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Abstract: Accurate thermophysical properties are essential to the development of high-qual-
ity process simulation models of chemical processes. Therefore, process-modeling software
(simulator) must provide accurate, reliable, and easily accessible property data and models to
enable efficient and robust process design. Property data and parameters for components of
interest are generally available in the databases of the simulator. For components that are not
in the databases, their property data must be supplied by the user. The number of components
available in a typical simulator is about 1700. The number and types of components available
in the simulator limit the scope and accuracy of process models that can be developed.

In this paper, we review past practice in obtaining the necessary property data required
in developing a process model and describe a new methodology that can be used to overcome
the shortcomings of the current method. The new method is based on the dynamic data eval-
uation concept that combines the experimental data obtained from a comprehensive elec-
tronic database with structure-based property estimation system and data analysis and regres-
sion programs to generate critically evaluated property data. The concept and necessary
software have been implemented in a process simulator, resulting in a new workflow that
enables high-fidelity process models to be developed more easily and efficiently. 

Keywords: critically evaluated property data; dynamic data evaluation; process simulation;
ThermoData Engine; thermophysical properties.

INTRODUCTION

The 21st century is proving difficult for companies in the continuous processing industries (CPIs) due
to wild fluctuations in energy, raw material and capital costs, globalization of markets, and the chal-
lenging economic environment. In response, chemical manufacturers are increasing their focus on pro-
duction of higher-value specialty chemicals and intermediates. Pharmaceutical companies are develop-
ing synthesis routes for a wide slate of products while reducing production costs for their drugs. New
processes are being developed to manufacture biofuel and to synthesize liquid fuel from natural gas and
synthesis gas from coal, coke, oil sands, and biomass. Oil companies are working to improve yields
through better characterization and “molecule management” in their facilities. 

In addressing these challenges, the industries are increasingly relying on process modeling tools
to design, operate, and optimize chemical processes to maximize yields, minimize energy and capital
costs, and ensure environmental compliance. These software tools combine basic engineering princi-
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ples (e.g., mass and energy balances, phase and chemical equilibria, and reaction kinetics) with sophis-
ticated computer algorithms to enable engineers to predict or simulate the behavior of chemical
processes. One such tool is a process simulator such as Aspen Plus® [1].

Accurate thermophysical properties are keys to generating simulation results that can be used
with confidence. Inaccurate or incorrect physical properties lead to poor design or plants that do not
operate as expected resulting in enormous economic loss and environmental harm. Therefore, process
simulator must provide accurate, reliable, and easily accessible property methods and data to enable
efficient and robust process design. The problem is more challenging when dealing with new chemicals
where no or little property information is known. 

Property data and parameters for components of interest in the process model are generally avail-
able in the databases that are supplied with the simulator. The number of components available can be
relatively small compared to the tens of thousands of compounds that may be of interest to the process
industries. For components that are not available, their property data must be supplied by user. This can
be accomplished using a combination of experimental data (from the literature or from their own meas-
urements), estimation from group-contribution methods [2] and data regression [3]. However, this exer-
cise requires significant know-how and can incur significant costs. It is evident that the number and
types of components available in the simulator limit the scope and accuracy of process models that can
be developed. Therefore, it is important to increase the scope of the components and mixtures available
in the process simulator. 

A property database is traditionally created by physical property experts who developed the data
over an extended period of time, and the data are then deployed in a static database. The database may
be updated periodically as resources allow. To significantly increase the scope of the components and
mixtures available for process design and development, this static approach is not practical due to a
number of serious shortcomings. The time and effort required to collect, analyze, fill gaps, and evalu-
ate the data is very significant. The expertise required is limited to a small number of groups (universi-
ties and research institutions, large industrial companies, government laboratories). There is also a sig-
nificant lag between the time the static database is developed and when it is available in the simulator. 

In this work, a new method is developed to help overcome these shortcomings. It is based on the
dynamic data evaluation concept [4] developed at the Thermodynamic Research Center (TRC), which
is part of the U.S. National Institute of Standards and Technology (NIST). The concept combines the
experimental data obtained from a comprehensive, evergreen electronic database with structure-based
property estimation system and data analysis and regression programs to generate critically evaluated
property data. The concept and necessary software have been implemented in Aspen Plus [1] and are
described in detail in this paper. The new technology enables creation of critically evaluated properties
required in simulation based on the current state of the data and process requirements. This technology
is a result of a government/industry cooperation that leveraged more than a decade of research and
development work performed at NIST-TRC. Combined with many years of development efforts at the
author’s company, the technology is available to a very large number of process simulation users world-
wide.

THERMOPHYSICAL PROPERTY DATA AND PROCESS SIMULATION

Process modeling uses the laws of thermodynamics and chemistry and chemical engineering principles
to carry out mass and energy balances for each unit of equipment in a plant. The fundamental equations
used to predict phase equilibrium or to size and rate equipment require reliable thermophysical prop-
erty data of the chemical components and mixtures that are involved. For example, phase equilibrium,
which dictates the distribution/separation of species in distillation columns, depends on the compo-
nent’s vapor pressures and activity coefficients (or fugacity coefficients), while heat transfer depends on
the component’s thermal conductivity and heat capacity. The accuracy (or fidelity) of the process sim-
ulation models is directly related to the accuracy of the underlying thermophysical property informa-
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tion. Poor data, poorly estimated property parameters, or inappropriate model can lead to very large
errors in the calculated capital costs of the plant, which in turn can lead to poor investment decisions.
For example, a 20 % error in thermal conductivity can lead to a 13 % error in capital cost, while 20 %
error in density can lead to 16 % error in capital cost [5]. For phase equilibrium property, such as activ-
ity coefficients, the impact can be even larger, depending on the characteristic of the system involved,
for example, the relative volatility of the key components. Consider a close boiling system, with rela-
tive volatility of 1.10. In order to separate the two components via distillation, a large number of stages
are required. Assuming a total reflux and a purity specification, the minimum number of stages can be
determined. For this system, a column consisting of 140 stages is required with an estimated capital cost
of USD 18 million. Figure 1 shows a sensitivity study relating the error in the relative volatility to the
minimum number of stages required to achieve the same purity specification. An error of –5 % can
result in a doubling of the number of stages required [6]. This very simplified example illustrates the
potential high costs of inattention to the accuracy of the physical property model used to design any
process.

