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Abstract: Statistical–mechanical, 3D-RISM-KH molecular theory of solvation (3D reference
interaction site model with the Kovalenko–Hirata closure) is promising as an essential part
of multiscale methodology for chemical and biomolecular nanosystems in solution. 3D-
RISM-KH explains the molecular mechanisms of self-assembly and conformational stability
of synthetic organic rosette nanotubes (RNTs), aggregation of prion proteins and β-sheet
amyloid oligomers, protein-ligand binding, and function-related solvation properties of com-
plexes as large as the Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC) and
GroEL/ES chaperone. Molecular mechanics/Poisson–Boltzmann (generalized Born) surface
area [MM/PB(GB)SA] post-processing of molecular dynamics (MD) trajectories involving
SA empirical nonpolar terms is replaced with MM/3D-RISM-KH statistical–mechanical
evaluation of the solvation thermodynamics. 3D-RISM-KH has been coupled with multiple
time-step (MTS) MD of the solute biomolecule driven by effective solvation forces, which
are obtained analytically by converging the 3D-RISM-KH integral equations at outer time-
steps and are calculated in between by using solvation force coordinate extrapolation (SFCE)
in the subspace of previous solutions to 3D-RISM-KH. The procedure is stabilized by the
optimized isokinetic Nosé–Hoover (OIN) chain thermostatting, which enables gigantic outer
time-steps up to picoseconds to accurately calculate equilibrium properties. The multiscale
OIN/SFCE/3D-RISM-KH algorithm is implemented in the Amber package and illustrated on
a fully flexible model of alanine dipeptide in aqueous solution, exhibiting the computational
rate of solvent sampling 20 times faster than standard MD with explicit solvent. Further sub-
stantial acceleration can be achieved with 3D-RISM-KH efficiently sampling essential events
with rare statistics such as exchange and localization of solvent, ions, and ligands at binding
sites and pockets of the biomolecule. 3D-RISM-KH was coupled with ab initio complete
active space self-consistent field (CASSCF) and orbital-free embedding (OFE) Kohn–Sham
(KS) density functional theory (DFT) quantum chemistry methods in an SCF description of
electronic structure, optimized geometry, and chemical reactions in solution. The (OFE)KS-
DFT/3D-RISM-KH multi scale method is implemented in the Amsterdam Density Functional
(ADF) package and extensively validated against experiment for solvation thermochemistry,
photochemistry, conformational equilibria, and activation barriers of various nanosystems in
solvents and ionic liquids (ILs). Finally, the replica RISM-KH-VM molecular theory for the
solvation structure, thermodynamics, and electrochemistry of electrolyte solutions sorbed in
nanoporous materials reveals the molecular mechanisms of sorption and supercapacitance in
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nanoporous carbon electrodes, which is drastically different from a planar electrical double
layer.

Keywords: chemical physics; computational chemistry; computer-aided molecular design;
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INTRODUCTION: A CHALLENGE OF MULTISCALE THEORY, MODELING, AND
SIMULATION OF NANOSYSTEMS

Nanoscale properties, phenomena, and processes are profoundly different from the macroscopic laws
governing the behavior of continuous media and materials. Functional features of nanostructures all
stem from microscopic properties of the atoms and chemical groups they are built with, but manifest on
length scale from one to hundreds of nanometers and time scale up to microseconds and more. By chan-
ging size, composition, and fabrication protocol, the properties of nanostructures and processes
 involving them can be tuned up in a wide range. Predictive modeling of nanosystems should operate at
length scales from an ångström to hundreds of nanometers and microns and time scales from femto -
seconds to milliseconds and seconds (e.g., in the description of various biological cellular systems
 acting as nanomachines operating in a crowded environment), and yet derive their properties from the
chemical functionalities of the constituents. Explicit molecular modeling of such nanosystems involves
millions and billions of molecules and is by far not feasible in a “brute force” approach employing just
ab initio quantum chemical methods and/or molecular simulations. A proper way thus requires multi -
scale  methods coupling several levels of description, from electronic structure methods for building
blocks and classical molecular simulations for critical aggregates in the system, to statistical–mechani-
cal theories for their large assemblies and mean properties in a statistical ensemble over characteristic
size and time scales, to eventually come up with macroscopic-scale properties of the nanostructures and
related processes showing up in the “real observable world”. A true, genuine challenge of multiscale
modeling is a theoretical  framework that couples methods at different scales, so that observables at
lower-level  scales are analytically linked to force fields of more coarse-grained models at higher-level
scales. Statistical mechanics itself is an example of such a theoretical coupling between microscopic
molecular variables and thermo dynamic, macroscopic properties.

STATISTICAL–MECHANICAL, 3D-RISM-KH MOLECULAR THEORY OF SOLVATION

Integral equation theory of liquids [1] is becoming increasingly popular, as it provides a firm platform
to handle complex chemical and biomolecular systems in solution. The methodology that has shown
substantial success for a number of systems in solution is based on the first-principles foundation of sta-
tistical mechanics and Ornstein–Zernike (OZ)-type integral equation theory of molecular liquids [1],
also known as reference interaction site model (RISM) molecular theory of solvation [1,2]. As distinct
from molecular simulations which explore the phase space by direct sampling, RISM theory operates
with spatial distributions rather than trajectories of molecules and is based on analytical summation of
the free energy diagrams, which yields the solvation structure and thermodynamics in the statisti-
cal–mechanical ensemble. It yields the solvation structure by solving the RISM integral equations for
the correlation functions and then the solvation thermodynamics analytically as a single integral in
terms of the correlation functions obtained. Its three-dimensional (3D) version, 3D-RISM theory gives
the 3D maps of distributions of solvent around a solute macromolecule of arbitrary shape [3–11]. An
important component of 3D-RISM theory has been the closure proposed by Kovalenko and Hirata (KH
approximation) [8,11]. For simple and complex solvents and solutions of a given composition, includ-
ing buffers, salts, polymers, ligands, and other cofactors at a finite concentration, the 3D-RISM-KH
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molecular theory of solvation properly accounts for chemical functionalities by representing in a single
formalism both electrostatic and nonpolar features of solvation, such as hydrogen bonding, structural
solvent molecules, salt bridges, solvophobicity, and other electrochemical, associative, and steric
effects. For real systems, solving the 3D-RISM-KH integral equations is far less computationally
expensive than running molecular simulations which must be long enough to sample all relevant
exchange and binding events. This enables handling complex systems and processes occurring on large
space and time scales, problematic and frequently not even feasible for molecular simulations. The
3D-RISM-KH theory provides a successful description of both simple and complex associating liquids
with various chemical functionalities [12–16] in the whole range of fluid thermodynamic conditions
[17,18] and a variety of local environments in different systems, such as carbon nanotubes [14], syn-
thetic organic rosette nanotubular architectures [19–23], and biomolecular systems [24–33]. The latter
range from structural water and xenon bound in the pocket of lysozyme protein [24,25], permeation of
water and ions through aquaporin channels [25], ligand efflux in the multidrug transporter AcrB [26],
aggregation of amyloid (A)β oligomers and fibrils [27–29] and prion proteins [27,29], binding modes
for inhibitors of the pathological conversion, and aggregation of prion proteins [29] and thiamine
against the extracytoplasmic thiamine binding lipoprotein MG289 [30,31], to biomolecular systems as
large as the ligand-gated ion channel (GLIC) in a lipid bilayer [29,30] and the GroEL/ES chaperone
complex [32]. The RISM/3D-RISM-KH approach provided an insight into a number of experimentally
observed phenomena in soft matter systems, including the structural transitions and related thermo -
dynamic anomalies for the formation of micromicelles and tetrahedral-to-zigzag transformation of the
hydrogen bonding network in water–alcohol mixtures in the whole range of concentrations [34,35],
microscopic structure of interfaces of nonpolar and polar hydrogen bonding forming molecular liquids
[36,37], and microscopic structure of gels formed by oligomeric polyelectrolyte gelators in different
solvents [33]. 

Integral equations for the solvation structure

The solvation structure is represented by the probability density ργ gγ (r) of finding interaction site γ of
solvent molecules at 3D space position r around the solute molecule (which can be both a macromole-
cule and supramolecule), as determined by the average number density ργ in the solution bulk times the
normalized density distribution, or 3D distribution function, gγ (r). The values of gγ (r) > 1 or gγ (r) < 1
indicate areas of density enhancement or depletion, respectively, relative to the average density at a dis-
tance from the solute in the solution bulk where gγ → 1. The 3D distribution functions of solvent inter-
action sites around the solute molecule are obtained from the 3D-RISM integral equation [3–11]

(1)

where hγ (r) is the 3D total correlation function of solvent site γ related to the 3D site distribution func-
tion by gγ (r) = hγ (r) + 1, and cγ (r) is the 3D direct correlation function which has the asymptotics of
the solute–solvent site interaction potential, cγ (r) ~ –uγ (r)/(kBT); the site–site susceptibility of pure sol-
vent χαγ(r) is an input to the 3D-RISM theory; and indices α and γ enumerate all sites on all sorts of
solvent species. Another relation between the 3D total and direct correlation functions, called a closure,
is necessary to complement the 3D-RISM integral equation (1). The exact closure can be formally
expressed as a series in terms of multiple integrals of the combinations of the total correlation functions.
However, it is extremely cumbersome, and in practice is replaced with amenable approximations. The
KH closure approximation [8,11] accounts in a consistent manner for both electrostatic and nonpolar
features (associative and steric effects) of solvation in simple and complex liquids, non-electrolyte and
electrolyte solutions, and complex macromolecular and supramolecular solutes in chemical [8–18], syn-
thetic organic [19–23], biomolecular [24–33], and soft matter [33–37] systems. The 3D-KH closure
reads
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where uγ (r) is the 3D interaction potential between the whole solute and solvent site γ specified by
the molecular force field, and kBT is the Boltzmann constant times the solution temperature. The
3D-KH closure (eq. 2) couples in a nontrivial way the so-called mean spherical approximation (MSA)
and the hypernetted chain (HNC) approximation [1], the former being applied to spatial regions of sol-
vent density enrichment gγ (r) > 1 such as association peaks and critical enhancement long-range tails,
and the latter to regions of density depletion gγ (r) < 1, including the repulsive core. The distribution
function and its first derivative are continuous at the joint boundary gγ (r) = 1 [or equivalently
dγ (r) = 1] by construct. A substantial advantage of the 3D-KH closure approximation is that it prop-
erly accounts for the solvation structure of complex solvated systems with significant association
effects. For comparison, the 3D-HNC closure strongly overestimates such associative effects and
therefore the 3D-RISM-HNC equations diverge in many practical applications for macromolecules
with considerable site charges solvated in polar solvents or electrolyte solutions. Other approximations
such as, for example, the Percus–Yevick (PY), modified Verlet (VM), Martynov–Sarkisov (MS), and
Ballone–Pastore–Galli–Gazzillo (BPGG) closures do not properly account for the electrostatic asymp-
totics of the interaction potential.

The site–site susceptibility of solvent breaks up into the intra- and intermolecular terms

(3)

where the intramolecular correlation function

(4)

represents the geometry of solvent molecules with site–site separations lαγ specified by the molecular
force field (z-matrix in quantum chemistry), and hαγ (r) is the intermolecular, radial total correlation
function between sites α and γ enumerating all sites on all sorts of molecules in bulk solvent. The
site–site total correlation functions hαγ (r) to be input in eq. 3 and then (1) are obtained in advance to
the 3D-RISM-KH calculation from the dielectrically consistent RISM theory [38] coupled with the KH
closure (DRISM-KH approach [11]) which can be applied to the bulk solution of a given composition,
including polar solvent, cosolvent, electrolyte, and ligands at a given concentration. The DRISM inte-
gral equation reads as 

(5a)

where cαγ (r) is the site–site direct correlation function of bulk solvent, an asterisk “*” means convolu-
tion in the direct space, and summation over repeating site indices is implied. Both the intramolecular
correlation functions ω~αγ (r) and total correlation functions h

~
αγ (r) are renormalized due to a dielectric

bridge correction in a particular analytical form [38] that ensures consistency and given value of the
dielectric constant obtained for solvent–solvent, solvent–ion, and ion–ion effective interactions in
electro lyte solution 

(5b)

(5c)

The renormalized dielectric correction enforcing the given phenomenological value of the
dielectric constant and the proper orientational behavior and consistency of the dielectric response in
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the electrolyte solution are obtained in the analytical form specified in the reciprocal k-space as fol-
lows [38]

(6)

where j0(x) and j1(x) are the zeroth- and first-order spherical Bessel functions, rα = (xα,yα,zα) and
rγ = (xγ ,yγ ,zγ ) are the Cartesian coordinates of partial site charges qα and qγ at sites α and γ of the same
solution species s with respect to its molecular origin, and its dipole moment ds = Σα∈sqαrα is oriented
along the z-axis, ds = (0,0,ds). Note that the renormalized dielectric correction (6) is nonzero only for
polar solvent species of sorbed electrolyte solution which possess a dipole moment and thus are respon-
sible for the dielectric response in the DRISM approach. The envelope function hc(k) has the value at
k = 0 determining the dielectric constant of the solution and is assumed in the smooth non-oscillatory
form quickly falling off at wavevectors k larger than those corresponding to characteristic size l of liq-
uid molecules [38]

(7)

where the amplitude A is related to the dielectric constant ε of the electrolyte solution

(8)

The form (6–8) is extended to mixed solvents [39] by using the total number density of solution
polar species

(9)

and the solution dielectric susceptibility 

(10)

The parameter l specifies the characteristic separation from a liquid molecule below which the dielec-
tric correction (6) is switched off so as not to distort the short-range solvation structure. It can be cho-
sen to be about l = 1 Å for water solvent; however, in solvent of larger molecules such as octanol or in
the presence of such cosolvent it should be increased to about l = 10 Å so as to avoid “ghost” associa-
tive peaks appearing in the radial distributions if the dielectric correction (5) interferes with the
intramolecular structure of the large solvent species. 

