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Abstract: A short review of recent theoretical advances in studies of the interaction between
highly charged systems is presented. Such a system could not be described by the mean field
theory. More advanced methods have to be used in order to introduce the correlations
between highly charged particles. In this work I focus on the system of highly charged sur-
faces, separated by a solution of molecules with spatially distributed charge. Two different
representations of the molecular shape will be considered: rod-like and spherical. The system
will be theoretically described by the density functional theory. For sufficiently long mole-
cules and large surface charge densities, an attractive force between like-charged surfaces
arises due to the spatially distributed charges within the molecules. The added salt has influ-
ence on the condition for the attractive force between like-charged surfaces. The theoretical
results will be compared with Monte Carlo (MC) simulations. Recent measurements with
multivalent rigid rod-like particles will be discussed. 
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INTRODUCTION

In chemistry, technology, and biology, there are many phenomena which motivate the considerations of
electrostatic interactions between charged macroions in a solution [1,2]. Usually the macroions appear
as charged surfaces of mica, charged lipid membranes, DNA, colloids, actin molecules, proteins,
viruses, and even cells. The intervening solution always contains simple salt and often also multivalent
ions. The role of multivalent ions in the solution can be played by multivalent metal ions, charged
micelles, dendrimers, polyelectrolytes including polyamines, and DNA. These ions mediate the electro -
static interaction between charged macroions. Generally, multivalent ions are needed to induce an
attractive force between like-charged macroions. For example, divalent diamin ions induce the aggre-
gation of rod-like M13 viruses [3]. Multivalent ions mediate network formation in actin solutions [4].
The condensation of DNA is induced by the presence of multivalent counterions [5,6]. Positively
charged colloidal particles [7,8] complex with DNA. Even the cohesion of cement paste is controlled
by divalent calcium counterions [9].

Many theories go beyond a simple Poisson–Boltzmann (PB) theory. The real ions are neither
point-like nor can the solvent be regarded as passive and featureless. An extension of PB theory was
made including ion correlations, charge images, and finite ion size. Many theories have been developed
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in order to include correlations: modified PB theory [10,11], liquid-state theories such as hypernetted-
chain theories [12], loop expansions [13], variational approximations [14], and density functional the-
ories [15,16]. In the limit of strong electrostatic coupling these theories break down and a strong cou-
pling expansion theory can be introduced [17,18]. Recently, an approximative field theory has been
developed that covers the weak, intermediate, and strong coupling regimes [19,20]. Image charge inter-
actions were introduced as an additional external potential in PB theory [21], in integral equation theo-
ries [22,23], field theoretic methods [24], and variational approximation [25]. Dielectric heterogeneities
were also studied in a strong electrostatic coupling [26]. The steric size of the ions has been accounted
for by replacing the ideal gas with a lattice-gas [27–29], and also by using more involved density func-
tional methods [30,31]. The possibility of specific adsorption of ions to charged surfaces was also con-
sidered. Stern [32] extended PB theory by dividing interfacial layer into adsorption and diffusive lay-
ers. A general method for including non-electrostatic interactions between ions into the PB formalism
has been proposed [33].

The attractive force between like-charged macroions has been also confirmed by Monte Carlo
(MC) simulations. Guldbrand et al. [34] first confirmed the existence of attraction between similarly
charged surfaces immersed in a solution composed of divalent ions in the limit of high surface charge
density. These and other MC simulations [35,37] demonstrated that attractive interactions between sim-
ilarly charged surfaces may arise for sufficiently high surface charge densities, low temperatures, low
relative permittivity, or polyvalent counterions. Recent MC simulations have provided that the existence
of attractive interaction between like-charged surfaces is strongly conditioned by the finite size of ions
[38].

Experimentally, the swelling of the lamellar liquid crystalline phase within the solution composed
of monovalent or divalent ions [39] was studied. It was shown that replacing monovalent counterions
with divalent ones drastically decreases swelling of lamellar phases [40]. The attractive interaction
between bilayers in the presence of divalent calcium ions has been observed [41]. The short-range
attractions between equally charged mica or clay surfaces in the solution of divalent ions have been
detected in direct surface force measurements and atomic force microscopy [42].