In addition to the direct effect on capital costs, a model based on inaccurate or incorrect physical
properties could lead to infeasible process designs, poor plant operability, or unsafe plants. Thus, it is
absolutely essential that process simulation models are based on accurate thermophysical property data.
Finally, chemical industry trends toward new chemicals and new chemical families present an enormous
challenge to providing the necessary property information in a timely and cost-effective manner. 

Figure 2 shows schematically the relationships between the thermophysical property database, the
physical property calculation engine, and the process simulator engine. These are highly complex com-
ponents, therefore, only the essential elements will be briefly described here to provide context.
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Fig. 1 Effect of error in relative volatility on the minimum number of stages for a distillation column required to
achieve a desired separation of a close boiling mixture (with baseline relative volatility = 1.10). Adapted from [6].



The process simulator engine comprises algorithms to solve the distillation column; perform
compressor, heat exchanger, and other unit operations calculations; tear and converge recycle streams;
and optimize the process subject to constraints, including economic (e.g., equipment costs) constraints.
The simulator requires thermophysical properties, which are supplied by the physical property calcula-
tion engine. The simulator provides the process conditions (temperature, pressure, flow rates, and com-
ponents involved), property requests (properties and phase of interest), and the methods and models
(correlations) to be used, such as a specific equation-of-state model to the property calculation engine.
The property calculation engine in turn calculates and returns the requested properties.

The property calculation engine calculates the requested properties using the specified methods
and models. The key properties needed by the simulator are fugacity coefficients, enthalpy (and heat
capacity), entropy, Gibbs free energy, molar volume, viscosity, thermal conductivity, surface tension,
and diffusion coefficients. The property engine must also calculate derivatives of these properties with
respect to temperature, pressure, and composition in order to support Newton-based algorithms. For an
equation-based simulator (such as [1]), analytical derivatives of properties are essential. In order to
serve a wide range of industries (oil and gas, chemicals, petrochemicals, pharmaceuticals, specialty
chemicals, polymers, etc.), a wide variety of models capable of representing the components and com-
plex mixtures present in these diverse processes must also be available. The models include a large
number of equations of state, activity coefficients, corresponding-states, and empirical models. The
property engine also includes flash (phase equilibrium) calculations that can handle vapor, liquid, and
solid phases, including occurrence of multiple liquid phases and solid solution. In many applications,
such as electrolytes or reactive distillations, both phase and chemical equilibria must be considered
simultaneously.

Property models require property data and/or parameters as input. For example, the
Peng–Robinson equation of state [7] requires critical temperature, critical pressure, and acentric factor
of pure components and a binary interaction parameter for each component pair. Pure-component prop-
erty such as vapor pressure depends only on temperature and is calculated using correlations, such as
the Antoine [8] or Wagner [9] equations. The Antoine equation depends on three compound-specific
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Fig. 2 Simplified diagram showing relationships among property database, property calculation engine, and process
simulator engine, which constitute the process simulation domain (shaded area). The static data evaluation process
resides outside the process simulation domain, resulting in inefficiency in providing the thermophysical property
data needed in process simulation. 



constants, while the Wagner equation depends on the critical temperature and critical pressure as well
as four compound-specific constants. 

These pure-component critical properties and correlation constants, and binary interaction param-
eters are stored in the thermophysical property database of the simulator. It is important to note that in
general, this type of database does not contain the “raw” experimental data—just the evaluated corre-
lation constants and model parameters.

A partial list of properties required in process calculations is given in Table 1. For each property,
examples of equations or models are given. Only a small number of models are shown for illustrative
purposes as the actual number of models available for each property can be quite large. Interested read-
ers can refer to the on-line help feature of the simulator [1] for the complete list and detailed descrip-
tions of available models.

Table 1 Partial list of properties data required in process simulation [1].

Pure-component

Single-valued properties

Critical temperature
Critical pressure
Critical volume
Critical compressibility factor
Triple-point temperature
Enthalpy of fusion
Normal boiling temperature
Pitzer acentric factor

Temperature-dependent properties Model equations

Vapor pressure Antoine [8], Wagner [9]
Saturated liquid density Rackett [11]
(or molar volume)

Enthalpy of vaporization Watson [12]
Ideal gas heat capacity Aly–Lee [13]
Liquid viscosity Andrade [14]
Liquid thermal conductivity TDE polynomials [1]
Surface tension TDE expansion [1]

Mixtures Mixture models

Fugacity or fugacity coefficients Peng–Robinson [7], PSRK [15], NRTL [16],
UNIQUAC [17]

Molar enthalpy (and heat capacity) Compute from EoS and ideal gas Cp
Molar entropy Compute from EoS and ideal gas Cp
Molar Gibbs free energy Compute from EoS and ideal gas Cp
Molar volume Compute from EoS, Rackett [11]
Viscosity Compute from pure-component property using

mixing rules
Thermal conductivity Compute from pure-component property using

mixing rules
Surface tension Compute from pure-component property using

mixing rules
Diffusion coefficients Wilke–Chang [18]
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The number of components available in a typical simulator is relatively small (~1700 [10]) com-
pared to the tens of thousands of compounds that may be of interest to the process industries. Aspen
Plus version 2006 [1] (before the implementation of the technology described in this work) contains a
relatively larger set of compounds as shown in Table 2. However, that is still insufficient for many appli-
cations.

Table 2 Databases available in Aspen Plus version 2006 [1] prior to
implementation of the technology described in this work.

Data in the database Source of data

1972 organic components DIPPR® [19] and in-house development
2477 inorganic components Barin [20]
3462 solids Wagman et al. [21]
800 ions Wagman et al. [21]
Binary interaction parameters Various literature sources [22,23] and
for ~4000 unique mixtures in-house development

Property databases are traditionally created by physical property experts [19–23]. A comprehen-
sive review of the developments of factual databases was given by Rarey and Gmehling [24]. These
databases are developed over an extended period of time (years) by collecting experimental data from
thermodynamic journals, reference books, and open and/or private on-line databases. For many com-
pounds considered, there are only limited experimental data available. As a result, the missing data must
be estimated from molecular structure using group-contribution or other methods [2]. The experimen-
tal and estimated “data” are evaluated for consistency to produce recommended values (see “Pure-com-
ponent properties” section for more information on consistency checks). For temperature-dependent
properties, the data are then fitted to the appropriate equations using data regression. This exercise is
time-consuming and requires significant know-how. The expertise required is limited to a small num-
ber of groups (universities and research institutions, large industrial companies, government laborato-
ries). In addition, experienced property evaluators continue to become rarer, particularly as the baby-
boomer generation has reached retirement age. 