The DRISM integral eqs. 5 with the site–site version of the KH closure [11] 

(11)

keep the same dielectrically consistent asymptotics (6 and 7) as the originally derived DRISM-HNC
theory [38] but extend the description to solutions with strong associative species in a wide range of
composition and thermodynamic conditions not amenable to HNC due to its overestimation of asso-
ciative forces and phase transition phenomena.
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Analytical expressions for the solvation thermodynamics

As mentioned above, 3D-RISM is an integral equation theory of OZ type based on analytical summa-
tion of the free energy diagrams, which yields the 3D solute–solvent site correlation functions and the
solvation thermodynamics. The KH as well as HNC closure approximations to the 3D-RISM integral
equation have an exact differential of the solvation free energy, and allow one to analytically perform
Kirkwood’s thermodynamic integration gradually switching on the solute–solvent interaction. The sol-
vation free energy of the solute macro- or supramolecule in multicomponent solvent following from the
3D-RISM-KH integral eqs. 1 and 2 is thus given in the closed analytical form as a single integral of the
correlation functions [8,11]

(12)

where Θ(x) is the Heaviside step function. 
Other thermodynamics quantities can be derived from the solvation free energy (12) by differen-

tiation. In particular, the solvation chemical potential is decomposed into the energetic and entropic
contributions at constant volume

(13)

by calculating the solvation entropy at constant volume as

(14)

and the internal energy of the solute (“u”)–solvent (“v”) interaction as

(15)

with the remaining term Δεvv giving the energy of solvent reorganization around the solute. Further, the
partial molar volume of the solute macromolecule is obtained from the Kirkwood–Buff theory [40]
extended to the 3D-RISM formalism [25,41,42]

(16)

where χT is the isothermal compressibility of bulk solvent obtained in terms of the site–site direct cor-
relation functions of bulk solvent as 

(17)

where ρ = Σs ρs is in general the total number density of bulk solvent mixture of molecular species s.
Note that the solvation free energy (12) and its derivatives (13–15), as well as the partial molar

volume (16) can be decomposed into partial contributions of the interaction sites of the solute macro-
molecule, providing a basis for spatial decomposition analysis (SDA) of association effects in solution
[43,44], as illustrated for supramolecular complexation [43] and proteins [44].

The potential of mean force (PMF) Wγ (r) acting on site γ of solvent species near the solute macro-
or supramolecule can be defined in terms of the 3D site distribution function as

(18)
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The form (18) gives a 3D map of the effective potential between each solvent species and the
solute macromolecule, and determines the binding strength and most probable locations (binding
modes) of structural solvent molecules at the solute macromolecule, averaged over the statistical
mechanical ensemble of mutual arrangements and orientations.

Analytical treatment of electrostatics and accelerated numerical solution of the
integral equations

To properly treat electrostatic forces in electrolyte solution with polar molecular solvent and ionic
species in 3D-RISM/1D-RISM theory, we analytically handle the long-range electrostatic asymptotics
of the radial site–site total and direct correlation functions of bulk solvent in the DRISM-KH equations
(5–11) and the 3D site total and direct correlation functions in the 3D-RISM-KH equations (1 and 2),
as well as in the thermodynamics expressions for the solvation free energy (12) and its derivatives
[9–11,15,46]. The analytical forms for the nonperiodic electrostatic asymptotics are separated out in the
direct and reciprocal space from all the correlation functions, and the remaining short-range terms are
discretized for the DRISM-KH equations on a uniform radial grid with resolution 0.01–0.1 Å and for
the 3D-RISM-KH equations on a uniform 3D rectangular grid with resolution 0.1–0.5 Å in a 3D box
large enough to ensure decay of the short-range terms at the 3D box boundaries [15,46]. The convolu-
tion of the short-range terms in the 3D-RISM integral equation (1) is calculated using 3D fast Fourier
transform (3D-FFT) in the 3D box of size including at least 2 to 3 solvation shells around the solute.
This cancels out the aliasing effects since the resulting short-range solvation shells of the total correla-
tion functions usually decay at this distance and the remaining electrostatic asymptotics are separated
out and handled analytically [46]. Accordingly, the electrostatic asymptotics terms in the thermo -
dynamic integral (4) are handled analytically and reduced to 1D integrals easy to compute [15,46]. 

The 3D-RISM-KH integral equations (1 and 2) are converged typically to a relative root mean
square accuracy of 10–4–10–5 and the DRISM-KH equations (5 and 11) to an accuracy of 10–8–10–10

by using the modified direct inversion in the iterative subspace (MDIIS) numerical solver which is an
iterative procedure achieving accelerated convergence for integral equations of liquid state theory by
optimizing each iterative guess in a Krylov subspace of typically last 10–20 successive iterations
[9–11,47]. It is closely related to Pulay’s DIIS approach for quantum chemistry equations [48] and other
similar algorithms like the generalized minimal residual (GMRes) solver [49]. Note that the GMRes
method applied on the fine grid discretizing the 3D-RISM integral equations has also been coupled with
a Newton–Raphson-type numerical scheme on a coarse grid [50] which can be limited to the solute
repulsive core area as well [51]. Direct methods of Newton–Raphson type to solve integral equations
provide a quadratic convergence when approaching the solution. However, they require calculating and
inverting the Jacobian matrix in one or another way, which is prohibitively wasteful for fine 3D grids
and very slow for coarse 3D grids even if performed just once and used for preconditioning [51]. The
MDIIS solver combines the simplicity and relatively small memory usage of an iterative approach with
the efficiency of a direct method. Compared to damped (Picard) iterations, MDIIS provides substantial
acceleration with quasiquadratic convergence practically throughout the entire range of root mean
square residual, and is robust and stable. Of particular importance is that MDIIS ensures convergence
(provided a solution exists) for complex charged systems with strong associative and steric effects,
which is usually not achievable by Picard iterations and constitutes a challenging task in the case of 3D
integral equations. Further, a core-shell-asymptotics technique coupling MDIIS for the excluded vol-
ume core with iteration of the solvation shells has been developed which provides 6- to 16-fold mem-
ory reduction and corresponding CPU load decrease in MDIIS [47]. Although being of benefit for
solutes of any size, this memory reduction becomes critical in 3D-RISM calculations for large solvated
systems, such as macromolecules in solution with ions, ligands, and other cofactors.

© 2013, IUPAC Pure Appl. Chem., Vol. 85, No. 1, pp. 159–199, 2013

Multiscale modeling of solvation with 3D-RISM-KH 165



Examples of 3D-RISM-KH calculations of solvation structure and thermodynamics 

One of the basic cases of electrolyte solution systems is aqueous solution of sodium chloride. Figures
1–3 show the 3D-RISM results for the solvation structure and PMF of the Na+ and Cl– ion pair in aque-
ous solution at infinite dilution and at a high concentration of 1 mol/l [9,10]. This generic system pres-
ents a very illustrative test for a solvation theory to reproduce most of the essential features of a variety
of chemical and biomolecular effects in solution, and the 3D-RISM theory succeeds in that. 

Figure 1 shows the 3D site distributions of the water oxygen (O) and hydrogen (H) site distribu-
tions around the pair of the Na+ and Cl– ions in aqueous solution at infinite dilution. Both the O and H
distributions form high crowns of the first solvation shell around the ions, with the high O and lower H
peaks near the contacts of the crowns corresponding to water molecules bridging the ions. This struc-
ture is then followed by the shallow second solvation shells. The corresponding PMF is shown in Fig. 2.
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Fig. 1 Solvation structure of the CIP and SSIP of the Na+ and Cl– ion pair in aqueous solution at infinite dilution
(left and right columns, respectively), obtained from 3D-RISM theory [9,10]. Section of the 3D distribution
functions of water oxygen (O) and hydrogen (H) in the plane passing through the ion–ion axis (3D graphs in the
upper part). Visualization of the water solvent arrangements around the CIP and SSIP, as well as the ions separated
by a gap corresponding to the barrier at their PMF (cartoons in the lower part).
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Fig. 2 PMF between Na+ and Cl– ions in aqueous solution at infinite dilution (upper part) and concentration 1 mol/l
(lower part), obtained from 3D-RISM theory [9,10]. Section of the 3D distribution functions of water oxygen (O)
and hydrogen (H) in the plane passing through the ion–ion axis (3D graphs in the upper part). Shown in the upper
part for comparison is also the PMF obtained with the primitive model of water solvent as structureless dielectric
continuum (dashed line). 

Fig. 3 Cl– ions (in gray) in a stabilized CIP arrangement bridged by Na+ ions (in blue) as well as by hydrogen-
bonding bridges of water molecules (O in red, H in white) in aqueous electrolyte solution of concentration 1 M.
The visualization is made based on the peaks positions on the 3D site distribution functions between the species of
this system obtained from 3D-RISM theory [9,10]. 



The H distribution has two crowns around the Cl– ion; their separation from the ion shows that the inner
H crown gives the water hydrogens in contact with the Cl– ion while the outer H crown corresponds to
the other water hydrogens looking outwards but at the angle determined by the tetrahedral hydrogen-
bonding structure of the water. On the other hand, there is a single H crown around the Na+ ion and the
separations of the O and H crowns from Na+ show that both the water hydrogens are looking outward
Na+, tilted at the same angle. These are typical arrangements of dipole-like oriented water around a
cation and water hydrogen-bonded with one hydrogen to an anion. The arrangements are visualized in
the cartoons in the lower part of Fig. 1, with the left and right columns corresponding to the 3D water
site distributions around the Na+ and Cl– contact ion pair (CIP) and solvent-separated ion pair (SSIP),
respectively. Water molecules in contact with both the cation and anion form the dipole-like association
with the former and the hydrogen bonding with the latter, thus creating a water bridge of strongly asso-
ciated water molecules located in a ring between the ions. This bridge strongly deepens the solvation
contribution to the PMF at the CIP arrangement; interplayed with the ion–ion core repulsion, this results
in a significant shift of the first minimum on the PMF to a shorter ion–ion separation, compared to the
primitive solvation model just uniformly reducing the Coulomb attraction between the ions by the water
dielectric constant ε = 80 (dashed line in Fig. 2, upper part). At the SSIP arrangement, the water bridge
strengthens the association between the ions and results in the second minimum on the ion–ion PMF
(Fig. 2). The oscillations diminish with distance, and the PMF goes to the limit of the pure dielectri-
cally screened electrostatic potential (dashed line). At an intermediate separation between the ions, a
desolvated gap forms because of the steric effect of expulsion of solvent molecules by the repulsive
cores of the ions (middle cartoon in Fig. 1). The work against the solvent environment to expel the sol-
vent and create the desolvation gap results in a barrier between the PMF first and second minima cor-
responding to the CIP and SSIP arrangements (Fig. 2, upper part). 