The ions in a solution which mediate interactions between macroions usually have an internal
structure, with individually separated charges and possibly with additional internal degrees of freedom.
Recently, Bohinc et al. [43–46] demonstrated that intra-ionic correlations induced by the fixed distance
within a particular rod-like ion are enough to change repulsive into attractive interactions between like-
charged surfaces. In this study, the rod-like ions carry a single elementary charge on each end. The min-
imum of the free energy occurs when the counterions are oriented perpendicularly to the like-charged
surfaces, thus connecting them. MC simulations confirmed the theoretical predictions [45–48]. The
analysis of the system was later extended to the intermediate and strong coupling regimes, where the
interionic correlations alone can lead to an attraction between the surfaces [49,50]. The theory was also
generalized to systems with polydisperse rod lengths and arbitrary charge distribution along the rods.
The influence of added salt was considered [51]. Also, the spherical ions were introduced in the system
[52–54].

In this review article, I examine the interaction between two like-charged macromolecules which
are represented by charged planar surfaces. The only interactions between the rod-like and spheroidal
ions are the electrostatic interactions. We consider the conditions for attractive interactions mediated by
rod-like or spheroidal ions. The influence of added salt is considered. We examine the appearance of
attractive interactions between like-charged surfaces due to the internal structure of multivalent ions, as
well as to the correlations between different ions.
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THEORY

In order to examine the interaction between two macroions, we consider two parallel surfaces, separated
by a distance D, which carry a uniform negative surface charge density σ. Between these surfaces is an
aqueous solution containing charged, multivalent, rod-like, spherical, and point-like ions. Each rod-like
or spherical ion carries two identical positive charges Ze, where e is the elementary charge and Z is the
valency. The charges are separated by a fixed distance l. All charges are restricted to lie between the
surfaces. A schematic diagram of the system is provided in Fig. 1. We define our Cartesian coordinate
system such that the y-axis and z-axis are parallel to the surfaces, and the x-axis is perpendicular to both
surfaces. The origin is located on the left surface.

The electrostatic field of the system varies only along the x-axis, the normal direction between the
two charged surfaces. We assume that there is no electric field behind each of the two charged planar
surfaces (which is appropriate if inside the macroions the dielectric constant is much smaller than in the
aqueous region between the surfaces). Rod-like or spherical ions are characterized by positional and ori-
entational degrees of freedom. We describe them by referring to one of the two charges of each ion as
a reference charge, denoting the local concentration of all the reference charges by n(x). The location
of the second charge of a given ion is then specified by the conditional probability density p(s | x),
denoting the probability to find the second charge at position x + s if the first resides at x. Thus the ion
distribution function is defined as joint probability n(x,s) = n(x) p(s | x). Integration over all possible ori-
entations gives

(1)

The free energy F in terms of thermal energy kBT and surface area A can be written as

(2)

where v is the effective volume of counterions and Ψ is the reduced electrostatic potential. The prime
in Ψ '(x) denotes the first derivative with respect to the argument x. The Bjerrum length in water at a
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Fig. 1 Schematic presentation of two like-charged planar surfaces, located at x = 0 and x = D, with σ denoting the
surface charge density. Each surface has a surface area A. The surfaces are immersed in an electrolyte solution that
contains rod-like, spherical, and point-like ions. The rod-like and spherical ions have single elementary charge at
each ending of the rod or sphere diameter.



room temperature is lB = 0.714 nm. The first term in eq. 2 corresponds to mean electrostatic field
energy, whereas the second term includes the orientational and positional entropic contribution of rod-
like or spherical counterions. The steric interaction of rods or spheres with the charged surfaces is taken
into account via the external non-electrostatic potential U(x,s). The electro-neutrality of the whole

system demands                         

In thermal equilibrium the free energy F adopts a minimum with respect to the ion distribution
function. The functional minimization leads to the modified Boltzmann distribution function

(3)

Upon insertion of the ion distribution function (eq. 3) into Poisson’s equation results in the integral dif-
ferential equation

(4)

In the case of rod-like ions α(x) = max[–l,–x] and β(x) = min[l,D – x] whereas in the case of
spherical ions α(x) = max[–l,l – 2x] and β(x) = min[l,2D – 2x – l].

If the solution is composed of rod-like or spherical counterions and monovalent salt (positive and
negative point-like ions) the integral differential equation becomes 

(5)

Where nsi is a bulk concentration of the added salt, the sum runs over monovalent pointlike counter ions
(i = +) and coions (i = –).

The boundary conditions are given at both charged surfaces

(6)

and

(7)

They are equivalent to the overall electro-neutrality of the system.