There are no comprehensive libraries of binary interaction parameters that are publicly available.
These parameters are generally developed in-house or collected from various literature sources (e.g.,
[22,23,25,26]). The efforts to develop binary interaction parameters in-house are very significant. Our
experience with such development consumed over 10 person-years. The resultant library covers about
4000 unique binary mixtures and includes binary interaction parameters for the NRTL [16], Wilson
[27], and UNIQUAC [17] models with three combinations of vapor-phase equations of state (ideal gas,
Redlich–Kwong [28] and Hayden–O’Connell [26]). This results in about 36 000 sets of binary param-
eter values [1]. There is no doubt as to the necessity and benefits of such efforts and investments.
However, this example underscores the magnitude of the work required for such an undertaking and the
very large gaps that currently exist—considering that there are vapor–liquid equilibrium (VLE) data for
about 30000 unique binary mixtures in the NIST SOURCE Data Archive (as of 30 June 2010; see also
“Experimental data section”). Any efforts to systematically analyze such data with the aim to develop
a library of binary interaction parameters will be very extensive and costly. In addition, other data such
as excess enthalpy and infinite-dilution activity coefficients should also be included in the parameter
optimization process, thus increasing the scope of the work further. The database of binary interaction
parameters is not limited to VLE systems for activity coefficient models. Binary interaction parameters
for liquid–liquid equilibrium (LLE) applications, equation-of-state models, and Henry’s law constants
are also available [1]. These databases should also be extended to make use of the currently available
experimental data. Such systematic and inclusive efforts, if executed manually, currently appear imprac-
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tical and will inevitably result in a certain number of systems having been poorly determined or over-
fitted, as pointed out by Rarey and Gmehling [24]. 

Property databases discussed above are delivered with the process simulator as static databases.
Some of the databases may be updated with each new release of the software, but many are not due to
the limitations discussed above. There is also a significant lag between the time the static database is
developed and when it is available in the simulator, thus delaying its availability for industrial use. The
static data evaluation process shown in Fig. 2 depicts the crucial property evaluation process to reside
outside the domain of the process simulator resulting in inefficiencies.

Static data evaluation is also used to supply property data directly to the property calculation
engine as shown in Fig. 2. This occurs when components present in the simulation are not available in
the library so the user has to supply the data needed. This task has traditionally been performed by ther-
modynamics experts within the company and to an increasing extent by other users of the program. The
same methodology employed by database developers is also used here. However, an additional imped-
iment in this case lies in the accessibility to experimental data due to the high costs involved as well as
to the lack of awareness of the available resources. In addition, most users are not thermodynamics
experts; they lack the knowledge and confidence to perform the evaluation. As a result, the property
data supplied to the simulator may contain errors or can be inconsistent. Given the increasing impor-
tance of new materials and processes, this challenge must be addressed.

From the preceding discussion, it is clear that the number and types of components available in
the simulator limit the scope and accuracy of process models that can be developed. Therefore, it is
important to increase the scope of the components and mixtures available as well as to improve the abil-
ity to handle new components that are not present in the database. However, it is also evident that the
static evaluation approach alone is not sufficient and practical. Therefore, we proposed to address the
problems in two ways: (1) by implementing the dynamic data evaluation concept and associated soft-
ware, and (2) by greatly expanding the static database for pure components using the experimental data
and evaluation tools developed for dynamic data evaluation. 

DYNAMIC DATA EVALUATION

An alternative to the static evaluation approach lies in the concept called dynamic data evaluation [4]
developed at NIST and in bringing both the experimental data and dynamic data evaluation inside the
process simulation domain, as shown in Fig. 3. The new methodology solves the primary deficiencies
of the static approach by (1) removing the impediment to accessing experimental data by providing
them directly within the process simulator, (2) offsetting the lack of data evaluation expertise by pro-
viding software that captured such expertise and using it to perform data evaluation, and (3) enabling
the user to initiate data evaluation as needed, dynamically—on demand when developing the property
data for a process model. The data evaluation results can be used directly in property calculations as
shown in Fig. 3. Over time, as results are validated in the field, the data and parameters can also be per-
manently stored in the database. 

The three key elements of dynamic data evaluation are described in the following sections.
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Experimental data

Implementation of the dynamic data evaluation concept has required the development of a large elec-
tronic database storing essentially all experimental thermodynamic data known to date with detailed
descriptions of relevant metadata and uncertainties. The assessment and storage of the uncertainties are
essential to the success of the dynamic approach. This database is referred to as the NIST SOURCE Data
Archive (or SOURCE in the remainder of this paper). The current state of SOURCE is shown in Table 3.
Experimental data are continually and systematically collected and evaluated at the NIST TRC’s Data
Entry Facility in Boulder, Colorado, USA. The staff of this facility, working in conjunction with the
University of Colorado and the Colorado School of Mines, gathers property data from contemporary
and historical scientific journals from around the world. The data are captured and uncertainties are
assessed with the aid of an expert system called the Guided Data Capture program [29]. This expert
system checks the data using various thermodynamic relationships to ensure the assessed uncertainties
are reliable and that the data are accurate and self-consistent. This process eliminates many of the tran-
scription errors associated with traditional property data collection, and ensures the integrity of
SOURCE that underlies the dynamic data evaluation approach. Approximately 500000 data points are
added to the database annually. 

The SOURCE database can be integrated into the process simulator domain as depicted in Fig. 3.
However, due to the nature of the software release cycle (typically annually), SOURCE that is being
used in the simulator is not always up to date. NIST has developed a web-based data deployment mech-
anism, which allows data to be updated daily [4]. In principle, the process simulator can take advantage
of this web-based update mechanism to keep SOURCE up to date for the users. However, such an
update mechanism from the NIST web site introduces security risks and can incur high administrative
costs related to entitlement verification. As a result, it was not adopted in this work. An alternative
approach was therefore developed. The most current SOURCE data are provided to the users via an
update posted to the company customer support web site every three months. Interested users with cur-
rent software support entitlement can download and install the SOURCE database quarterly. This prac-
tical compromise provides relatively up-to-date data to the users at minimum cost.
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Fig. 3 Schematic diagram showing the key elements of dynamic data evaluation. The dynamic data evaluation
process resides within the process simulation domain (shaded area on the left of the figure); it uses an extensive
database of experimental data together with expert software (shaded area on the right) to provide evaluated property
parameters required in a particular process simulation project. The data evaluation is initiated by the user when
needed—on demand.