The PMFs in the Na+–Na+ and Cl––Cl– pairs of like ions have the same features of the first and
second minima and the barrier between them due to the interplay of the associative forces and molec-
ular structure of the ions and solvent molecules. However, at infinite dilution the strength of the solvent
bridges is not sufficient to overcome the electrostatic repulsion and to stabilize the like ion pairs, and
both the first and second minima are local (Fig. 2, upper part). (Note that this can be very different for
large molecular ions with weaker electrostatic attraction at the separation determined by their size.) The
picture changes for the electrolyte solution at a high concentration of 1 mol/l; numerous salt bridges
form in addition to water hydrogen bridges, and the like ion pairs get stabilized in both CIP and SSIP
arrangements (Fig. 2, lower part). For example, the Cl––Cl– ion pair in the aqueous solution at this con-
centration is bridged by several Na+ ions and water molecules, forming a cluster depicted in Fig. 3. The
structure of such a cluster follows from the analysis of the 3D-RISM results for the 3D distribution
functions of solution species and the corresponding coordination numbers of Na+, Cl–, and water
around each ion pair (Na+–Cl–, Cl––Cl–, and Cl––Cl–). 

A further important example of crucial importance in chemistry and biomolecular nanosystems is
formation of nanostructures in solution driven by hydrophobic attraction. Figure 4 illustrates the RISM
theory predictions for the structure of the ambient mixtures of water and tert-butyl alcohol (TBA) in the
whole range of concentrations [34,35]. TBA is a generic example of primitive surfactant with a
hydrophobic head of four carbons and a hydrophilic “tale” represented by the hydroxyl group. The sol-
vation structure of this system successively goes through several stages with TBA concentration in
water changing from infinite dilution pure TBA: a separate TBA molecule embedded in a water tetra-
hedral hydrogen bonding cage at infinite dilution changes to micromicelles of four to six TBA mole-
cules in the head-to-head arrangement incorporated in a water hydrogen-bonding cage at about 4 %
TBA molar fraction; then, the tetrahedral hydrogen bonding structure of water gets disrupted at about
40 % TBA molar fraction to be replaced by the zigzag hydrogen-bonding structure of alcohol, with sep-
arate water molecules embedded in it at infinite dilution of water in TBA. The RISM theory predicted
both the structure and thermodynamics of these mixtures in full agreement with experiment, in partic-
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ular, the concentration and temperature dependence of the compressibility, including the isosbestic
point and minimum corresponding to the formation of micromicelles [34,35]. 

One complex example from supramolecular organic chemistry is synthetic organic supramolecu-
lar rosette nanoarchitectures, or rosette nanotubes (RNTs) [19–23]. The 3D-RISM-KH molecular
theory of solvation revealed the molecular mechanisms of self-assembly and conformational stability of
RNTs forming in different solvents and held through noncovalent forces. The molecular building block,
cytosine/\guanine motif decorated with various functional groups, undergoes an hierarchical self-
assembly process in solution to form a six-membered supermacrocycle (rosette ring) maintained by 18
hydrogen bonds between its complementary sites, which in turn self-organizes into a linear stack (a
nanotube with an open central channel), an aggregate which in general is highly stable and readily
withstands boiling and drying (Fig. 5). Any functional group covalently attached to the motif, for exam-
ple, crown ether, alkyl chains, and lysine tails, could be expressed on the RNT surface, thereby offering
a general “built-in” strategy for tailoring the physico-chemical properties of RNTs. The 3D-RISM-KH
theory uncovered the pathways of step-by-step self-assembly of RNTs from motifs into rosettes and
then nanotubes, showing that the thermodynamically preferred mechanism of RNT growth is attach -
ment of motifs to the nanotube end to form and complete a new rosette ring, rather than growth of a
separate ring in solution and then its attachment to the nanotube end [22]. Figure 6 depicts the inner and
outer hydration structure of the RNT with crown ether functionalities on its outer surface. The theory
exhibited that the RNT channel is covered with a wetting monolayer of structural water molecules
strongly bound to its surface and crucially contributing to the RNT stability, holds a chain of loosely
bound water molecules at the channel center, and can also hold host molecules of inert gases or drugs
inside [22]. This suggests potential use of RNTs as artificial channels for molecular transport in nano-
engineered bioorganic systems and as drug delivery vehicles. The 3D-RISM-KH theory predicted that
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Fig. 4 Structural transitions with concentration in a mixture of water and TBA and predicted by the RISM-KH
molecular theory of solvation: (a) TBA molecule at infinite dilution incorporated in a cage of water tetrahedral
hydrogen bonding; (b) micromicelle of four TBA molecules in a cage of the water hydrogen bonding. 



a G/\C base bearing two C12 alkyl chains undergoes a solvent-controlled multistep hierarchical self-
assembly process into lamellar prolate nanospheroids [21]. The theory explained how the stability of
the helical rosette nanotubes (HRNs) self-assembling from the C/\G motif decorated with the lysine tail
can be tuned (significantly increased) by adding a covalent linker pairing adjacent G/\C bases in neigh -
boring rings, and how HRNs undergo further hierarchical self-organization into superhelices [19]. The
theory predicted the molecular mechanism of solvent-driven supramolecular chirality in HRNs: struc-
tural solvent molecules localized in the pockets between the lysine tails on the HRN surface play a role
of molecular switches causing the tails to form (i) a right-hand supramolecular helix in water, the con-
formation with the lowest free energy (thermodynamic formation), and (ii) a left-hand supramolecular
helix in methanol, the conformation preferred due to a kinetic barrier for the right-hand one at the begin-
ning of HRN self-assembly in methanol (kinetic formation), but undergoing subsequent conversion to
the right-hand one under heating, in full agreement with experiment [20]. The 3D-RISM-KH theory
predicted the most stable conformation of the RNTs made of twin G/\C module bearing the lysine side
chain, with the “nests” consisting of four side chains used for one-pot nucleation, growth, morphoge-
nesis, and passivation of 1.4 nm Au nanoparticles, one of the possible applications of RNTs [23].

To conclude this part, the above examples represent generic forces acting in chemical and bio-
molecular systems in solution. They demonstrate how this theory captures and resolves in 3D detail the
molecular origin of the solvation structure shells and the PMFs between the solution species. Note that
the molecular picture provided by the 3D-RISM theory is at the level of molecular simulation, and is
not achievable otherwise by a continuum solvation semi-empirical treatment; the latter can be parame-
terized to represent, for example, the effect of hydrogen bonding in pure water but is not transferable to
solution with other components like electrolyte, cosolvent, not speaking of such complex cofactors as
different ligand compounds.
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Fig. 5 Formation of supramolecular RNTs [19–23]. RNT functionalized with crown ethers expressed on the outer
RNT surface is shown.



Molecular recognition and protein-ligand binding with 3D-RISM-KH

The PMF (eq. 18) defined in terms of the 3D site distribution functions as a 3D map of the effective
potential between each solvent species and the solute biomolecule determines the binding strength and
most probable locations (binding modes) of structural solvent molecules at the solute macromolecule,
averaged over the statistical mechanical ensemble of mutual arrangements and orientations. With the
solvent mixture including also ions and other cofactors such as cosolvent and ligands, this constitutes
an approach to predict molecular recognition in supramolecules and biomolecules from the first princi-
ples of statistical mechanics, with full account of their molecular specificities [25]. It gives a new com-
putational method of mapping ligand molecules on protein surfaces for protein-ligand binding and frag-
ment-based drug design [25,26]. This approach has been realized in the 3D-RISM-based ligand
mapping (3D-RISM-LM) algorithm [45] applied to identify the drug efflux pathway in the membrane
protein and multidrug transporter AcrB [26], and in the ligand docking (3D-RISM-Dock) algorithm
[29,31] implemented in the AutoDock package and validated on the experimental data for the binding
modes and binding free energy of the antiprion compound GN8 against mouse PrP protein [29] and
those of thiamine against the extracytoplasmic thiamine binding lipoprotein MG289 [44,45]. The
3D-RISM-Dock approach properly accounts for molecular specificity of the ligand and solvent and
allows one to study concentration effects on protein-ligand binding in fragment-based rational drug
design.
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Fig. 6 Hydration structure of the RNT functionalized with crown ethers in aqueous electrolyte solution with Cl–

counterions [22]. 3D distributions of water oxygen (in red) and hydrogen (in white) in the inner and outer hydration
shells of the RNT predicted by the 3D-RISM-KH molecular theory of solvation (upper left part). Visualization of
the structural molecules in the channel and outer pockets of the RNT (upper right part). Structural water molecules
of the interior shell water in the RNT channel attach to the RNT motifs with hydrogen bonds stabilizing the RNT
(lower left part) and form a wetting monolayer (lower right part).



Post-processing of the thermodynamics of MD trajectories with 3D-RISM-KH

The popular MM/PB(GB)SA post-processing of the thermodynamics of MD trajectories uses the
Poisson–Boltzmann (PB) or generalized Born (GB) approach combined with the solvent-accessible sur-
face area (SA) empirical term to account for nonpolar interactions in solution, such as hydrophobic
hydration and hydrophobic attraction. There is growing evidence that the PB(GB)SA continuous sol-
vation models cannot describe the nonelectrostatic effects accurately [52–54], especially for small pro-
teins. This follows from the fact that for small peptides there is no proportionality between solvent-
accessible SA of a protein and the nonpolar part of the solvation free energy [55]. In addition, such
models do not account correctly for the dispersion interactions and excluded volume effects [52,53].
This raises questions about the applicability of PB(GB)SA to describe quantitatively the hydrophobic
effects in biomolecular systems. An alternative to account accurately for nonpolar effects is to use the
following combined approach: molecular dynamics (MD) is used to generate trajectories, followed by
molecular mechanics (MM) to calculate the peptides internal energy and conformational entropy, and
the 3D-RISM-KH molecular theory of solvation to characterize the solvation free energy. It worth not-
ing that the continuous solvation models such as PB(GB)SA require phenomenological parameters such
as ionic radii and surface tension coefficients to be used as input or modeling [54], which makes them
less reliable, compared to the molecular theory of solvation.

The MM/3D-RISM-KH post-processing method was applied to study the thermodynamics and
volumetrics of the hydration and aggregation of the HET-s prion and amyloid-β fibril [27,29], and the
conformational stability and association thermodynamics of small wild-type Aβ(17–42) oligomers with
different protonation states of Glu(22) vs. the E22Q (Dutch) mutants [28,29].

MULTISCALE COUPLING OF 3D-RISM-KH MOLECULAR THEORY OF SOLVATION WITH
ELECTRONIC STRUCTURE METHODS

The 3D-RISM-KH molecular theory of solvation has been coupled with quantum chemistry methods,
including Kohn–Sham density functional theory (KS-DFT) [8,11,13–15] and ab initio complete active
space self-consistent field (CASSCF) method [11,12], in a multiscale approach to electronic structure
and chemical reactions in solution [11,13–15] and at solid–liquid interfaces [8]. Note that 3D-RISM-
KH can be combined in an SCF approach with any multireference electronic structure theory. The
closed analytical form for the solvation free energy stemming from the 3D-RISM-KH equations allows
one to obtain its analytical gradients with respect to nuclei coordinates, or analytical solvation forces
acting on nuclei in solution, which gives access to geometry optimization and evaluation of reaction
pathways in solution. The SCF, KS-DFT/3D-RISM-KH multiscale theory, including analytical gradi-
ents, for electronic structure in solution is implemented in the Amsterdam density functional (ADF)
computational chemistry package [13–15]. Further, the orbital-free embedding (OFE) KS-DFT method
with Wesolowski and Warshel’s two-density functionals separately representing the electronic structure
of the solute and that of environment [55] was coupled with 3D-RISM-KH for an improved description
of effect of solution environment on the solute electronic structure properties such as photochemistry in
solution; the OFE-DFT/3D-RISM-KH multiscale method is also implemented in the ADF package
[15]. The KS-DFT(OFE-DFT)/3D-RISM-KH multiscale theory of electronic structure in solution has
been extensively validated against experiment for thermochemistry, conformational equilibria and acti-
vation barriers for different solutes in various solvents [13–15], solvated carbon nanotubes [14], chem-
ical reactions [14] and photochemistry [15] in solution, structure, and workfunction of metal–water
interface [8], and structure of ionic liquids (ILs) [16]. 
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Self-consistent field coupling of KS-DFT with 3D-RISM-KH

KS-DFT in the presence of solvent
The electronic structure of the solute is calculated from the self-consistent KS-DFT equations modified
to include the presence of solvent. The whole system of the solute and solvent has the Helmholtz free
energy defined as [8,11]

(19)

where Esolute is the internal energy of the solute macromolecule including the standard components of
electronic structure theory, Δμ is the solvation free energy determined by the expression (12) which
comes from the solute–solvent interaction and solvent reorganization around the solute macromolecule,
ne(r) is the electron density distribution of the solute macromolecule, and ργ (r) = ργ gγ (r) is the classi-
cal density distributions of solvent interaction sites γ of solvent molecules obtained from the 3D-RISM-
KH integral equation. In the KS-DFT of electronic structure, the electronic internal energy of the solute
is written in atomic units as

(20)

where T[ne(r)] is the kinetic energy of a non-interacting electron gas in its ground state with density
distribution ne(r), υi(r) is the attractive potential of the nuclei, and Exc[ne(r)] is the exchange-correla-
tion energy. Minimization of the free energy functional (19) by functional variation with respect to the
electron density 

(21)

subject to the normalization condition for Ne valence electrons of the solute

(22)

leads to the self-consistent KS-DFT equation modified due to the presence of solvent [8,11,13,14]

(23)

where the Hartree potential of the electrostatic interaction with the electron cloud is

(24)

the electron density is determined by summation over the Ne lowest occupied eigenstates with account
of their double occupancy by electrons with opposed spins

(25)

the exchange-correlation potential is the functional derivative

(26)
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and the solvent potential acting on the valence electrons of the solute is defined as

(27)

In the ADF package implementation, calculation of υH(r) is simplified by using the fitted density

(28)

expressed in terms of the single-center Slater functions fj with the coefficients cj determined by least-
square fitting [56,57]. Substituting the expansion (28) in the Hartree form (24) and using the locality
properties [58] dramatically reduces the computational load for evaluation of the potentials and matrix
elements [13,14]. 

