ni(1–x)ZnxSO4�7H2O it has been found that the components mix (almost) ideally in
the solid phase [23]. Such close-to-ideal mixing behavior has been attributed to a greater ability of more
complex structures to absorb the strain caused by end-member volume mismatch [29]. Given that the
experimental solubility and osmotic coefficient data [23] have not been used in the parameterization of
the model, the agreement between predicted (assuming ideal mixing, i.e., a0 = a1 = 0) and measured
values is very reasonable. 

Constrained, metastable solubility equilibria

Metastable equilibria are attained when the solid solution dissolves congruently, i.e., under the con-
straint of constant composition of the solid phase. When dissolved in pure solvent (or in a suitable ionic
medium), this results in equal mole fractions of solid and aqueous species. Constrained equilibria of this
kind are in general found when the kinetics of congruent dissolution is faster than the recrystallization
of the original solid solution or the formation of secondary phases (e.g., basic salts). They are common
for sparingly soluble salts with similar end-member solubility constants (e.g., transition-metal carbon-
ates). Gamsjäger [2] demonstrated stoichiometric saturation for the dissolution of Co(1–x)MnxCO3 solid
solutions experimentally and recognized that these metastable equilibria correspond to equal molar
Gibbs energy functions of the solid and aqueous phases, which can be represented by an “equal-G
curve” (EGC) in Lippmann diagrams [2].

The EGC can be derived from the conditions for metastable equilibrium (eq. 3) and is given by
[3,13]

ΣKEGC = (1 – x) ln KMA + x ln KNA + GE(s)/RT (9)

Thus, in ln ΣKEGC – x diagrams, the deviation from the straight line connecting ln KMA and ln KNA is
directly related to the molar excess Gibbs energy of mixing in the solid phase, GE(s). 

Flis et al. [30] have recently investigated the solubility of the pyromorphite,
Pb5(PO4)3Cl–mimetite, Pb5(AsO4)3Cl, solid-solution series. This system has gained interest for metals
sequestration in water and soil treatment. Flis et al. [30] have found that these solid solutions dissolve
congruently and the two components mix ideally in the solid-solution phase. However, their treatment
reveals a pitfall that should be avoided in the construction of Lippmann diagrams. The definition of the
total solubility constant, ΣK, must be based on one mole of the components that mix in the solid solu-
tion (since the Gibbs energy of mixing is an extensive quantity). For the present system, the correct def-
inition of the total solubility constant (solidus line) therefore reads

1/3 log ΣKsp = log{(1 – xAs) [Ksp(Pb5(PO4)3Cl)]1/3 + xAs [Ksp(Pb5(AsO4)3Cl)]1/3} (10)

since Ksp refers to three PO4 and AsO4 groups (Fig. 2, dashed lines). If the exponent of 1/3 in eq. 10 is
omitted [30], the resulting Lippmann diagram (Fig. 2, dotted lines) and other derived quantities (e.g.,
Roozeboom diagrams, Gibbs energies of mixing) are incorrect. 
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“Primary saturation” and hypothetical end-members 

A different type of solubility behavior has been observed for solid solutions with very different end-
member solubility constants. In these cases it may appear that the more soluble component dissolves
preferentially, leaving the less soluble component behind in the solid phase. However, in many cases,
secondary solid phases similar (or equal) to the less soluble component precipitate when the total solu-
bility product exceeds the (lower) “solutus” line of the Lippmann diagram (“primary saturation” [16]).
These secondary solid phases may form layers on the surface of the original phase, thus preventing its
further dissolution. Prominent examples are magnesian calcites [14] or Cd(1–x)CaxCO3 solid solutions
[8]. Based on the ionic radii of the components, the latter are regarded as close to ideal, which was
experimentally confirmed by direct observation of the (upper) “solidus” line of the Lippmann diagram
[8] (in measurements that were similar to precipitation experiments). 

In contrast, owing to significantly different radii of Ca2+ and Mg2+ ions, magnesian calcites
should be highly nonideal. This conclusion was also arrived at by solubility measurements under the
assumption that magnesite is the second end-member, which suggested a large, positive excess Gibbs
function corresponding to an extensive region of demixing. Since magnesite does not precipitate at
ambient conditions, it was proposed to describe stable and metastable solubilities of magnesian calcites
using a thermodynamically consistent nonideal model of dilute solid solutions with a hypothetical,
more soluble MgCO3 end-member [10]. This model was capable of explaining results of precipitation
experiments leading to ca. 20 mol % Mg-calcites (see ref. [13] for further references and discussion). 

A system of industrial importance for the Bayer process is the α-FeOOH (goethite)–α-AlOOH
(diaspore) solid-solution series. Calorimetric measurements [31] suggest highly positive excess
enthalpies and consequently negligible solid solubility. However, phase-pure Al-goethites with x(Al) <
0.15 can be precipitated from aqueous solution at 70 °C [32]. After calculation of mole fractions and
total solubility constants from the precipitation data reported in ref. [32], data for the “solidus” line sug-
gest that Al-goethites can be modelled as dilute solid solutions of goethite with a hypothetical “AlOOH”
end member (Fig. 3), whose solubility constant is significantly greater than those of diaspore, boehmite,
and gibbsite, as calculated from thermodynamic data [33,34]. This dilute solid-solution model is sup-
ported by the fact that diaspore does not normally precipitate from aqueous solution under diagenetic
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Fig. 2 Lippmann diagram of the pyromorphite, Pb5(PO4)3Cl–mimetite, Pb5(AsO4)3Cl, solid solution series.
Experimental data: squares [30]. EGC, solid; Lippmann diagram with correct (dashed) and incorrect (dotted) Gibbs
energy of mixing.



conditions [35]. Although a number of experimental observations, particularly regarding the competi-
tion between goethite and hematite precipitation [32], can be explained by kinetic rather than thermo-
dynamic considerations, the present model suggests that the maximum Al content in goethite [x(Al) ≈
0.27]) is limited by the precipitation of gibbsite, in accordance with experimental results [32]. The
dilute solid-solution model is not valid outside its parameterization range (dotted lines in Fig. 3).

For the Bayer process, it can be concluded that goethite, if precipitated, may incorporate Al,
which results in a loss of product.

The examples discussed in this report indicate that some expert knowledge is required to decide
which type of SSAS equilibrium should be considered in the modeling of a particular system.
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