Table 3 Status of experimental data stored in the SOURCE data archive, as
of 30 June 2010. A data point refers to a measured property of interest, e.g.,
mixture liquid viscosity at a given temperature, pressure, and composition.

Data description No. of data points

VLE 817568
LLE 142394
Activity coefficients at infinite dilution in pure solvents 26636
Activity coefficients at infinite dilution in mixtures 5169
Critical data of mixtures 14121
SLE 110330
Azeotropic data 4942
Excess enthalpies 263541
Excess heat capacities 46913
Excess volumes 693379
Pure-component data 1196181
Reaction heats 5662
Reaction equilibrium data 8229
Mixture transport properties 258284
Mixture surface tension, refraction, speed of sound 213862
Total number of data points 4025274

Dynamic data evaluation software

The dynamic data evaluation concept was implemented in the software program NIST ThermoData
Engine (TDE) and had been described in details in refs. [4,30,31]. As discussed earlier, the goal is to
alleviate the lack of data evaluation expertise by providing software that captured such expertise and
using it to perform data evaluation. TDE makes use of the experimental and metadata from SOURCE
together with software heuristics to evaluate the data for consistency, estimate missing properties to fill
gaps, and fit the data to produce critically evaluated properties and parameters that can be used directly
in process calculations as shown schematically in Fig. 3. Dynamic data evaluations for pure components
and binary mixtures are described in the following sections.

Pure-component properties
Pure-component properties of interest in process simulation are listed in Table 1. The algorithm used in
pure-component property evaluation is shown in Fig. 4 and is described in details in ref. [4]. A brief
description of the algorithm is given below.

Experimental pure-component property data are retrieved from the database and are divided into
blocks or types: phase diagram (e.g., phase boundary pressure, critical temperature), volumetric (e.g.,
density, molar volume, critical density), energetic (e.g., enthalpy of vaporization or sublimation, heat
capacity at constant pressure), and other (e.g., viscosity, surface tension). Phase diagram properties are
used to delineate the phase regions and their boundaries. The phase diagram, volumetric and energetic
properties are tied by thermodynamic consistency conditions—that is, they are related through mathe-
matical thermodynamic identities. Properties in the “other” block have no influence on the first three
blocks of properties and are processed last.

Normalization refers to the process of combining closely related properties into single properties.
For example, specific density, molar volume, and compressibility factor are combined into one prop-
erty. This eliminates the complexity and confusion that will be caused by applying separate equations
for each of these related properties. 

For each block, after normalization, missing properties are added from predictions based on
group-contribution, corresponding-states, and other methods; appropriate methods are selected based
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on the nature of the chemical system and property; data are fitted to the selected equations; and consis-
tency within block is enforced. When all three blocks are processed, then inter-block consistency is
enforced. Finally, the “other” properties, which depend on the first three blocks, are processed.

Three levels of consistency enforcement are used: single-property enforcement, in-block enforce-
ment, and inter-block enforcement [4]. Single-property enforcement constrains a single fitting equation
to be consistent with other properties. This is used to ensure that saturated vapor pressures are consis-
tent with heat capacity differences between the liquid and gas phases at low pressures and to ensure that
condensed-state phase boundary lines converge at triple points. In-block procedures are used for all
vapor and sublimation pressures as well as for saturated liquid and gas densities and single-phase and
saturated gas densities. An inter-block procedure refines the gas density and enthalpy of vaporization
through improved consistency with vapor pressures and liquid densities [4].

Table 4 lists the estimation methods used in TDE. The methods range from the familiar Joback
[35] and Benson [45] group-contribution methods to the work by Nannoolal and co-workers [34] and
the recent quantitative structure–-property relationship (QSPR) work of Kazakov and co-workers [37].
Most of these methods are group-contribution-based, which require functional groups for the com-
pounds to be known. TDE contains an algorithm that automatically maps the molecular structure
obtained from SOURCE (or supplied by user) into the functional groups for the different estimation
methods involved.

For compounds for which limited or no experimental data are available, the thermodynamic con-
straints and property evaluation procedure described above still apply. However, group-contribution and
corresponding-state methods are relied upon to provide the required information, instead of the exper-
imental data. As a result, the uncertainties of the evaluated properties are relatively larger.

For pure-component properties, dynamic data evaluation can be performed unattended, without
user intervention. This is possible because (1) the rules involved in performing thermodynamic consis-
tency test have been implemented and refined over many years of field use, (2) automatic generation of
groups from molecular structure has been successfully implemented, (3) extensive estimation methods
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exist to fill the data gaps, and (4) data regression of pure-component properties is relatively straight-
forward to carry out. 

Table 4 Estimation methods available in ThermoData Engine [4].

Property Method

Normal boiling point Constantinou–Gani [32], Marrero–Pardillo [33],
Nannoolal et al. [34]

Critical temperature Modified Joback [35], Constantinou–Gani [32],
Marrero–Pardillo [33], Wilson–Jasperson [36],
NIST/TRC QSPR [37]

Critical pressure Modified Joback [35], Constantinou–Gani [32],
Marrero–Pardillo [33], Wilson–Jasperson [36],
NIST/TRC QSPR [37]

Critical density Modified Joback [35], Constantinou–Gani [32],
Marrero-Pardillo [33]

Density (saturated liquid) Modified Rackett [11], Riedel [38]
Heat capacity (ideal gas) Modified Joback [35]
Heat capacity (saturated liquid) Modified Bondi [39]
Vapor pressure Ambrose–Walton [40]
Viscosity (gas) Lucas [41]
Viscosity (saturated liquid) Sastri-Rao [42]
Thermal conductivity (gas) Chung [43]
Thermal conductivity (saturated liquid) Chung [44]
Enthalpy of formation (Ideal gas) Benson [45]

Binary mixture properties
Experimental property data of binary mixtures are needed in the development and validation of mixture
property models (correlations) used in process simulation. The most important properties are phase-
equilibrium properties—VLE, LLE, and solid–liquid equilibrium (SLE) data. These data are used to
determine binary interaction parameters for either an activity coefficient or an equation-of-state model.
Excess enthalpy and infinite-dilution activity coefficients data are also often used to improve the qual-
ity and extend the application range of these models. The need for experimental data is not limited to
those related to phase equilibrium. To develop an accurate model for other properties such as liquid vis-
cosity, binary liquid viscosity data are required. Mixture properties available in SOURCE are shown in
Table 3.