Finally, the total free energy is calculated as

(29)

Effective potentials coupling the electronic and classical subsystems 
With the free energy functional in the form (19) allowing functional differentiation analytically, the
effective potentials of the SCF coupling the electronic and classical subsystems are obtained in the
closed analytical form. 

The classical effective potential of the whole solute acting on solvent site γ

(30)

is broken up [8,11,13,14] into the short-range interaction term uγ
sr(r) and the electrostatic energy of the

solvent site charge qγ in the electrostatic potential of the solute valence electrons φe(r) and that of nuclei
charges Zi

(31)

The short-range interaction is given by the sum of the pairwise contributions from the solute nuclei rep-
resented by the 12-6 Lennard–Jones potential 

(32)

where σiγ and εiγ are the Lennard–Jones cross-term diameter and energy parameters obtained from
those of solute nucleus i and solvent site γ by using the standard mixing riles σiγ = (σi + σγ )/2 and
εiγ = (εiεγ )1/2, and riγ = |rγ – Ri| is the nucleus-site separation. Within the ADF package implementa-
tion, the potential of valence electrons acting on a single solvent site φe(r) is calculated from the valence
electron density ne(r) in the density fitting procedure (28) [57]. 

With the solvation free energy given by the 3D-RISM-KH analytical expression (12), the effec-
tive potential of the solvent acting on the solute valence electrons given by the functional derivative (27)
is derived as [8,11,13,14] 
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(33)

where υγ
ps(r) is the contribution of solvent site γ to the pseudopotential of a solvent molecule acting on

an external electron, which is in general given by the variational derivative of the classical site poten-
tial with respect to the valence electron density [8,11] 

(34)

The potential (33) implies the mean field approximation, which follows essentially from the use
of the solvation free energy in the form (12). 

Analytical gradients in solution
The analytical first derivative with respect to the coordinates of the solute nuclei Ri is obtained by dif-
ferentiation of the whole system free energy (19)

(35)

where the former term has the same structure as in the gas-phase case [60] and the latter term is derived
from the solvation free energy (12) as follows

(36)

Calculation of the expression (36) requires little computational effort. The second term is calculated
together with the gradients of the exchange-correlation potential [60], and the rest is calculated in the
3D-RISM procedure. Notice that the first term in the square brackets does not contribute much to the
gradients because the large magnitude of the derivatives of the short-range potential uγ

sr(r) at the repul-
sive core edge are suppressed by the distribution function gγ (r) exponentially decaying there.

Example of multiscale KS-DFT/3D-RISM-KH calculations

Novel applications of green chemistry involve ILs as tunable solvent environment, including organic
synthesis and other applications such as electrodeposition. Properties of molecules solvated in ILs,
including ions constituting IL itself are strongly affected by solvent environment. In bulk liquid, the sol-
vent environment affects physicochemical characteristics of IL constituents, including NMR chemical
shifts, relaxation times, IR frequencies, as well as such important chemical behavior as acidity of aro-
matic protons. To give reliable results, ab initio calculations for such systems have to self-consistently
account for the change in both electronic and classical solvation structure. This can be achieved in prin-
ciple by using a Car–Parrinello molecular dynamics (CPMD) method in which MD is driven by the
forces obtained from electronic structure DFT for the whole system or at least by using a quantum
mechanics/molecular dynamics (QM/MD) approach in which QM treats one selected ion and MD han-
dles the classical solvation structure of IL. However, both the approaches, particularly the former, are
extremely computationally demanding, especially to obtain the solvation thermodynamics. A simpler
alternative is a QM/MM approach; however, for many systems, MM cannot adequately represent the
solvation structure and thermodynamics in the statistical ensemble average. Meanwhile, the 3D-RISM-
KH molecular theory of solvation properly resolves a 3D spatial map of solvation structure and reliably
describes solvation effects for macromolecules of complex geometry and different chemical specifici-
ties, such as hydrogen bonding and/or solvophobic solvation and solvophobic interaction. The SCF
KS-DFT/3D-RISM-KH multiscale method provides a first-principle physical view on electronic struc-
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ture in solution and thus offers an accurate and computationally efficient procedure to perform ab ini-
tio calculations on species solvated in ILs. 

Figure 7 depicts the KS-DFT/3D-RISM-KH results for the solvation structure of the methyl-
methyl imidazolium ion in bulk liquid of [mmim][Cl] at T = 400 K [16]. The method predicts the IL
properties in remarkable agreement with the conclusions drawn from CPMD simulations for the 3D sol-
vation structure and the solvent environment effect of the IL constituents. This includes such effects as
the polarization due to electronic effects in the IL environment, the dipole moment enhancement from
μ = 2.10 D for the isolated cation to 2.59 D in the bulk IL (vs. μ = 2.10 D to 2.59 D from CPMD), the
antiparallel stacking of adjacent cations with the central CR hydrogens of neighboring sites pointing in
the opposite directions, the coordination number of 7.4 anions around the cation (vs. 7.5 from CPMD),
and the solvation free energy of –22.1 kcal/mol for the [mmim]+ cation and –49.1 kcal/mol for the Cl–

anion in the IL [16].

Another example of the performance of the KS-DFT/3D-RISM-KH method at the level of CPMD
simulation is the self-consistent electronic and classical solvation structure of a (100) copper–water
interface [8]. The predicted shift of the Fermi level of the metal due to the presence of water matches
the values typically found in experiment. Dense water substantially affects the electron distribution
around a water molecule adsorbed at the metal surface and changes the metal–water effective potential.
The latter follows the shapes of the metal effective electrostatic potential which for this interface is
strongest at the hollow site adsorption positions. Therefore, both CPMD and KS-DFT/3D-RISM-KH
predict the 3D water density distributions with the maxima at the hollow and bridge adsorption posi-
tions, unlike classical MD predicting the maxima at the on-top site positions. The layering and orienta-
tions of water molecules near the surface found with DFT/3D-RISM-KH are in agreement with exper-
iment.

The above examples demonstrate the capability of the KS-DFT/3D-RISM-KH multiscale method
to predict electronic structure in solution, including solid–liquid interfaces, essentially at the level of
CPMD simulation.
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Fig. 7 Solvation structure of the methyl–methyl imidazolium ion in bulk liquid of [mmim][Cl] at T = 400 K,
obtained by the SCF KS-DFT/3D-RISM-KH multiscale theory of electronic structure in solution. Left part:
Isosurfaces of the nitrogen of [mmim]+ cations at gN(r) > 2 (in blue) and of Cl– anions at gCl(r) > 5 (in red). Right
part: RDFs of Cl– anions (solid line), cation CR site (dashed line), and cation N site (dash–dotted line) around the
center of mass of the [mmim]+ cation in the IL.



MULTIPLE TIME-STEP MOLECULAR DYNAMICS OF BIOMOLECULES IN THE
EFFECTIVE SOLVATION POTENTIAL OBTAINED BY 3D-RISM-KH 

The statistically averaged effective forces of solvent acting of each solute atom produced by the
3D-RISM-KH molecular theory of solvation can then be used together with the direct solute–solute
interactions to drive MD simulation of the solute macromolecule. Solving the 3D-RISM integral equa-
tions is computationally expensive compared to a single MD step, and it naturally leads to resorting to
multiple time-step (MTS) MD techniques. One of the first attempts toward the hybrid MD/3D-RISM
method [61] when studying acetylacetone in aqueous solution, the consideration was limited to the ref-
erence system propagator algorithm (RESPA) in the microcanonical ensemble, making it possible to
perform outer time-steps up to 5 fs. The outer time-step in microcanonical simulations of ambient liq-
uids cannot exceed 4–8 fs due to resonance instabilities arising due to an interplay in an MTS proce-
dure between strong intramolecular forces handled with an inner spacing of 0.5–1 fs and weak long-
ranged intermolecular interactions. It was proven that in the microcanonical ensemble the maximum
allowed length of the outer time-step cannot exceed the theoretical limit of 20 fs [62]. Therefore, such
an ensemble is very inefficient for complex systems, including large macromolecules in solution, char-
acterized by time scales spanning up to micro- and milliseconds. 

It is often much more convenient for compatibility with experiment to sample configurations from
the canonical (constant temperature) ensemble, instead of the microcanonical (constant energy) one.
Many thermostats have been devised to handle the canonical distributions within MTS dynamics. In the
popular Langevin (LN) approach [63–67], artificial friction and random forces are incorporated to sta-
bilize the solutions. Although these forces satisfy the fluctuation-dissipative theorem, the target tem-
perature is not guaranteed. On the other hand, employing a large viscosity coefficient to ensure the sta-
bility can deviate the system from the true canonical state corresponding to real interactions between
particles. In addition, the LN dynamics does not possess any conserved quantity, and so it is difficult to
examine the quality of the trajectories obtained. The latter drawback is absent in the well-established
Nosé–Hoover (NH) chain method [68–71]. Here, the canonical behavior is reproduced by introducing
extra phase-space variables associated with a thermostat, while the ergodicity is ensured by its chain
counterparts. A famous feature of this method is that the temperature can be controlled without involv-
ing random numbers. Moreover, the NH equations of motion can be derived within the Hamiltonian for-
malism using the extended energy function which is conserved during the time evolution. A great
advantage of the canonical description is the possibility to postpone the appearance of unphysical MTS
effects to outer time-steps significantly longer than in the case of the microcanonical ensemble. For
instance, the maximal applicable time-steps can reach 50 fs [72] within the NH thermostat and can fur-
ther increase up to 75 fs [72] in the isokinetic ensemble [73]. Here, employing Gauss’ principle of least
constraint, the total kinetic energy is kept strictly constant. This causes a modification of the real
dynamics but holds the correct canonical distributions of position-dependent functions. A better effi-
ciency can be observed by combining the canonical NH chain method [68] with the isokinetic ensem-
ble [73]. This yields the so-called isokinetic NH chain RESPA (INR) approach [74,75] in which the heat
baths are coupled individually to each degree of freedom in the system. The INR algorithm was applied
to MD simulations of water to certify that the outer time-step size of 100 fs is workable [74]. 

The coupled MD/3D-RISM-KH approach was extended to the canonical ensemble by employing
the LN thermostat [76]. Using the solvent-induced forces calculated by 3D-RISM-KH at outer time-
steps and the solvation force coordinate extrapolation (SFCE) at inner time-steps of LN, it was demon-
strated on an example of alanine dipeptide in aqueous solution that larger outer time-steps up to 20 fs
are possible with the LN/SFCE/3D-RISM-KH approach. Such steps, however, are still smaller than
100 fs ones achievable within MD simulation using the INR algorithm [74]. 