RESULTS AND DISCUSSION

Integral differential equations (eqs. 4, 5) have no analytical solutions. The following analysis is based
on the numerical solution of integral differential equations (eqs. 4 or 5). 

First we examine the properties of divalent rod-like counterions confined between two like-
charged surfaces separated by a distance D. Figure 2 shows the concentration of reference charges n(x)
as a function of the distance from the left-charged surface x for three different lengths l of rod-like ions
[46]. The inset of Fig. 2 shows the reduced electrostatic potential Ψ (x) as a function of the distance x
from the charged surface. Theoretical results are compared against MC data. Figure 2, left, shows the
results for counterions only, whereas the right side shows the results for counterions and coions. The
concentration of reference charges decreases with increasing distance from the left charged surface to
the value in the midplane of the system. The discontinuous derivative of concentration of reference
charges n(x) at x = l and x = D – l marks the orientational restriction of counterions close to the charged
surface. For sufficiently long divalent rod-like counterions the comparison between the density func-
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tional theory and the MC simulations gives a good agreement. Also the non-continuous derivative of
the concentration n(x) at x = l and x = D – l is reproduced by MC simulations [46]. 

We proceed with the profiles for spherical ions. For distances between the surfaces, which are
comparable to the diameter of spheres, the charge density profile in the solution shows a single peak at
each side (Fig. 3). The spherical counterions, on the average, orient to form bridging between the
charged surfaces [52]. For double diameter distances between the surfaces, we observe a peak in the
middle which corresponds to “interdigitation” of the ordered counterions. Charges of spherical counte-
rions of both layers contribute in the center of the system so a central peak in the charge density is
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Fig. 2 Left: Concentration of reference charges n(x) as a function of x. The different curves correspond to different
lengths of divalent rod-like counterion l = 0.5 nm (a), l = 2 nm (b), and l = 5 nm (c). Full lines display the theoretical
approach, whereas dashed lines display results of MC simulations. The inset shows reduced electrostatic potential
Ψ (x) as a function of x. The model parameters are D = 10 nm, Z = 1, and σ = 0.033 As/m2. Right: Counterions (a)
and coions (b) are present. Dashed lines display the theoretical approach, whereas full lines display results of MC
simulation. The model parameters are: the length of the rod-like ions l = 2 nm, their bulk concentration n0 =
0.1 mol/l and surface charge density σ = 0.036 As/m2. Reprinted with permission from ref. [45,46].

Fig. 3 Volume charge density of spherical counterions ρ(x) as a function of x. The different curves correspond to
different distances between the surfaces. The diameter of spheres is l = 2 nm. The lines display the theoretical
approach whereas the signs display results of MC simulations. The model parameters are Z = 1 and σ = 0.07 As/m2.
Changed and reprinted with permission from ref. [52].



formed. For larger distances, we get two independent surfaces. The profile exhibits twin peaks close to
both charged surfaces due to orientational ordering of spherical counterions with one charge closest to
the charged surface. A very good agreement between the calculated density profile and the results of
MC simulations is obtained [52].

Next we analyze the free energy and the pressure between like-charged planar surfaces. The
osmotic pressure due to counterions between two like-charged surfaces can be calculated from the first
derivative of the free energy with respect to plate separation p = –∂F/A∂D [46]. Figure 4 shows the free
energy as a function of the distance between two charged surfaces for two different lengths of rod-like
ions. The energetically most favorable situation is at the pressure equal to zero. The analysis of the con-
ditional probability density shows that the energetically most favorable distance between the charged sur-
faces corresponds to the length of the rod-like counterions. At this distance between the surfaces there
are two most probable orientations of divalent rod-like counterions: counterions that are oriented paral-
lel and perpendicular to the charged surfaces. Other orientations of rod-like counterions are less pro-
nounced. The parallel and perpendicular orientations indicate the tendency of counterion charges to be
in contact with the negatively charged surface. For high surface charge densities, both preferred orienta-
tions are even pronounced. The counterions that are oriented perpendicular to the charged surfaces con-
nect both surfaces and act as a bridge between equally charged surfaces. This bridging mechanism of
rod-like charged counterions is responsible for the attractive interaction between like-charged surfaces.