Dynamic data evaluation of binary mixture data follows similar steps as those described in Fig. 4
for pure components—that is, retrieval of the data from SOURCE, assessment of data quality, and
finally fitting the data to an appropriate mixture model. However, due to the large amount of data and
the complexity involved in fitting nonlinear mixture model to data, especially when more than one type
of data are involved (i.e., multi-property regression analysis), dynamic data evaluation cannot be per-
formed automatically (i.e., unattended). User intervention is required. After retrieval of the binary data,
quality of the VLE data can be assessed (see “Quality assessment of binary VLE data” section). For
other types of data, their quality beyond the uncertainty cannot yet be assessed. Finally, appropriate data
are used to determine binary interaction parameters of mixture model via regression. 

Quality assessment of binary VLE data 
The most important data for vapor–liquid processes are binary VLE data. As shown in Table 3, currently
there are more than 800000 VLE data points in SOURCE. These data comprise about 30000 unique
binary mixtures. The challenge facing dynamic data evaluation of binary VLE data is how to deal with
this very large amount of data that are of varying quality and sometimes conflicting. 
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Kang and co-workers [46] developed a quality assessment algorithm for binary VLE data based
on thermodynamic consistency tests. The algorithm combines four widely used tests of VLE consis-
tency based on the requirements of the Gibbs–Duhem equation: Herrington or area test [47,48], point
or differential test [49,50], infinite dilution test [49,50], and Van Ness modeling test [51,52], with a
check of consistency between the binary VLE data and the pure-compound vapor pressures.
Mathematical details of all tests are described fully in [46]. 

Kang and co-workers [46] also developed a numerical quality factor Ftesti for each test to replace
the simple pass/fail results normally associated with these tests. Since the four tests evaluate different
aspects of the data, conflicting results do often occur. Pass/fail results for these tests do not help users
determine the overall quality of the datasets. Table 5 shows an example of the conflicting pass/fail
results for four hypothetical VLE data sets of a binary mixture. For data set 1, tests 1 and 2 passed while
tests 3 and 4 failed. For data set 3, the opposite is true. Given these results, it is not possible to compare
the quality of the data sets. 

Table 5 Hypothetical consistency test results for four sets of VLE data,
including the overall quality factor, which can be used to provide
quantitative results in the evaluation of binary VLE data.

Data set Test 1* Test 2* Test 3* Test 4* Overall quality factor

1 Pass Pass Fail Fail 0.4
2 Fail Pass Pass Fail 0.3
3 Fail Fail Pass Pass 0.8
4 Pass Fail Fail Pass 0.5

*The four test methods are: 1. Herrington or area test [47,48], 2. Point or differential
test [49,50], 3. Infinite dilution test [49,50], and 4. Van Ness modeling test [51,52]. 

Ftesti values for the four tests were combined with Fpure value of the consistency between the end-
point pressures of the VLE data with pure-component vapor pressure assessed using the algorithm
described in the “Pure-component properties” section to calculate an overall quality factor QVLE. 

QVLE = Fpure (Ftest1 + Ftest2 + Ftest3 + Ftest4); QVLE ≤ 1 

QVLE and the F factors were formulated such that if a particular test cannot be preformed, the F
factor for that test is set to 0.5Ftesti,max, where Ftesti,max is 0.25 for tests 1 to 4 and 1.0 for the pure-com-
ponent test. If none of the tests can be applied, QVLE is 0.25. 

Ftesti has lower and upper limits: 0.025 ≤ Ftesti ≤ 0.25. Fpure has lower and upper limits: 0.1 ≤
Fpure ≤ 1.0. When all tests passed: Ftest1,max + Ftest2,max + Ftest3,max + Ftest4,max = 1. When all tests
failed: Ftest1,min + Ftest2,min + Ftest3,min + Ftest4,min = 0.1. Application of the quality assessment to the
same four hypothetical data sets theoretically results in a quantitative comparison of the data as shown
in Table 5.

The algorithm is applicable to all non-reacting chemical systems at subcritical conditions. It can
be applied to VLE data sets with at least three state variables reported: temperature, pressure plus liq-
uid, and/or vapor composition. To apply the Gibbs–Duhem-based tests, p-T-x-y data are necessary. All
four tests can be applied to isothermal data, while two (Herington and Van Ness) can be applied to iso-
baric data. In the case of p-T-x or p-T-y data, only the pure-component consistency test can be applied. 

The overall quality factor, QVLE provides very useful information to the user. It helps identify data
sets that are thermodynamically consistent that should/can be used in the mixture model evaluation (i.e.,
testing accuracy of existing binary interaction parameters) and development (i.e., determining new
binary interaction parameters). An additional benefit of QVLE is that it can be used to provide relative
weight in data regression [46]. The four thermodynamic consistency tests and pure-component vapor
pressure test as well as the overall quality factor, QVLE calculations have been implemented in TDE.
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On-demand data evaluation

Dynamic data evaluation is initiated as needed by the user as shown in Fig. 3, usually at the start of a
project. The most current experimental data are available through SOURCE for evaluation of built-in
property models available in the simulator as well as for developing the pure-component and mixture
models. TDE is the enabling technology that makes it possible to develop critically evaluated proper-
ties and data quickly by encapsulating the expert data-evaluation knowledge in the software. The
dynamic nature of the data evaluation also means that the required thermophysical properties are devel-
oped as needed and only for the systems of interest, thus making the problem more manageable. This
is in contrast to the daunting task of developing the static database in anticipation of all possible needs
and broad requirements as described in the preceding section.

The combined pure-component and binary interaction parameters constitute the critically evalu-
ated properties and data that can be used directly to calculate the physical properties required by the
simulator (see Fig. 3).

IMPLEMENTATION IN THE PROCESS SIMULATOR

The static database for pure-component properties has been greatly expanded by using TDE and a script
that enables automatic evaluations of all pure components available in the SOURCE database. The
number of components increased from approximately 9000 to more than 30000 [1] over the last sev-
eral years.

The dynamic data evaluation concept has been implemented in a process simulator, Aspen Plus
[1], by integrating the essential elements of the TDE software using dynamic link library (DLL) and by
delivering a snapshot of the SOURCE database with the product. The SOURCE database is kept up to
date by an automatic update that can be obtained from the company customer support web site on a
quarterly basis. TDE is integrated seamlessly into the user interface and the workflow of process model
development. It can be accessed using either a menu option or a toolbar button as shown in Fig. 5.
Availability of comprehensive experimental data in process simulator is a new development and, we
believe, is currently unique among the major process simulation programs.