A more general formulation of the canonical–isokinetic NH chain approach [77] consists of a spe-
cial splitting of the total kinetic energy into its partial components. Such components are first collected
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into groups with a chosen number of either translational degrees of freedom of atoms or translational,
orientational, and vibrational degrees of molecules. Then each of these groups is coupled to its own set
of chain thermostats characterized with given lengths and relaxation times. This allows us to optimize
and further significantly increase in efficiency the integration of motion, resulting in the optimized iso-
kinetic Nosé–Hoover (OIN) chain algorithm [77]. The standard isokinetic [73] or INR [74,75] ensem-
bles appear from the generalized formulation as particular cases. With the stabilizing effect of OIN
thermo statting in MTS-MD, gigantic outer time-steps up to picoseconds can be employed to accurately
calculate equilibrium and conformational properties, both in pure OIN and multiscale OIN/SCFE/3D-
RISM-KH simulations [77]. In the atomic version of OIN for MTS-MD of a biomolecule in a solvent
PMF, the solvation forces are obtained analytically by converging the 3D-RISM-KH integral equations
once per several OIN outer time-steps, and are calculated in between by using SFCE in the subspace of
previous successive solutions to 3D-RISM-KH. While the computational rate of solvent sampling in
OIN/SFCE/3D-RISM-KH is already about 20 times faster than standard MD with explicit solvent, fur-
ther substantial acceleration of sampling stems from making solute evolution steps in a statistically
averaged PMF obtained from 3D-RISM-KH. The latter efficiently samples the phase space for essen-
tial events with rare statistics such as exchange and localization of solvent and ligand molecules in con-
fined spaces, pockets, and at binding sites of the solute macromolecule, as distinct from MD with
explicit solvent, which requires enormous computational time and number of steps in such cases.

Calculation of solvation forces by 3D-RISM-KH coupled with MTS-MD

In the coupled MTS-MD/3D-RISM-KH method implemented in the Amber MD package [76,77], MD
is applied to the biomolecule driven by effective solvation forces which are obtained analytically by the
3D-RISM-KH molecular theory of solvation. 3D-RISM-KH yields the solvation structure of the bio-
molecule, the solvation free energy landscape dependent on its conformation, and the corresponding
effective solvation forces acting on its interaction sites. The latter are derived by differentiating the
Kirkwood thermodynamic integration formula analytically, also valid for the solvation free energy (12)
in the 3D-KH approximation (2)

(37)

where uiγ (r – Ri) is the pairwise interaction potential between biomolecule site i located at position Ri
and solvent site γ at position r. To obtain meaningful sampling of solute conformations, the computa-
tional expense of the 3D-RISM-KH calculations is reduced with several optimization strategies: (i) cre-
ating a high-quality initial guess for the direct correlation function cγ (r) from previous successive solu-
tions; (ii) accelerating pre- and post-processing of the solute–solvent potentials, long-range
asymptotics, and forces by using a cutoff scheme and a varying solvation box of smallest size contain-
ing two to three solvation shells around the current conformation of the protein; and (iii) avoiding direct
calculation of solvation forces (37) with solving 3D-RISM-KH at every inner time-step δt but rather
doing that at each outer time-step h >> δt and extrapolating the solvation forces at inner time-steps in
between based on previous successive vectors of solvation forces calculated with 3D-RISM-KH.

The extrapolation of solvation forces can be performed by using the so-called force-coordinate
approximation [76,77], or the SFCE. The main idea is that solvation forces acting on each atom of the
solute macromolecule do not have strong repulsive cores and vary smoothly in space and time with
solute evolution, and therefore can be extrapolated at subsequent inner time-steps δt << h until the next
3D-RISM-KH calculation at outer time-step h with sufficient accuracy by using the solvation forces and
solute atomic coordinates at previous outer time-steps h. Let f(k) = {fi

(k)} be a 3M-dimensional vector
of effective solvation forces acting on all solute atoms i = 1, … , M at locations specified by a
3M-dimensional vector of coordinates R(k) = {Ri

(k)} for each of k = 1, … , K previous successive outer
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time-steps of length h at which the solvation forces were calculated by using 3D-RISM-KH. Then the
solvation forces f(t) at current time t within the next outer time-step interval can be extrapolated in the
subspace of the previous k = 1, … , K vectors of forces by the linear combination

(38)

where the weight coefficients ak(t) are obtained by best representing the vector of solute atomic coor-
dinates R(t) at time t in terms of its projections onto the “basis” of the previous ones R(k), k = 1, … , K
to minimize the norm of the residual

(39)

A further improvement of SFCE [77] over its genuine version [76] is achieved with imposing an addi-
tional condition of normalization on the weight coefficients of the expansion (38)

(40)

The solute–solvent forces (36) can be expanded in the power series of a deviation of the current coor-
dinate vector R from the closest basis point R(*) ∈ {R(k)}

(41)

where ∂f/∂R denotes the Hessian matrix, and the second and higher-order spatial inhomogeneities are
neglected. Imposing the condition (40) automatically reproduces the zero-order term of the expansion,
while the first-order one linear in coordinate is extrapolated by minimizing the coordinate norm (39).
Note that putting K = 1 reduces to the simplest case of constant-force extrapolation. The minimization
procedure (39) with the normalization condition (39) leads to the set of K + 1 linear equations for the
weight coefficients

(42)

where Skl is the inner scalar product of the 3M-dimensional vectors of atomic coordinates for solute
conformations R(k) and R(l) at outer time-steps k and l, as well as Skt is that for R(k) and running con-
formation R(t)

(43)

and λ is a Lagrangian multiplier yielding the squared norm of the minimized approximation residual
(38). At each inner step δt within the outer time-step interval h, eqs. 42 are being solved by using stan-
dard numerical methods of solving a set of linear equations and the extrapolation (38) is being com-
puted. After the next 3D-RISM-KH calculation, the basis set is updated with the new vector of forces
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and coordinates and the oldest one is discarded. In practical calculations, we found optimal to perform
extrapolation with about K = 20 coordinate-force pairs. Further increase of the basis size gives no sig-
nificant improvement in the extrapolation accuracy since the current conformation and forces get too
different from the earliest ones in a larger basis set, but eventually lead to accumulation of numerical
errors when eqs. 42 become ill-conditioned for larger K.

Illustrations for the MTS-MD/SFCE/3D-RISM-KH method on biomolecular solvation

A simple system that nevertheless has some essential biomolecular properties and thus allows one to
test and validate simulation and modeling methods is alanine dipeptide in aqueous solution. This sim-
ple molecule has often been used as a model in theoretical studies of backbone conformational equi-
libria in proteins [83]. For hydrated alanine dipeptide, there are several transitions between different
conformational states characterized by the mean life time of order varying from 30 ps, through 250 ps,
and up to 10 ns [84]. Thus, even for such a relatively simple organic molecule as alanine dipeptide, a
long observation time of at least t ≈ 100 ns is necessary to gain proper statistic and average out the sta-
tistical noise in explicit solvent MD simulation. The accuracy of the MTS-MD/SFCE/3D-RISM-KH
algorithms was estimated by measuring the dipole moment distribution function f(p) of the hydrated
alanine dipeptide [77]. Such a function is very sensitive to the conformational sampling and the effect
of solvent, and comparing f(p) with its “exact” counterpart is a reliable way of testing an MD integra-
tor. To estimate the accuracy of the MTS thermostats and SFCE approach, the “expected” values of f(p)
were obtained by using the LN/3D-RISM-KH run with no solvent force extrapolation and a small fric-
tion coefficient γ = 5 fs with small inner time-step δt = 1 fs for MD and outer time-step Δt = 4 fs for
solvation forces from 3D-RISM-KH in order to minimize all possible uncertainties. 

Figure 8 presents the dipole moment distribution f(p) of the alanine dipeptide molecule in cSPC/E
water [76] obtained with the MTS-MD/SPCE/3D-RISM-KH integrators vs. the reference run with
LN/3D-RISM-KH [77]. The “expected” dipole moment distribution function f(p) has two clear peaks
on the left at p ≈ 3 D and on the right at p ≈ 7.5 D, as well as an enhancement in the intermediate region
at p ≈ 5.5 D; a similar pattern is observed experimentally in the real system of hydrated alanine dipep-
tide, which stems from the coexistence of different conformational states [84]. The SFCE performed
within the OIN and INR ensembles for up to κ = 20 time-steps provides an accuracy high enough at
h ≤ 200 fs for OIN and up to 1 ps for INR. The deviations become visible for OIN at h = 400 fs (solid
cyan curve) and achieve a value of about 10 %, which can still be acceptable. When OIN/3D-RISM-
KH with constant force extrapolation (referred to as CIN) is employed, i.e., κ = 1 and the solvation
forces stay the same during the full outer time interval h instead of the SFCE with κ = 20, a much larger
uncertainty of 30 % is exhibited in CIN/3D-RISM-KH already at h = 200 fs (dashed magenta curve).
Such uncertainties exceed even those in the INR/SFCE algorithm at h = 2000 fs (dashed black curve).
Approximately the same level of accuracy of 30 % is inherent in the LN/SFCE/3D-RISM-KH integra-
tion at h = 96 fs, despite the use of the extrapolation with the same κ = 20. This indicates an evident
advantage of the generalized canonical–isokinetic OIN/INR approach over the LN scheme. Note that
the maximal acceptable outer time-step reported earlier [76] was h = 20 fs, as achieved in the
LN/SFCE/3D-RISM-KH scheme with the extrapolation. This time-step size is more than one order of
magnitude smaller than steps of h = 200−400 fs feasible with the OIN/SFCE/3D-RISM-KH algorithm.
It is worth recalling that the outer time-step in the explicit microcanonical MTS-MD/3D-RISM simu-
lations cannot exceed 5 fs [50,51]. Thus, the use of the generalized canonical–isokinetic OIN ensemble
coupled with the 3D-RISM-KH molecular theory of solvation supplemented with the SFCE in the
multi scale OIN/SFCE/3D-RISM-KH integrator allowed this value to be exceeded by at least 40−80
times.

Ion channels belong to an important class of biomolecular systems where solvent (ions, protons,
water, and ligands) performs the biological functions in confinement. Ion translocation through the
channel is a rare event on the time scale of bulk solvent relaxation, and explicit solvent simulations
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require extensive computations to achieve statistically reliable results. Furthermore, study of selectivity
mechanisms and permeation properties of channels under physiological conditions may require model-
ing of complex solvent conditions, including low ionic concentration environments, which is currently
beyond the scope of explicit solvent MD simulations. To alleviate these difficulties, coarse-grained
models of a channel were proposed and used to study the physical properties and functioning of ionic
channels [80–82], such as the importance of protein polarization and side chains mobility on the selec-
tivity of sodium channels [80]. However, they neither account for the atomic structure of the real ion
channels nor allow one to include in a transferable manner more complex solvent compositions with
different cofactors, ligands, and other small molecules. This can be done with the 3D molecular theory
of solvation which provides a natural bridge between the coarse-grained description and all-atom
explicit solvent MD simulations.

The structure of the bacterial G. violaceus pentameric ligand-gated ion channel (GLIC) homo-
logue in an open conformation was resolved in the X-ray experiments [78]. It was also demonstrated
that this channel is sensitive to general anesthetics [79]. Figures 9 and 10 present the results for the sol-
vation structure of the GLIC channel inserted in the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(POPC) lipid bilayer obtained by the LN/SFCE/3D-RISM-KH modeling [29,30]. The 3D density dis-
tributions obtained from 3D-RISM-KH for water oxygen (O) and sodium (Na+) and chloride (Cl–) ions
of solvent around the channel protein embedded in the cellular membrane are shown in Fig. 9; and those
of Na+ and Cl– are detailed in Fig. 10 for the top, bottom, and side views of the channel with iso surfaces
of g(r) ≥ 5. It is seen that the Cl– anions are mostly expelled from the pore of this cationic channel,
whereas there are nonzero densities of Na+ ions throughout the channel pore, in agreement with exper-
imental data. The solvent distributions in the proximity of the protein are characterized by some fea-
tures. For example, the preferable solvation sites for Cl– ions are located along the external ring of the
channel funnel, facing the extracellular space above the membrane. Inside the funnel, right before the
entrance to the channel pore, the distributions of water and Na+ ions are complementary. There is a
pocket of Cl– ions which separates the upper and lower parts of the funnel, the area above the level of
the lipid bilayer. The lower part being adjacent to the channel pore is characterized by the preferable
solvation of Na+ ions much as the rest of the channel pore. The exit from the channel pore from the
intracellular side below the membrane is surrounded by the solvation sites of Cl– ions. In general, both
the extra- and intracellular surfaces of the lipid bilayer are characterized by the enhanced densities of
the anions. The sodium distribution inside the channel pore correlates with the channel radius and the
pattern in the distributions of the hydrophobic and hydrophilic residues in the channel pore. The above
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Fig. 8 Distribution of conformations of hydrated alanine dipeptide over its dipole moment. Results of the multiple
time scale integrators: LN/SFCE/3D-RISM-KH at outer time-step h = 96 fs (solid green); CIN/3D-RISM-KH at
h = 200 fs (dashed magenta); OIN/SFCE/3D-RISM-KH at h = 400 fs (solid cyan), and INR/SFCE/3D-RISM-KH
at h = 2000 fs (dashed black), vs. the “expected result” by LN/3D-RISM-KH (solid red curve).
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Fig. 9 3D distributions of water oxygen (in gray, both parts), Cl– (in orange, left part) and Na+ (in blue, right part)
ions around the GLIC channel embedded in the POPC lipid bilayer membrane. The channel protein is shown as
β-sheet (in yellow) and α-helices (in magenta), and the lipids are shown in the ball-and-stick representation.

