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Abstract: An advanced spiroketal intermediate toward the synthesis of 39-oxobistramide K
was prepared, fragment C14–C40. This fragment was obtained in 19 steps with an overall
yield of 6.2 % using a FeCl3-catalyzed spiroketalization as the key step.
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INTRODUCTION

The use of inexpensive and eco-compatible catalysts such as FeCl3 to synthesize complex molecules
can be very attractive [1]. For our part, we were interested in the synthesis of spiroketals from unsatu-
rated lactols by utilizing FeCl3 and applying this method to the synthesis of 39-oxobistramide K, an
antiproliferative agent [2].

SPIROKETALS

Spiroketal units can be found in a wide range of naturally occurring substances isolated from many
sources such as microbes, insects, plants, fungi, and marine organisms [3]. The biological activity of
compounds containing a spiroketal unit has triggered intense interest in both the synthesis and chem-
istry reactivity [4].

Traditionally, the synthesis of spiroketals has been realized under acid-catalyzed cyclization of
dihydroxyketones [5] or hydroxydihydropyranes [6], and, in most cases, the thermodynamic products
were formed, which corresponds to the maximum of anomeric effects and the minimum of steric inter-
actions (Scheme 1, eq. 1). However, as the substrates can be sensitive to acidic conditions, other
 methods have been developed for synthesizing spiroketals such as oxidative radical cyclization of
ω-hydroxy pyrans (Scheme 1, eq. 2) [7], ring closure involving intramolecular conjugate addition
(Scheme 1, eq. 3) [8], hetero-Diels–Alder cycloaddition (Scheme 1, eq. 4) [9], iodo-spiroketalization
(Scheme 1, eq. 5) [10], hydroxymercuration (Scheme 1, eq. 6) [11], and, more recently, cyclization
induced by metals such as PdCl2 [12], AuCl3 [12b,13], PtCl2 [14], or Ir complexes [15] (Scheme 1,
eq. 7). Except for some examples of acid-catalyzed cyclization of dihydroxyketones [16], the other
processes are not highly diastereo- and/or regioselective [17]. Recently, we have shown that the treat-
ment of an ω-unsaturated lactol of type I with FeCl3 led to the corresponding spiroketal II (Scheme 2,
eq. 1) [18]. As, under these conditions, the spiroketalization was high yielding and highly diastereo- and
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regioselective, its use to synthesize complex natural spiroketals, such as, for example, bistramides and
more particularly 39-oxobistramide K, was planned (Scheme 2, eq. 2).
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Scheme 1 Methods to access spiroketals.



39-OXOBISTRAMIDE K: STRUCTURE AND BIOLOGICAL PROPERTIES

39-Oxobistramide K was extracted from the tunicate Trididemnum cyclops Michaelsen in 1921 [2] in
conjunction with two other bistramides, bistramides A and D, which were previously isolated in 1988
by Gouiffès et al. from the ascidian Lissoclinum bistratum [19] and belong to the Didemnidae family
(Scheme 3) [20].
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Scheme 2 Retrosynthetic analysis of 39-oxobistramide K.

Scheme 3 Bistramides A–D, K, L, and 39-oxobistramide K.



39-Oxobistramide K is a new lipopeptide, and its structure elucidation was carried out by analy-
sis of one- and two-dimensional NMR spectroscopy and high-resolution mass spectrometry (HRMS)
data [2]. We have to point out that the stereogenic center at C4 was not elucidated. 39-Oxobistramide
K has been reported to have antiproliferative activity against the A2780 cell line and exhibited an IC50
value of 0.34 μM [2]. Owing to its biological properties and its challenging molecular architecture, we
decided to embark on the synthesis of 39-oxobistramide K according to a convergent approach and by
utilizing the spiroketalization of an ω-unsaturated lactol induced by FeCl3, as the key step (Scheme 2,
eq. 2).

RETROSYNTHESIS OF 39-OXOBISTRAMIDE K

Two appropriate disconnections appeared to be the peptide bonds C13–C14 and C18–C19 which
resulted in three fragments: dihydroxycarboxylic acid A, amino acid B, and spiroketal C (Scheme 4).
As the synthesis of fragment A has already been achieved [21], we focused on the synthesis of frag-
ments B [22] and C.
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Scheme 4 Fragments A, B, and C; and retrosynthetic analysis of B and C.