This section describes the new workflow resulting from the implementation of this new technol-
ogy. The workflow follows the steps shown in Fig. 6 to develop critically evaluated property data
required for a process model—normally at the beginning of a project. These are recommended steps or
best practices that serve to illustrate how the new technology can be applied and is not meant to be a
recipe. The user can deviate from the sequence as needed. It is also important to remember that dynamic
data evaluation can be initiated by the user at any time. Finally, this section aims to provide an overview
of the new technology, therefore, it does not describe many of the features of the physical property sys-
tem of the simulator. Interested readers should refer to the online help feature of the simulator.
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Fig. 5 NIST ThermoData Engine is integrated with the simulator and can be launched directly to perform property
evaluation for pure-component and binary mixtures. The figure is shown for pure-component property evaluation.
For binary mixture, two components must be specified.

Fig. 6 Schematic diagram showing the key steps involved in developing accurate property models in process
simulation.



Select property methods and models

Property methods and models most appropriate for the process of interest must be selected. Property
method in this simulator refers to a collection of calculation procedures that is used to calculate all the
required properties (see Table 1). For a given property, one or more specific models may be used. The
Peng–Robinson equation of state is an example of a model and it is used to calculate fugacity coeffi-
cients, molar volume, enthalpy, entropy, and Gibbs free energy. One or more methods may be required
to be able to model the entire process. For example, in the low-pressure section of the process, a prop-
erty method based on an activity coefficient model may be used while in the high-pressure section, a
property method based on an equation of state is more appropriate. 

Property method selection is an important task that can be daunting for new users or for users who
are not familiar with thermodynamics, especially when there are a large number of methods and mod-
els to choose from. For the simulator described in this work, there are more than 90 built-in methods
and several hundreds models. To assist the users, the simulator offers a Property Method Section
Assistant, which is rule-based software that provides suggestions of possible property methods to be
used based on the answers that the user provided to a series of questions. For example, for general
chemical processes, the assistant will recommend that an activity coefficient-based method, such as
NRTL [16], Wilson [27], or UNIQUAC [17] can be used. However, if the process is at high pressures
(e.g., >10 bar), an equation of state with advanced mixing rules, such as predictive
Soave–Redlich–Kwong (PSRK) [15] should be used. If two liquid phases exist, a model capable of rep-
resenting phase splitting must be used, such as an activity coefficient model (NRTL [16] or UNIQUAC
[17]), or an equation-of-state model with advanced mixing rules (PSRK [15] or many others).
Additional help is available for specific processes, such as azeotropic separations or those involving car-
boxylic acids or hydrogen fluoride. For carboxylic acids, the assistant will recommend that an activity
coefficient model be used together with an equation of state that accounts of the effect of vapor-phase
association such as Nothnagel [53] or Hayden-O’Connell [26]. For electrolytic systems, phase and
chemical equilibrium must be considered, and an electrolyte model, such as the electrolyte NRTL
model [54], is recommended. 

Define components of interest

The user has access to a library of over 30000 components as a result of the expansion of the static data-
base described earlier. Flexible search helps locate the components quickly. 

Evaluate pure-component properties

TDE can be used to evaluate properties of pure components. TDE is integrated with the simulator and
can be launched directly using either a menu option or a toolbar button as shown in Fig. 5. The com-
ponent of interest is then selected for evaluation. 

Results of the evaluation include the recommended property parameters, the underlying experi-
mental data, and the estimated properties that were used. Results of dynamic data evaluation for
trimethylamine are shown in Fig. 7. The evaluated properties are shown on the left-hand side of the
form. For each property, the critically evaluated parameter values are shown on the right-hand side.
Figure 7 shows the parameter values of the Wagner equation for vapor pressure.

Evaluation results also include all the available experimental data, predicted values, and evaluated
results. An example of the experimental data is shown in Fig. 8 for vapor pressure. Experimental val-
ues are shown with uncertainty and literature citation. Data uncertainty and citation provide a measure
of quality and traceability to the original source. The form also indicates whether or not a data point is
accepted or rejected by the evaluation algorithm. The experimental data and parameters can be saved
with the simulation case file using the Save button.
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Fig. 7 Results of pure-component properties evaluation performed by TDE. Critically evaluated parameters for the
vapor pressure model (Wagner [9]) for trimethylamine are shown. Results also include all available experimental
data, predicted values used to fill gaps of experimental data, and evaluated results.

Fig. 8 Results of pure-component properties evaluation performed by TDE. Experimental vapor pressure data of
trimethylamine are shown. 



Model prediction can be compared against experimental data. Figure 9 shows a typical plot of the
property vs. temperature. In this case, the natural logarithm of vapor pressure of trimethylamine is plot-
ted vs. inverse temperature. Accepted experimental data, those that were rejected, predicted data, and
the evaluation results (best fit to the Wagner equation) are shown.

As discussed earlier, it is important to improve the ability to handle new compounds that are not
in the database. TDE can use molecular structure information imported from an MDL MOL file or
drawn using a molecular drawing tool. The drawing tool was developed and included with the Aspen
Plus simulator and can be invoked as shown in Fig. 10. As a result, in principle, TDE can be used to
estimate the properties for any organic compound (including those which contain sulfur, fluorine, chlo-
rine, bromine, and iodine), thus providing direct access to property values for literally millions of com-
pounds, all with reliable and conservative estimates of uncertainty.
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Fig. 9 Vapor pressure of trimethylamine as a function of temperature. �: accepted experimental data; �: rejected
data; �: predicted data using Ambrose–Walton method [40]; —: evaluation results (best fit to the Wagner equation
[9]).



Evaluate accuracy of mixture model

After evaluation of pure components has been completed, the user can start the evaluation of mixture
properties, which is a more complex task. As discussed earlier and shown in Table 2, the simulator con-
tains a large number of built-in binary interaction parameters. It is important to ascertain whether or not
the binary interaction parameters are available for the components of interest. And if they are available,
whether or not they are appropriate for the process conditions (temperature, pressure, composition) and
types of phase equilibrium (VLE, LLE, SLE) under development. If the binary interaction parameters
are not available, then they must be determined, subject to the degree of importance of the binary pair
to the modeling problem at hand (e.g., whether they constitute key components, trace components that
affect product specification, or trace components with no important consequence). 