We proceed with the electrostatic free energy for a system where the salt of monovalent ion is
included. The minimized expressions for the electrostatic potential and ionic distribution function are
inserted back into the free energy. Figure 5 shows the equilibrium free energy as a function of the sep-
aration between the charged surfaces for three different salt concentrations. The free energy first
decreases with increasing distance D, reaches a minimum and than further increases with increasing
distance D to a plateau value. The minimum in the free energy appears at the distances that are approx-
imately equal to the length of rod-like ions. The increasing salt concentration has very large impact on
the minimum. For sufficiently large salt concentration the minimum in the free energy disappears [45].
The reason is the screening of charged surfaces by monovalent ions [51].

For small surface density of charge σ and small dimension of ions, the interaction is found to be
repulsive for all distances between the charged surfaces. Large enough σ and l yield a non-monotonous
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Fig. 4 Free energy F as a function of the distance between the charged surfaces D. The curves correspond to
theoretical calculations. The model parameter is σ = 0.1 As/m2. The length of ions is l = 2 nm (A) and l = 5 nm
(B). Changed and reprinted with permission from ref. [46].



behavior of the free energy with a minimum representing the equilibrium distance between the surfaces
[45].

In the limit of very low surface charge density, the mixtures of rod-like counterions and coions
between two like surfaces exhibit quite different behavior. At larger separations between the surfaces,
we observed that two flat surfaces no longer interact with each other (the free energy is for D > l prac-
tically constant). For small distances, l < D, there is entropy loss of the mobile rods because of their
interaction with both surfaces. The corresponding depletion attraction continues to dominate the system
for weakly charged surfaces, leading to a minimum in free energy at very small separations between the
surfaces [45]. For larger surface charge densities, the depletion minimum is absent. Generally we
observe two minima in the free energy. The first minimum, located at small surface separations, corre-
sponds to the depletion interaction and dominates at very low charged system. The second minimum,
located roughly at D ≈ l, dominates the system for larger surface charge densities. This second mini-
mum is distinct from the depletion minimum; it is electrostatic in origin and can be ascribed to a bridg-
ing mechanism as analyzed below (see Fig. 6).
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Fig. 5 Equilibrium electrostatic free energy as a function of the separation between charged surfaces. Three
different curves corresponds to different salt concentrations (a) 0.001 mol/l, (b) 0.1 mol/l, and (c) 0.2 mol/l. The
length of rod-like ions is l = 4 nm, and the surface charge density is σ = 0.05 As/m2. 

Fig. 6 Illustration of bridging between two charged surfaces induced by rod-like counterions. Reprinted with
permission from ref. [6].



Figure 7 shows the conditional probability density as a function of the projection s of the rod-like
counterions with respect to the x-axis [46]. Two different distances between the surfaces are considered.
For large separation between the surfaces D, we observe an enhanced probability to find the second
charge of the rod-like ion close to the macroion surface (see Fig. 7B). Clearly then, the rod-like ions
exhibit a tendency to align parallel to the macroions’ surface. For D ≈ l (see Fig. 7A), there are two
regions of enhanced probability density, corresponding to the location of the rod-like ion’s second
charge close to either one of the macroion surfaces. Hence, our finding is that two different orientations
are preferred, with the rod-like ion either parallel or normal to the macroions. It is the latter case that
signifies the bridging transition.

The location of the bridging minimum in the free energy can be explained via analysis of the ori-
entation of rod-like ions. At the distance between the surfaces equal to the length of rods, there are two
most probable orientations of the rod-like ions: either oriented in parallel or perpendicular to the
charged surfaces. Other orientations are less pronounced. The parallel and perpendicular orientations
indicate the tendency for the positive part of rod-like ions to be in contact with the negatively charged
surfaces. For high surface charge densities, both preferred orientations are even pronounced. The
counter ions that are oriented perpendicular to the charged surfaces connect both surfaces and act as a
bridge between equally charged surfaces. This bridging mechanism of rod-like charged counterions is
responsible for the attractive interaction between like-charged surfaces [52,62]. DNA packing in vivo is
not only ion-dependent but is also governed by proteins. Proteins possess positively charged domains
allowing nonspecific interactions with DNA. This type of interaction may be understood with the help
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Fig. 7 Conditional probability densities p(s | x = 0) as a function of the projection s of the rod-like counterions with
respect to the x-axis. The distance between the charged surfaces is D = 5 nm (A) and D = 20 nm (B). The position
σ = 0.1 As/m2 of the reference charges was set to x = 0. The length of the rod was chosen to l = 5 nm. The full
lines correspond to σ = 0.033 As/m2, while the dashed lines correspond to σ = 0.1 As/m2. The schematic
presentation of the most probable orientations of rigid rod-like ions with the reference charges located at x = 0 (left
charged surface) is shown on the top of the figure. In B, the right charged surface is not shown due to large distance
D. Reprinted with permission from ref. [46].



of a simplified model of two negatively charged surfaces (DNA molecules) in a solution of positively
rod-like particles (proteins).