Fig. 10 3D distribution functions of Na+ (in blue) and Cl– (in orange) ions inside the GLIC ion channel, obtained
from 3D-RISM-KH. Isosurfaces of g(r) ≥ 5. Bottom and top view of the channel (upper left and right parts), and
side view with and without the channel protein (lower left and right parts, respectively).



illustrates how the ion charge distribution over the pore space contributes to the selectivity and perme-
ation properties of the ion channel. 

MOLECULAR THEORY OF SOLVATION AND ELECTRICAL DOUBLE LAYER IN
NANOPOROUS MATERIALS

The properties of an electric double layer (EDL) formed in inner spaces of nanoporous electrodes are
very different from a conventional, planar electrochemical capacitor of equal surface area due to an
overlap of adjacent EDLs. The EDL at the surface of carbon nanopores gets substantially distorted,
compared to that at a planar electrode in contact with electrolyte solution, resulting in the specific capa-
citance per surface area by up to 1–2 orders of magnitude less than for the planar electrode. At present,
molecular simulation description of these effects is virtually unfeasible due to the interplay of long-
range electrostatic and short-range steric interactions on large-space and long time scales, and the
necessity to satisfy the conditions of chemical and mechanical balance between the species in the bulk
electrolyte solution and those sorbed in the nanoporous electrodes. 

A generalization of RISM molecular theory of solvation to solutions sorbed in disordered nano-
porous materials using the replica method for statistical mechanics of quenched–annealed systems, the
so-called replica RISM-KH-VM theory, provides full microscopic details of the solvation structure and
thermodynamics averaged over the thermal motion of sorbed solution and over the quenched distribu-
tion of host nanoporous material (morphology of nanopores) [18,85,86]. This theory enables predictive
molecular modeling of thermochemistry and electrochemistry of electrolyte solutions sorbed in func -
tionalized nanoporous materials. In particular, it reveals the mechanisms of sorption and supercapaci-
tance in nanoporous carbon electrodes [18,85–89]. The replica RISM-KH-VM theory predicts, from the
first principles of statistical mechanics, such effects as solvent-specific wetting [18] and water deple-
tion in hydrophobic carbon nanopores [87–89], asymmetry in solvation and adsorption of cations and
anions [86–89], desalination of simple ions in hydrophobic nanopores and its reversal with external vol-
tage applied [86–89], efficient removal of ionic impurities from an aqueous waste stream by a nano -
porous carbon electrosorption cell [88], and specific adsorption at chemical functionalities on the sur-
face of carbon nanopores [85].

Replica formalism of statistical mechanics for fluid sorbed in a disordered matrix

The replica formalism of statistical–mechanical, integral equation theory of quenched–annealed sys-
tems treats “annealed” fluid with equilibrium temperature T1 (species 1) sorbed in a porous matrix of
“quenched” particles with a spatial distribution corresponding to an equilibrium ensemble with tem-
perature T0 (species 0). Note that in general T0 ≠ T1 because the matrix and liquid subsystems are not
in equilibrium and do not exchange with energy. This has implications on the thermodynamic expres-
sions in the replica RISM theory involving density and temperature derivatives of matrix material
[85,86]; however, for the purpose of typical systems and calculations with rigid unchangeable matrix,
T0 affects only its structure obtained beforehand and can be reduced to T0 = T1 = T at the beginning by
scaling the interaction potential used for the matrix model (if this is not a purely hard core model). The
mean free energy of the sorbed annealed fluid is obtained as a statistical average of the free energy with
the canonical partition function Z1(q0) of the fluid sorbed in the matrix with a particular spatial config-
uration of quenched particles q0 over the ensemble of all realizations of matrix configurations q0

(44)

where A1
id is the ideal gas free energy. The statistical average of a logarithm is not amenable to standard

evaluation and is obtained by using the so-called replica identity similar to theory of spin glasses that
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relates the logarithm to the analytic continuation of moments Zs as follows: ln Z1 = lim
s→0

dZs/ds. For inte-
ger values of s, the statistical average of the moments takes the form of the equilibrium canonical par-
tition function of a fully annealed (s + 1)-component liquid mixture consisting of matrix species 0 and
s equivalent replicas of fluid species 1, with no interaction between the fluid replicas. The average free
energy of the annealed fluid is then obtained in the assumption of no replica symmetry breaking in the
analytic continuation of the free energy of the annealed replicated system Arep(s) as

(45)

Using the above formalism to evaluate in terms of Meyer diagrams the free energy and statistical sum
of “mobile” atomic fluid sorbed in a “frozen” matrix of spherical obstacles generates the so-called
replica OZ integral equations for a quenched-annealed atomic system [90–93]. This formalism was gen-
eralized to replica RISM for simple and complex associating molecular systems [18,85,86].

Replica DRISM-KH-VM molecular theory for electrolyte solution sorbed in nanoporous
material

Applying this replica formalism to the dielectrically consistent reference interaction site model
(DRISM) integral equations of Perkyns and Pettitt [38], we get after some algebra the replica DRISM
integral equations for annealed molecular liquid (or equally for liquid mixture) sorbed in a quenched
matrix 

(46a)

(46b)

(46c)

(46d)

(46e)

where ρ1
γ is the number density of interaction site γ of liquid species and ρ0

γ is that of matrix nano -
particles, hij

αγ (r) and cij
αγ (r) are, respectively, the total and direct correlation functions between site α of

species i and site γ of species j (i,j = 0 for matrix nanoparticles and 1 for liquid molecules). An aster-
isk “*” means convolution in the direct space, and summation over repeating site indices is implied. In
the replica formalism, the liquid–liquid total and direct correlation functions are subdivided into the so-
called connected and blocking (or disconnected) parts

(46f)

(46g)

with the connected correlations denoted by superscript (c) stemming following from the corresponding
correlations between the particles of the same replica of the liquid and the blocking ones denoted by (b)
stemming from those between different replicas of the liquid in the analytical continuation limit of
s → ∞. In terms of Mayer diagrams, the blocking correlations are identified as a subset of diagrams in
which all paths between the two root vortices pass through at least one field vortex of matrix, that is,
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such liquid–liquid diagrams that are completely blocked/disconnected by matrix vortices. In other
words, this is the indirect, matrix-mediated part of the liquid–liquid correlations. The remaining portion
constitutes the connected part of the liquid–liquid correlations. Further, within the DRISM approach
both the intramolecular and total liquid–liquid correlation functions are renormalized due to a dielec-
tric bridge correction introduced to ensure the consistency and given value of the dielectric constant
obtained for solvent–solvent, solvent–ion, and ion–ion effective interactions in electrolyte solution 

(47a)

(47b)

(47c)

The renormalized dielectric correction enforcing the given phenomenological value of the dielec-
tric constant and the proper orientational behavior and consistency of the dielectric response in the elec-
trolyte solution is obtained in the same analytical form (6) as for bulk electrolyte solution but now for
annealed liquid species

(48)

where r1
α = (x1

α, y1
α, z1

α) and r1
γ = (x1

γ , y1
γ , z1

γ ) are the Cartesian coordinates of partial site charges q1
α and

q1
γ at sites α and γ of the same solution species s with respect to its molecular origin, the dipole

moment ds
1 = Σα∈s q1

αr1
α is oriented along the z-axis, ds

1 = (0,0,ds
1), the envelope function hc(k) is

assumed in the same form

the amplitude A is related to the dielectric constant ε of the electrolyte solution

the total number density of solution polar species is

and the solution dielectric susceptibility is

The parameter l specifying the characteristic separation from which the dielectric correction is switched
on is chosen according to the maximal repulsive core size of liquid species (e.g., l = 1 Å for water sol-
vent, and l = 10 Å for octanol). 

The average number densities of sorbed electrolyte solution species ρ1
s substantially differ from

those in bulk solution ρs
bulk and so does the dielectric constant of sorbed solution ε compared to that of

bulk solution εbulk. This is taken into account by smoothly interpolating in density between the gas form
ε = 1 + 3y and the bulk solution value εbulk as follows 

(49)

© 2013, IUPAC Pure Appl. Chem., Vol. 85, No. 1, pp. 159–199, 2013

Multiscale modeling of solvation with 3D-RISM-KH 185

ω ω ρ ζ= +αγ αγ α αγr r r( ) ( ) ( )11 11 1 11�

ζ= −αγ αγ αγh r h r r( ) ( ) ( )11 11 11�

ζ= −αγ αγ αγh r h r r( ) ( ) ( )(c) (c) 11�

ζ α γ= ∈αγ α α α γ γ γk j kx j ky j kz h k j kx j ky j kz s( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,11
0

1
0

1
1

1
c 0

1
0

1
1

1

)(= −h k A l k( ) exp 4c
2 2

ρ
ε= −

⎛
⎝⎜

⎞
⎠⎟

A
y

1
3

polar
1

∑ρ ρ=
∈

s
s

polar
1 1

polar

∑π ρ )(=
∈

y
k T

d
4

9 s
s

s
1

B

1

polar

1 2

ε ρ( )= + + A y1 3 polar
1 bulk



where the correction amplitude for the sorbed solution with densities ρ1
s keeps the same value as for the

bulk solution with ρs
bulk

(50)

The replica DRISM integral equations (46) have to be complemented with appropriate closure
relations that properly account for both electrostatic and non-electrostatic features of molecular speci-
ficities of the species of both the matrix nanoparticles and the sorbed liquid. The closure proposed by
Kovalenko and Hirata (KH approximation) [8,11] accounts for both electrostatic and nonpolar features
of solvation, such as hydrogen bonding, solvophobicity, structural solvent molecules, salt bridges, and
other steric, associative, and electrochemical effects in simple liquids and complex solutions of a given
composition, including buffers, salts, polymers, ligands, and other cofactors at a finite concentration.
Further, the KH closure describes associating molecular fluids and solutions in the whole density range
from gas to liquid [17,18], and is thus suitable for such a system with strong associative effects as elec-
trolyte solution sorbed in nanoporous materials [18,85,86], in particular, in a charged nanoporous elec-
trode [87–89]. It is used for the matrix–matrix, liquid–matrix, and liquid–liquid correlation functions

(51)

where gij
αγ (r) = hij

αγ (r) +1 is the radial distribution function (RDF) between interaction sites α and γ of
species i,j = 0,1 (matrix, liquid), and uij

αγ (r) is the site–site pairwise interaction potential, scaled by the
Boltzmann constant kB times solution or matrix temperature T. Note that in general T = T0 for i,j = 0
and T = T0 otherwise; however, one can put T0 = T1 ≡ T simply by scaling the matrix model interaction
potential u00

αγ (r), as explained at the beginning of the previous section.
It was shown that application of linearized closures of MSA type to blocking correlations leads

to trivial solutions with c(b)(r) = 0 [90–93]. On the other hand, the HNC approximation strongly over-
estimates the blocking correlations in the presence of charged species and leads to divergence of the
replica RISM equations for electrolyte solution sorbed in nanoporous material [18,85–89]. To work at
the advanced level with non-trivial blocking correlations, we complement eqs. 46e–g for the blocking
correlations with the VM closure

(52a)

(52b)

where the VM bridge correction (52b) is expressed in terms of the nodal correlation function t(b)
αγ (r) =

h(b)
αγ (r) – c(b)

αγ (r), and the parameter value a = 0.8 is the same as in the original Verlet correction. (Note
that it can be adjusted with liquid density for self-consistency, for example, to satisfy the zero-separa-
tion theorem [94].) Note that there is no interaction potential in the closure (52) for the blocking corre-
lations as they stem in the limit s → ∞ from the correlations between different replicas of liquid which
do not interact with each other. The VM approximation (52) accounts reasonably well for the nonlin-
earity of blocking correlations in such strongly associating systems as polar solvents and electrolyte
solutions sorbed in nanoporous matrices, both neutral and with external electric charge [18,85–90]. 
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Solving the replica DRISM-KH-VM equations (46–52) at particular force field and thermo -
dynamic parameters requires analytical treatment of all the electrostatic asymptotics and is done simi-
larly to the bulk DRISM-KH equations (5–11). The equations are converged by using by using the
MDIIS accelerated numerical solver [9–11,47].