The synthesis of amino acid B was envisaged from allylamine, and the control of the two stereo -
genic centers would be achieved by using an enantioselective crotyltitanation [23] applied to an alde-
hyde. Concerning spiroketal C, the C36–C37 bond would be constructed by using a
Horner–Wadsworth–Emmons reaction, the C32–C33 bond by using a Wittig reaction, and the spiro ketal
would be obtained by treatment of lactol D with FeCl3. This latter lactol would be synthesized from lac-
tone E in which the two stereogenic centers would be controlled by utilizing an enantioselective
crotyltitanation [23]. The access to E was planned from 1,4-butanediol (Scheme 4).

SYNTHESIS OF FRAGMENT B (FRAGMENT C14–C18)

The synthesis of fragment B was realized in seven steps from allylamine 1. This latter compound was
transformed to the protected amino-aldehyde 2 in two steps [Boc2O, 4-DMAP, r.t. then 60 °C (70 %),
then O3, CH2Cl2 −78 °C then Me2S in excess, −78 °C to r.t. (80 %)] [24] and after addition of the highly
face-selective crotyltitanium complex (S,S)-Ti-I (Et2O, –78 °C, 18 h) [23], the homoallylic alcohol 3
was obtained with excellent diastereoselectivity and enantioselectivity (dr > 95:5; ee > 95 %). This alco-
hol was then transformed to the desired protected amino acid 4 via the following sequence: triethylsi-
lyl-protection of the hydroxyl group, oxidative cleavage, deprotection, then Fmoc-protection of the
amine (Scheme 5) [22]. Fragment B was achieved in seven steps with an overall yield of 34 % starting
from allylamine 1.

SYNTHESIS OF FRAGMENT C (FRAGMENT C19–C40)

The synthesis of spiroketal C was undertaken from the commercially available 1,4-butanediol 5, which
was transformed in two steps to the corresponding protected hydroxyaldehyde 6 (Scheme 6) [25]. After
treatment of 6 with the crotyltitanium complex (R,R)-Ti-I [23], the stereogenic centers at C22 and C23
were controlled. The transformation of the obtained homoallylic alcohol 7 to the lactone of type E,
compound 8, was accomplished in three steps—sequential cross-metathesis with methyl acrylate,
hydrogenation, and treatment under acidic conditions (Scheme 6).
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Scheme 5 Synthesis of amino acid 4.



Lactone 8 was then transformed to the key spiroketal 11 via lactol 10. After addition of 4-pen-
tenylmagnesium bromide to lactone 8, cross-metathesis with allyl acetate 9 [26] using the
Hoveyda–Grubbs catalyst (HG-II) [27], and hydration of the obtained glycal, lactol 10 was isolated in
78 % yield over three steps (Scheme 7). Lactol 10 was then treated with FeCl3�6H2O, and the resulting
spiroketal 11 was transformed to 13 after an oxidative cleavage and a Wittig reaction with bromo -
phosphonium 12 (79 % yield over the two steps) [28]. Subsequently, a desilylation followed by a
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Scheme 6 Synthesis of lactone 8.

Scheme 7 Synthesis of spiroketal 17.



Mitsunobu reaction using phthalimide and a hydrogenation/hydrogenolysis one-pot sequence provided
alcohol 14 in 80 % overall yield. In order to obtain fragment C, compound 14 was oxidized and the
resulting aldehyde was condensed with keto-phosphonate 15 [29] utilizing Ba(OH)2�8H2O as the base.
Under these conditions, the unsaturated ketone was introduced, however, a secondary reaction was
observed as the phthalimido group was transformed to an amino acid, leading to compound 16 in 75 %
yield over two steps. This latter transformation was not dramatic as after treatment with N,N'-dicyclo-
hexylcarbodiimide (DCC), followed by the addition of methylhydrazine [30], the amine at C19 was
formed and directly involved in a coupling reaction with amino acid 4 to furnish the C14–C40 fragment
of 39-oxobistramide K, compound 17.

Compound 17, which corresponds to the C14–C40 fragment of 39-oxobistramide K, was synthe-
sized from 1,4-butanediol 5 in 19 steps with an overall yield of 6.2 % for the longer sequence of reac-
tions. We have to point out that 17 is a useful fragment that would allow the access to 39-oxobistramide
K as well as to bistramide C.
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