We adopted some simplifications in our model. First, we did not take into account the excluded
volume of rod-like ions. In the systems that we consider, the Bjerrum length is much larger than the size
of the counterions (e.g., spermidine molecules). Consequently, the electrostatic repulsion between the
counterions does not allow them to get close enough for them to interact through excluded volume
forces. This justifies the neglect of the excluded volume interactions. Second, the correlations between
different rod-like ions were not taken into account. Third, we did not consider the partial adsorption of
rod-like counterions on the charged surface. Fourth, we assumed uniformly distributed charge on the
surfaces. In these studies, only electrostatic interactions are taken into account. 

Charged interacting surfaces appear in different biological systems. Typical examples are charged
colloidal particles, proteins, micelles, lamellar liquid crystals, and silica particles. These particles are
significantly larger than mobile ions in the intervening solution. The intervening solution contains
charge-neutralizing counterions and also coions of the same charge sign as the surfaces.
Derjaguin–Landau–Verwey–Overbeek (DLVO) theory predicts stable colloidal systems even though the
solution contains monovalent ions [55,56]. Replacing monovalent ions with divalent ones gives rise to
attractive forces between colloidal particles, which was first observed for planar geometry [33,57] and
then also for isotropic systems [58]. The presence of effective attraction between macroions is required
for a system to undergo phase separation [59,60]. 

The presence of polycentric multivalent ions enhances the attraction between like-charged parti-
cles. Oppositely charged short polyions cause aggregation of colloidal particles by bridging mechanism
[61], which was later confirmed by simulation studies [62,63] and supported by theoretical approaches
[64]. Complex multivalent ions with spatially separated charge are also common in biological systems.
Short polyamines spermine and spermidine, which play an important role in DNA packaging, are such
examples [65,66,69]. 

Our study was motivated by a number of recent experiments, where the attractive interaction
between equally charged macroions mediated by multivalent ions has been observed. The first obser-
vation of attraction between two highly negatively charged mica or clays was reported for the CaCl2
solution [42,67]. Further examples are the network formation in actin solutions induced by divalent ions
Ba2+ [4]. Attractive interactions between like-charged macroions can also arise through intra-ionic cor-
relations, that is, correlations between the spatially separated charges of a single multivalent microion.
A notable example is the ability of polyelectrolytes to complex oppositely charged macroions [68] as is
observed for the condensation of DNA induced by cationic polymers [69]. The condensation of DNA
can be induced by three- (four-) valent spermidines (spermines) [5,6]. The aggregation of viruses can
be induced by divalent diamin ions [3]. Direct experimental observations of attractive, polyelectrolyte-
induced forces, based on the surface force apparatus, have also been reported [70].

CONCLUSIONS AND OUTLOOK

In summary, we have developed a density functional theory for rod-like and spherical ions of arbitrary
length, subject to an additional non-electrostatic external potential, which takes into account steric
restrictions with the charged surface. The two interacting, like-charged, planar macroions reveal the
possibility of attractive interactions, introduced entirely by correlations within the rod-like or spherical
ions.

In the future, it would be also possible to study the influence of counterion valency and surface
charge density for spherical ions on the interaction between like-charged surfaces. For rod-like ions, it
was shown that the increased surface charge density is able to switch the bridging interaction into an
attractive region at small surface separations [50]. This attraction is the result of charge correlations that
become important for high surface charge densities and large ion valencies. These findings are the result
of a self-consistent field theory, which treats the short- and long-range interactions of the counterions
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within different approximations. In the intermediate coupling regime, the multivalent rod-like counter -
ions can mediate attractive interactions between the surfaces. For sufficiently long rods, bridging con-
tributes to the attractive interaction. In the strong coupling limit, the charge correlations can contribute
to the attractive interactions at short separations between the charged surfaces (Fig. 8). Two minima can
then appear in the force curve between surfaces.
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