To evaluate the accuracy of built-in binary interaction parameters or to develop new ones, exper-
imental mixture data are required. For a component pair for which no experimental data are available,
methods such as UNIFAC [55] can be used to fill the gaps. However, it must be emphasized that for
final design and for key components, binary interaction parameters based on experimental data, even
limited ones, are essential.

The TDE dialog box shown in Fig. 5 can be used to select the two components of interest to
search for any available experimental mixture data. As an example, the binary mixture water and NMP
(N-methyl-2-pyrrolidone) will be used. All available experimental data for the selected binary mixture
from SOURCE are located and displayed on the results form as shown in Fig. 11. The data are catego-
rized and displayed in a tree view on the left-hand side for convenience and easy access. For this sys-
tem, binary diffusion coefficient, VLE, density, excess enthalpy, heat capacity at constant pressure, sur-
face tension, and viscosity data are available. On the right-hand side, an overview of each data set is
shown, including the number of data points, year of publication, temperature range, and pressure range.
The temperature and pressure ranges are particularly useful as they can be used to identify the data sets
most appropriate for the process conditions of interest. Fitting data that are well beyond the tempera-
ture and pressure ranges of the process can lead to a sub-optimum model, resulting in unnecessary sac-
rifice of accuracy. However, these “extra” data can be used to test the extrapolation capability of the
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Fig. 10 Molecular structure can be drawn and provided to TDE for use in pure-component property evaluation.
Atomic connectivity information is used by TDE to automatically generate functional groups required by the
appropriate estimation methods.



model, which is always a good practice. In many instances, overfitting the data (i.e., using more param-
eters than is necessary) can result in poor extrapolation behavior.

Figure 12 displays isobaric data for NMP–water at 0.5332 bar from Golubkov et al. [56]. The data
can also be shown graphically by clicking on the Plot button. See Fig. 13 for T-x-y plot of the selected
NMP–water data, labeled binary VLE 007 in Fig. 12.

As discussed in the “Quality assessment of binary VLE data” section, it is useful to perform
thermo dynamic consistency tests for the VLE data. The overall quality assessment results can help the
user make informed decision regarding the data sets to use as well as the weighting factors to assign to
them when performing data regression, especially when there are many data sets available. The ther-
modynamic consistency test is initiated by clicking on the Consistency button (see Fig. 12). Consistency
test results are displayed in the summary view (see Fig. 14) with the overall data quality (QVLE) and
results for each test. For this system, the overall data quality for the available data sets is relatively poor.
Most of the isobaric data do not cover the entire composition range, similar to the data set shown in Fig.
13. Nevertheless, the quality of one data set relative to another can still be inferred using QVLE.

Given experimental data (e.g., VLE, LLE, excess enthalpy), it is possible to verify the accuracy
of the mixture model—provided that built-in binary interaction parameters exist. For the NMP–water
system, their NRTL binary interaction parameters are available in the simulator as shown in Table 6.
Only VLE data were used to determine these binary interaction parameters. The data covered a wide
temperature range (293–451.49 K) and pressures up to atmospheric. As an illustrative example, the two
sets of VLE data with the highest overall data quality (sets labeled binary VLE 007 and binary
VLE 008, in Fig. 12) will be used to verify the accuracy of the built-in binary interaction parameters.
Binary VLE 007 is at 0.5332 bar, while binary VLE 008 is at 1.0132 bar with a combined temperature
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Fig. 11 The main TDE results form for binary mixture data. Data shown are for NMP–water. All available
experimental data are shown together with the number of data points, year of publication, and temperature and
pressure ranges. These information can help quickly identify data sets that should be further evaluated for
suitability in the application of interest.
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Fig. 12 Experimental VLE data of NMP–water at 0.5332 bar from Golubkov et. al. [56]. The data can be plotted
using the Plot button. VLE data can also be evaluated for thermodynamic consistency using the Consistency button.
Data sets of interest can be saved to the simulation case file using the Save to Form button. 

Fig. 13 T-x-y diagram of NMP–water data at 0.5332 bar [56]. 



range of 357–433 K. In addition, excess enthalpy data of Kuramaki et al. [57] and Noll et al. [58] will
also be used. These data cover a temperature range of 298.15–416.15 K. Both types of data are well
within the valid temperature and pressure ranges of the built-in binary interaction parameters.

Table 6 Binary interaction parameters for the NRTL model [16]* for the water (1)–NMP
(2) mixture. 

A12 A21 B12 B21 α12 E12 E21

Original 7.4081 –2.2438 –2279.96 533.85 0.3 0.0 0.0
Regressed 11.6476 20.1942 –1234.28 –1154.55 0.3 –1.204 –3.005

*τ12 = A12 + B12/T + E12 ln(T) [1]. τ21 = A21 + B21/T + E21 ln(T). α12 is the non-randomness factor.

The NRTL model with built-in binary parameters represents the VLE data quite well, as shown
in Fig 15. Results for excess enthalpy are shown in Fig. 16. Significant deviations exist, especially at
298.15 K for water mole fraction less than 0.6. Deviation on a percentage basis is very large (up to
100 %) for both temperatures. This is not too surprising since excess enthalpy data were not used in the
original data regression work. However, considering the very large deviation, it is useful to explore the
possibility of improving the representation of excess enthalpy while maintaining the accuracy of VLE
prediction. 
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Fig. 14 Summary view of VLE data for NMP–water system, showing overall data quality and results of the four
thermodynamic consistency tests.
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Fig. 15 Comparison between NRTL model prediction using binary interaction parameters from Table 6 and
experimental VLE data of NMP–water binary mixture. Data from Golubkov et. al. [56]; 0.5332 bar (�); 1.0132 bar
(�). NRTL results are shown as lines. – - –: built-in binary interaction parameters; —: regressed binary interaction
parameters determined in this work; – –: extrapolation to 5.0 bar using the regressed parameters.

Fig. 16 Comparison between NRTL model prediction using binary interaction parameters from Table 6 and
experimental excess enthalpy data of NMP–water binary mixture. Data: 298.15 K (�) [57]; 416.15 K (�) [58].
NRTL results are shown as lines. – - –: built-in binary interaction parameters; —: regressed parameters determined
in this work; – –: extrapolation to 500 K using the regressed parameters.