Thermodynamics of sorbed solution

For the replica DRISM-KH-VM integral equations (46), the excess chemical potential Δμ1
s of sorption

of liquid species s in the frozen matrix of nanoparticles is readily decomposed into the contributions
from the host matrix due to the liquid-matrix (ij = 10) correlations and from the sorbed liquid due to the
liquid–liquid (ij = 11) correlations less an additional term due to the blocking (b) correlations [85,86] 

(53)

The KH closure (51) to the replica DRISM integral equations (46) leads to the corresponding compo-
nents of the excess chemical potential expressed in a closed analytical form in terms of the
liquid–matrix and liquid–liquid correlation functions

(54)

where the summation is over interaction sites α of liquid species s, and over all sites γ of matrix for
j = 0 and liquid for j = 1. The chemical potential term due to the blocking correlations can be obtained
from the VM closure (52) to the replica DRISM integral equations (46e–g) by performing thermo -
dynamic integration in an approximate analytical form

(55)

where the so-called star function obtained in the assumption of so-called unique functionality of the cor-
relations [94] is written as

(56)

Also, the compressibility of the sorbed solution is exactly expressed in terms of the connected part
of the correlations [85,86]. Other thermodynamic derivatives of the free energy of the sorbed solution
are available as well [85,86].

Electric double layer in the nanopores of the host matrix 

The sorbed electrolyte solution forms an EDL at the surface of nanopores of the host material even in
the absence of external specific electric charge on the nanoporous electrode due to the asymmetry
between the density distributions of cations and anions at the surface, as well as the preferential orien-
tation of polar solvent molecules at the surface. The statistically averaged electrostatic potential of the
EDL is obtained as follows [87–89]. The statistical distribution of charge density around a labeled
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matrix nanoparticle of sort c ∈ 0 due to interaction site charges q1
γ on electrolyte solution species of sort

γ ∈ 1 as well as q0
ƒ on chemical functional groups of sort f ∈ 0 grafted to matrix nanoparticles is

obtained as

(57)

(Note that matrix nanoparticles and chemical functional groups grafted to them, both belonging to
matrix species j = 0, are now denoted separately with roman subscript indices of sort c and f, respec-
tively.) The corresponding statistically averages electrostatic potential ψ 0

c(r) of sorbed solution species
and nanoporous material surrounding matrix nanoparticle c is determined from the Poisson equation 

(58)

The full local electrostatic potential φ0
c(r) around a conducting matrix nanoparticle of radius R0

c
includes also the contribution from an externally induced charge q0

c on the nanoparticle

(59)

The external charge of density

(60)

induced on the electrode and the corresponding opposite external charge –qex on the other electrode of
the supercapacitor cause separation of cations and anions of the electrolyte diffusing across the separa-
tor between the electrodes to the EDLs in their pores, until the bias of the ionic concentrations in each
electrode satisfies the condition of electroneutrality for the whole system

(61)

Note that for symmetric electrodes with charges functional groups of atomic charges q0
ƒ and specific

densities ρ0
ƒ there is a symmetric concentration of counterions (or a bias between the concentrations of

cations and anions) sorbed in each electrode initially, at zero voltage of the device. For asymmetric den-
sities of charged functional groups in the two electrodes, the initial concentrations of counterions or the
bias between the concentrations of cations and anions are change due to diffusion exchange between
the electrodes and the bulk solution bath until the electroneutrality is satisfied in each electrode. For the
nanoporous carbon material formed by connected carbon spheres of several sorts α with in general dif-
ferent sizes R0

c, the external charge qex is distributed among the charges q0
c on each sphere sort subject

to the electrostatic potential inside the sphere being equal for all carbon spheres

(62)

whereas the electrostatic potential (59) at a distance from each sphere of sort c by definition gives the
average potential level in the electrode including both carbon spheres and sorbed solution

(63)

The value of the electrostatic potential on each carbon sphere φc(qex) gives the potential of the electrode
carbon conducting framework. The potential step from the carbon nanoparticle level φc(qex) to the elec-
trode bulk level φav(qex) comprises (i) the voltage across the intrinsic EDL in contact with the nanopar-
ticle (surface of the nanopore), and (ii) the electric field of all other surrounding carbon nanoparticles
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and their EDLs distributed in the nanoporous material with its spatial correlations. The value of the elec-
trostatic potential statistically averaged over the bulk of the nanoporous electrode, φav(qex), is a constant
of integration of the Poisson equation (58), or the “ground level” of the whole nanoporous electrode
(including both the electrode carbon framework and the sorbed electrolyte solution). The electrode
“ground level” is positioned with respect to the vacuum level of the electrostatic potential by an exter-
nal electric field in the solution outside the electrode, and the solution to the Poisson equation yields the
potential of the carbon conducting frame with respect to the electrode “ground level” φc(qex) – φav(qex),
caused by all electric charges inside the electrode, that is, the external specific charge on the electrode
and EDL charges of ions and polar solvent molecules sorbed inside the nanopores.

Molecular mechanism of electrosorption and capacitance in nanoporous electrodes

The molecular mechanisms determining high specific capacitance of the supercapacitor device and
purification efficiency of the electrosorption cell with nanoporous electrodes are much more complex
than in a planar EDL of equivalent area. As explained below, they include the intrinsic EDL at the sur-
face of nanopores, the Gouy–Chapman layer statistically averaged over the volume of the nanoporous
material, the osmotic term arising due to the difference between the ionic concentrations in the two
nanoporous electrodes and in the bulk electrolyte solution outside, and the solvation chemical potenti-
als of sorbed solvated ions statistically averaged over the nanoporous material [87–89].

The chemical potential μs of sorbed solution species s of density ρs consists of the ideal gas

contribution μs
id = kBT ln(ρsΛs) with the de Broglie thermal wave length                                     of ideal

monatomic particles with molecular weight ms, the excess term Δμs due to liquid–liquid and matrix–liq-
uid intermolecular interactions inside the nanoporous material, and the electrostatic energy of species s
with charge qs in the electrostatic field between the two electrodes

(64)

The first term is the osmotic contribution, the second one arises from the interactions inside the
nanoporous material, and the third one gives the “ground level” of the electrostatic potential averaged
over the whole nanoporous electrode with respect to the gas phase outside the system. The presence of
the third term in the chemical potential (64) directly follows from the Nernst equation.

The excess chemical potentials Δμs of ionic species s inside a charged electrode are strongly dif-
ferent from those in the bulk solution. For the electrode in contact with the bulk solution, this causes
diffusion of ions across the separator until the electric field of ionic dipoles forming at the boundaries
of the electrodes counterbalances the difference between the “interior” chemical potential terms μs

id +
Δμs of electrode I, as well as those of electrode II, and thus equalizes the chemical potential in the two
electrodes, μs

I = μs
II. Using the decomposition (65) of the chemical potential inside the electrode yields

the bias between the statistically averaged “ground levels” φav
II (qex) and φI

av(–qex) of the two electrodes
with opposite external charges ±qex

(65)

The same bias of the electrostatic potential levels φav
II – φI

av must satisfy the relation (65) for each
solution species s, including ions and neutral solvent molecules. A discrepancy between the bias values
required to counterbalance the “interior” part of the chemical potential kBT ln(ρsΛs) + Δμs for cations
as well as that for anions causes diffusion of each of the ionic species to the corresponding electrode
with the lower chemical potential. This changes the osmotic and excess terms in the chemical potential
(64) for cations and anions in the opposite directions until the relation (65) is satisfied for both cations
and anions. Similarly, diffusion of solvent molecules between the two electrodes occurs until the
osmotic term as well as the excess chemical potentials for the changed densities of solvent in the elec-
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trodes, dependent on the densities of both solvent and ions, satisfy the chemical equilibrium condition
(65), which for the neutral solvent molecules with qs = 0 reduces to the equality of the “interior” terms
kBT ln(ρsΛs) + Δμs.

The voltage of the supercapacitor device given by the electrostatic potential difference between
the conducting carbon matrix frameworks of electrodes I and II is thus obtained by summing up the sta-
tistically averaged electrostatic potential steps across the whole device. (Note that all losses due to
equivalent serial resistance (ESR), including electric conductivity of the carbon nanoparticles and their
contacts as well as electrolyte diffusion resistance are not considered here and can be incorporated sep-
arately.) The supercapacitor voltage comprises the potential step φI

av(–qex) – φI
c(–qex) across the intrin-

sic EDL in nanopores of electrode I from its conducting carbon framework to the electrode bulk, next
the potential step φav

II (qex) – φI
av(–qex) from the “ground level” of electrode I across the EDL at its outer

edge to the solution bulk and then similarly across the EDL at the outer edge of electrode II to its
“ground level”, and then φc

II(qex) – φav
II (qex) from the electrode bulk across the intrinsic EDL in

nanopores of electrode II to its conducting carbon framework. Using the relation (65) to express
φI

av – φav
II in terms of the number densities ρs and excess chemical potentials Δμs of sorbed ions s, the

supercapacitor voltage is written as

(66)

for any ionic species s (with qs ≠ 0). The number densities ρs and excess chemical potentials Δμs of
sorbed species s are obtained by converging the chemical equilibrium conditions (65) for ρs by using
iterations or any other accelerated solver, in turn with solving at each step the replica DRISM-KH-VM
integral equations (46–52) at current ρs and calculating the excess chemical potentials from the expres-
sions (53–56). The potential steps φav – φc in electrodes I and II are then calculated at the densities ρs
for the converged equations (65) as the difference of the boundary values (63) and (62) from solving
the Poisson equation (58).

Finally, applying the chemical equilibrium condition between the electrodes and the bulk solution
yields the relation for the purification efficiency of the electrosorption cell at voltage U(qex) which holds
sorbed electrolyte at high concentrations ρs

I and ρs
II of cations and anions inside the corresponding

nanoporous electrodes I and II with the opposite external charge, against the osmotic forces for a sig-
nificantly lower concentration ρs

blk of electrolyte in the bulk solution efflux [88] 

(67a)

(67b)

where Δμs
blk is the excess chemical potential of species s at concentration ρs

blk in bulk solution efflux. 

Illustration for a supercapacitor

Carbonized polyvinylidene chloride (PVDC) material attracted both scientific and industrial attention
[95] because of its uniform nanoporous texture with controlled pore size, and the possibility of a
cheaper production cycle for applications in high-energy storage and electrochemical separation
devices. A model consisting of a statistical–mechanical mix of hard cores and “cavity” spheres at high
packing fraction has been developed [87] to represent essential properties of carbonized PVDC mate-
rial and is so parameterized as to fit the pore size distribution peaks, porosity, pores SA, and the phys-
ical density to the experimental data for carbonized PVDC material [95].
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The replica DRISM-KH-MV integral equations for the correlation functions of NaCl aqueous
electrolyte solution (46–52) with the electrostatic asymptotics separated out and treated analytically
were discretized on a uniform radial grid of length 1000 Å. The domain of this significant size is nec-
essary to properly represent the interplay of the slowly decaying oscillations in the correlations of the
matrix material and the EDL diffuse layers around matrix nanoparticles, resulting in the solvation struc-
ture oscillations with at the size of sorbed solution species which last on many sizes of matrix nano -
particles [87–89]. The replica DRISM-KH-MV integral equations were converged by using the MDIIS
accelerated numerical solver [9–11,47]. The force field parameters and densities for the ambient elec-
trolyte solution and the matrix nanoparticles of the present system are summarized in refs. [87–89]. For
a given specific charge qex on the carbonized PVDC material, the number densities of species of the
sorbed solutions were obtained by calculating the excess chemical potentials (53–56), obtaining the
electrostatic potential from the Poisson equation (58), and solving for the chemical balance equations
(65). The supercapacitor voltage for each value of qex was finally obtained from the expression (66).

Figure 11 exhibits the RDFs of the solvation structure of electrolyte solution species around a car-
bon nanoparticle of the nanoporous matrix of carbonized PVDC material, which is in equilibrium with
the bulk NaCl aqueous electrolyte solution at concentration 1 M at ambient conditions. Shown for com-
parison is the solvation structure of a single carbon sphere (SCS) of the same size immersed in the bulk
electrolyte solution. In both cases, the positions and width of the first peaks of water oxygen and hydro-
gen sites correspond to the typical solvation structure of a hydrophobic nanosphere in aqueous elec-
trolyte solution, with water hydrogens oriented preferentially in parallel to the surface. The nanoporous
PVDC confinement enhances the first solvation peaks but depletes the amplitude of the oscillations in
the second solvation peak. The positions of the RDF peaks indicate that Cl– ions are localized in con-
tact with the surface hydrophobic of carbon nanoparticles, while Na+ ions located at the surface (the
highest peak of the carbon-Na+ RDF) are surrounded by hydration shells.
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Fig. 11 Solvation structure of the intrinsic EDL formed by NaCl aqueous solution in nanoporous carbonized PVDC
material. RDFs of water O and H sites, and of Na+ and Cl– ions (parts a–d) at the surface of a carbon nanosphere
in the nanoporous matrix framework (solid lines) vs. the solvation structure of an SCS immersed in the bulk
aqueous electrolyte solution (dashed lines). The nanoporous material is in contact with the bulk ambient aqueous
solution of NaCl at concentration 1M. 



Figure 12 shows the change of the carbon-solution RDFs with charging the nanoporous electrode.
The carbon-ion RDFs strongly change due to attraction of counterions and repulsion of co-ions accord-
ing to the external charge of the electrode. The carbon–water oxygen and hydrogen distributions remain
almost unchanged with electrode charge. Figure 13 depicts the run of the electrostatic potential with
distance from a carbon nanosphere in the nanoporous matrix to the bulk of the nanoporous carbon elec-
trode, which is obtained from the Poisson equation (58) with the electric charge density (57) following
from the carbon-solution distributions shown in Figure 12. (Each curve in Fig. 13 is plotted with respect
to the average electrostatic potential level φC inside the nanoporous electrode.) The electrostatic poten-
tial is constant for r < Rc

0 inside the conducting carbon nanosphere. The carbon nanosphere bears the
average external charge which strongly affects the electrostatic potential run next to the nanosphere sur-
face and in the first and second solvation shells. The Stern layer contains no solution charges due to the
steric constraints, and the slope of the curves for r > Rc

0 right at the nanosphere surface is caused barely
by its Coulomb potential. Then follow the potential drop due to the surface dipole with water hydro-
gens closer to the surface than oxygens and the potential rise due to the surface dipole with Cl– ions
located closer than Na+. These potential peaks in the first and second solvation layers are identified as
the outer Helmholtz layer. The nanosphere electric charge introduces oscillations with a period of 12 Å
close to the size of nanospheres in carbonized PVDC, slowly decaying with distance. The whole range
of oscillations includes the diffuse layer around the nanoparticle, as well as the statistical average of the
EDLs around other nanoparticles which are closely packed and correlated in the nanoporous carbon
matrix. The potential drop of the Stern layer is almost completely cancelled out by the electric field of
the outer Helmholtz layer and further oscillations which stem mainly from the ionic cloud of the first
and second solvation shells screening the external charge of the carbon nanosphere, with Cl– ions pre-
vailing for positive and Na+ for negative external charge.
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Fig. 12 Solvation structure of the NaCl aqueous electrolyte solution sorbed in the nanoporous carbonized PVDC
electrode at zero charge (solid lines), and at positive and negative specific charge qex = ±12 [C/cm3] (dotted and
dashed lines, respectively). RDFs of water O and H sites, and Na+ and Cl– ions around carbon matrix nanoparticles
(parts a–d).



Finally, Fig. 14 presents a diagram of the overall run of the electrostatic potential across the super-
capacitor device. The average potential energy level qexφC of the nanoporous electrode is shifted due to
the electric field of the dipole which is formed by solution species outside the electrode at its macro-
scopic boundary to satisfy the chemical equilibrium conditions (65). An additional EDL emerges at the
macroscopic boundary of each electrode to counterbalance the difference between the “interior” chem-
ical potential part kBT ln(ρsΛs) + Δμs of ions inside the two nanoporous electrodes. The potential drop
across these EDLs outside the electrodes constitutes a major part of the supercapacitor voltage U(qex)
and is determined by the conditions of chemical equilibrium between the solution sorbed in each of the
electrodes and the bulk solution outside the electrodes. Calculations performed for the carbonized
PVDC nanoporous material in contact with the ambient aqueous electrolyte solution of 1 M NaCl reveal
that the electrochemical mechanism of the EDL supercapacitor is determined largely by the chemical
balance for sorbed ions in the Nernst–Planck equation, rather than just by the EDL potential drop at the
surface of a nanopore as in the case of a planar electrode [87–89]. The same molecular forces determine
for the specific sorption capacity and purification efficiency (67) of a nanoporous carbon electrosorption
cell [88]. As demonstrated above, the specific capacitance and sorption capacity of nanoporous carbon
electrodes are determined by the interplay of the EDL potential drop across the Stern layer at the sur-
face of nanopores and the Gouy–Chapman layer statistically averaged over the volume of the nanopo-
rous material, the osmotic term arising due to the difference between the ionic concentrations in the two
nanoporous electrodes and in the bulk electrolyte solution outside, and the solvation chemical potenti-
als of sorbed solvated ions statistically averaged over the nanoporous material [87–89]. The latter term
is strongly affected by chemical specificity of ions, solvent, surface functional groups, and steric effects
for solvated ions confined in nanopores. Note that solvation shells of ions enlarge their effective size
and can strongly affect the specific capacitance, which has strong implications for real life supercapac-
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Fig. 13 Statistically averaged electrostatic potential φ0(r) around a carbon nanoparticle of the carbonized PVDC
electrode with respect to the “ground level” φC averaged over the whole nanoporous electrode. The electrolyte
solution sorbed in the nanoporous electrode is in equilibrium with the bulk ambient aqueous solution of NaCl at
concentration 120 ppm. The electrode is at zero charge (green line), and at positive and negative specific charge
qex = ±3.94 [C/cm3] (red and blue lines, respectively). The inset schematically illustrates statistical–mechanical
averaging (red circle and distance vector) around a labeled carbon nanoparticle (red ball) over the whole
nanoporous material, including carbon nanoparticles (black balls) and nanopores (white voids).



itor devices. For example, a power circuit supercapacitor should function in a wide range of tempera-
tures down to –40 °C, which stiffens the solvation shells of ions and hinders them from entering small
pores, thus decreasing the capacitance. Thus, the chemical potentials of solvated ions in nanopores con-
stitute a major factor driving the specific capacitance, as they bring about two extra EDLs at the outer
boundaries of the nanoporous electrodes to offset the chemical potential difference between the elec-
trodes and solution bulk, and therefore substantially contribute to the supercapacitor voltage.
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Fig. 14 Diagram of the electrostatic potential across the supercapacitor device: from conducting carbon
nanospheres in the nanoporous carbon matrix, across the internal EDL at the surface of nanopores, across the
external EDL at the edge of electrode I, to the electrolyte solution bulk, and then across the external EDL and
intrinsic EDL to the nanoporous carbon matrix of electrode II.



CONCLUSIONS

Nanoscale properties and processes are profoundly different from the macroscopic laws in continuous
media and materials. Functional features of nanostructures stem from microscopic properties of the
atoms and chemical groups they are built of, but manifest on length scale from one to hundreds of nano-
meters and time scale up to microseconds and more. The properties of nanostructures and processes
involving them can be tuned in a wide range by changing size and composition. Predictive modeling of
nanosystems should operate at length scales from an ångström to hundreds of nanometers and microns
and time scales to milliseconds and seconds, and yet derive their properties from the chemical function -
alities of the constituents. Explicit molecular modeling of such nanosystems involves millions and bil-
lions of molecules and is by far not feasible in a “brute force” approach employing just ab initio quan-
tum chemical methods and/or molecular simulations. A proper way thus requires multiscale methods
coupling electronic structure methods for building blocks, classical molecular simulations for critical
aggregates in the system, statistical–mechanical theories for their large assemblies and mean properties
over characteristic size and time scales, and macroscopic scale properties.

Integral equation theory of liquids, which is based on the first principles of statistical mechanics,
is becoming increasingly popular, as it provides a firm platform to handle the solvation structure and
thermodynamics of complex chemical and biomolecular systems in solution. In particular, the statisti-
cal–mechanical 3D-RISM-KH molecular theory of solvation is promising as an essential part of the
multiscale methodology for chemical and biological nanosystems in solution. As distinct from molec-
ular simulations which explore the phase space by direct sampling of a limited subsystem of molecules
on space and time intervals substantially restricted by computational feasibility, 3D-RISM-KH operates
with spatial distributions rather than trajectories of molecules and is based on analytical summation of
the free energy diagrams which yields the solvation structure and thermodynamics in the
statistical–mechanical ensemble. It gives the solvation structure in terms of the 3D maps of distributions
of solvent sites around a solute macromolecule of arbitrary shape and then the solvation thermo -
dynamics analytically as a single integral in terms of the correlation functions obtained. The 3D-RISM-
KH theory was employed to explain the molecular mechanisms of self-assembly, conformational stabi-
lity of synthetic organic RNTs, aggregation of prion proteins and β-sheet Amyloid oligomers,
protein-ligand binding, and function-related solvation properties of biomolecular complexes as large as
the GLIC ion channel in a lipid bilayer and the GroEL/ES chaperone complex.

The 3D-RISM-KH molecular theory of solvation was coupled with ab initio CASSCF, KS and
OFE DFT quantum chemistry methods in an SCF description of electronic structure, optimized geo-
metry, and chemical reactions in solution. The (OFE)KS-DFT/3D-RISM-KH multiscale method is
implemented in the ADF computational chemistry package and extensively validated against experi-
ment for solvation thermochemistry, photochemistry, conformational equilibria, and activation barriers
of various nanosystems in different solvents and ILs. 

In biomolecular calculations, MM/3D-RISM-KH statistical–mechanical evaluation of the solva-
tion thermodynamics of MD trajectories replaces their conventional MM/PB(GB)SA post-processing
involving empirical nonpolar terms. Recently, the 3D-RISM-KH molecular theory of solvation has been
coupled with MTS-MD simulation for a solute biomolecule driven by the effective solvent PMF. The
MTS-MD procedure is stabilized using the new algorithm of the OIN chain thermostat. The solvation
forces are obtained analytically by converging the 3D-RISM-KH integral equations once per several
OIN outer time-steps, and are calculated in between by using SFCE in the subspace of previous suc-
cessive solutions to 3D-RISM-KH. With the stabilizing effect of OIN thermostatting, gigantic outer
time-steps up to picoseconds can be employed to accurately calculate equilibrium and conformational
properties. The multiscale OIN/SFCE/3D-RISM-KH integrator algorithm has been implemented in the
Amber MD package, and validated and benchmarked on a fully flexible model of alanine dipeptide in
aqueous solution. While the computational rate of solvent sampling in OIN/SFCE/3D-RISM-KH is
already 20 times faster than standard MD with explicit solvent, further substantial acceleration of sam-
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pling stems from the 3D-RISM-KH molecular theory of solvation efficiently sampling the phase space
for essential events with rare statistics such as exchange and localization of solvent and ligand mole-
cules in pockets and at binding sites of the biomolecule.

The molecular mechanisms determining high specific capacitance of the EDL supercapacitor with
nanoporous electrodes, as well as purification efficiency of the nanoporous electrosorption cell, are
much more complex than the naïve picture of just a very large specific surface area of pores densely
“folded” or “packed” in the volume of nanoporous material. These mechanisms are very different from
a planar EDL of equivalent surface area. This constitutes the reason why the specific capacitance based
on such an equivalent planar EDL capacitor with the “insulator” thickness given by the ionic radii turns
out to be by an order of magnitude higher that the typical values in real devices. To amend this empir-
ical model, the effective thickness of the EDL insulator is typically assumed to be up to 5 nm instead,
resulting in the empirical value of area capacitance of 15–20 μF/cm3 for the model of a planar EDL of
equivalent area. Meanwhile, the replica RISM-KH-VM molecular theory for the solvation structure,
thermodynamics, and electrochemistry of electrolyte solutions sorbed in nanoporous materials reveals
that the driving forces of sorption and supercapacitance in nanoporous carbon electrodes are very dis-
tinct from a planar EDL capacitor. They are determined by the interplay of the EDL potential drop
across the Stern layer at the surface of nanopores and the Gouy–Chapman layer statistically averaged
over the volume of the nanoporous material, the osmotic term arising due to the difference between the
ionic concentrations in the two nanoporous electrodes and in the bulk electrolyte solution outside, and
the solvation chemical potentials of sorbed solvated ions statistically averaged over the nanoporous
material. The latter factor is strongly affected by chemical specificity of ions, solvent, surface func tional
groups, and steric effects for solvated ions confined in nanopores. Note that solvation shells of ions can
enlarge their effective size due to stiffening at low operational temperature and hinder ions from enter-
ing small pores. The chemical potentials of solvated ions in nanoporous confinement thus constitute a
major factor driving the specific capacitance, as they bring about two extra EDLs at the outer bounda-
ries of the nanoporous electrodes to offset the chemical potential difference between the electrodes and
solution bulk, which substantially contribute to the supercapacitor voltage.
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