Fine-tune/develop mixture model

The NRTL model can be further improved by performing data regression—in this example, using both
VLE and excess enthalpy data. The same four sets of data used in the previous step are used here.
Significantly higher weight was given to the two sets of VLE data. This corresponds to the higher
importance of phase equilibrium data. 

Data regression can be initiated using the Data Regression button shown in Fig. 12. The new
binary interaction parameters are reported in Table 6. Results of the data regression for VLE and excess
enthalpy are shown in Figs. 15 and 16, respectively. As can be seen (solid lines in the figures), VLE and
excess enthalpy data are adequately correlated. The excess enthalpy representation was significantly
improved while maintaining the accuracy of VLE. 

To further ascertain that the revised binary interaction parameters are reasonable, they are used to
predict VLE and excess enthalpy at other conditions. VLE calculations are made at 5 bar and results are
added to Fig. 15. For excess enthalpy, the extrapolation is performed at 500 K. Results are shown in
Fig. 16. These results do not show any unusual behavior.

Since transport properties also have significant impact on process design and the associated cap-
ital costs as discussed earlier, it is important to develop and improve transport property models.
Unfortunately, this is an area where insufficient attention had been paid thus far. As an illustrative exam-
ple, liquid viscosity of the NMP–water system is studied. As shown in Fig. 11, liquid viscosity data are
available for this binary mixture. The experimental data of Henni et al. [59] are compared against the
model developed by Song and co-workers [60]. This model uses two binary interaction parameters (one
symmetric and another antisymmetric) to capture the nonlinear mixing behavior of liquid viscosity. The
binary interaction parameters are also temperature-dependent, which provides better fit of experimen-
tal data over a wide temperature range. First, calculations are made using the model at 298, 323, and
343 K without the use of binary interaction parameters. Results are very poor when compared with
experimental data as shown in Fig. 17. Temperature-dependent binary interaction parameters are then
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Fig. 17 Comparison between prediction using the Song model [60] and experimental liquid viscosity data for the
NMP–water binary mixture. Data of Henni et. al. [59] at 298 K (�), 323 K (�), and 343 K (�) are used. Model
results are shown as lines. – - –: zero binary interaction parameters; —: regressed parameters shown in Table 7.



obtained by regression using the available experimental data; results are reported in Table 7. The pre-
dicted liquid viscosity values are also compared against experimental data in Fig. 17. As shown, the
model can adequately correlate the very nonlinear, unsymmetric liquid viscosity data of this system. 

Table 7 Binary interaction parameters for the
liquid viscosity model [60]* for the water
(1)–NMP (2) mixture. 

a12 b12 c12 d12

–51.329 67.58 65.479 –85.08

*Symmetric binary interaction parameter k12 = a12 +
b12/Tr. k12 = k21. Antisymmetric binary interaction
parameters l12 = c12 + d12/Tr. l12 = –l21. Tr = T/Tref;
Tref = 298.15 K.

Publish model

Finally, the critically evaluated property data and parameters can be used with confidence in the simu-
lation. After further validation in the field, the evaluated data can also be permanently stored in the data-
base (see Fig. 3). In some organizations, property data developed for a project or process are packaged
and deployed using a secured database [1] when working with a 3rd party vendor or joint venture. The
secured database possesses unique characteristics in that the property data that are stored in the data-
base can be used in the process calculations but cannot be viewed or altered. This helps facilitate
exchange of process simulation files and enforce physical property standards while protecting the com-
panies’ intellectual property. As a result of increasing globalization, the need to cooperate with 3rd party
vendors and joint ventures in other countries also increases. At the same time, companies recognize the
need to be more vigilant about their intellectual property, such as proprietary thermophysical property
data and parameters. 

LIMITATIONS AND FUTURE PLANS

Dynamic data evaluation is currently applicable to non-reacting chemical systems. It cannot be used for
electrolyte and polymer systems. Experimental data available in the SOURCE database are primarily
for organic compounds. The estimation methods available for filling the gaps of experimental data of
pure components are also for those containing C, H, N, O, S, F, Cl, Br, I, and P atoms only. 

Although TDE makes it possible to develop critically evaluated properties quickly and confi-
dently, it is ultimately the responsibility of the engineer to ascertain that the resultant properties meet
the needs of the process model under development. TDE is an enabling technology, not a panacea, and
should be used in conjunction with scientific and engineering judgment.

The software technology related to the evaluation of pure-component properties is relatively well
developed. Much work remains on the evaluation of binary mixture properties as significant user inter-
actions and expertise are still required. Future work will continue to be carried out in cooperation with
our colleagues at TRC. The plan will be focused on improving data analysis, quality assessment, and
regression of nonlinear models using multi-property data regression analysis with the aim to increase
the level of automation for critical evaluation of binary mixture data. The quality assessment algorithm
will be enhanced to handle binary VLE mixtures containing supercritical components, binary LLE, and
other types of data. In addition, the extensive pure-component experimental data can be used to further
refine and extend the group-contribution methods to improve the accuracy as well as the type of atoms
and functional groups that can be handled. Results of this research can also be used to further fine-tune
the heuristics used in the selection of the best method for estimating a given property for a given class
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of compound. The ability to easily compare properties of compounds within a homologous series will
also be a very useful addition. TDE is expected to be extended to cover ternary data. 

Finally, for completeness, we would like to note that other valuable tools exist that provide struc-
ture-based estimation, experimental data access and analysis, and process synthesis tools, for example,
DDB Software Package DDBSP [24] and DECHEMA DPP [61]. However, they are not available within
the domain of the process simulator and therefore lack close interoperability and, to some extent, com-
patibility. More importantly, these software are separately licensed at significant cost relative to the cost
of the simulator, thus they are not accessible to the majority of the users unlike the technology described
in this work, which is provided by default as an integral part of the simulator.

CONCLUSIONS

In this paper, we described the important role thermophysical properties play in the development of
process simulation models, reviewed past practice in obtaining the necessary property data, and intro-
duced a new technology that can be used to overcome the shortcomings of the current method. The new
technology is software that implements the dynamic data evaluation concept, which makes use of exper-
imental thermophysical property data, structure-based property estimation system, data analysis, and
regression algorithms to generate critically evaluated property data and parameters. The implementa-
tion of the new technology in a process simulator, Aspen Plus, has been described and illustrated via
examples. 

Direct access to the “raw” experimental data is a fundamental shift in the process simulation mar-
ket. The enabling technology, NIST ThermoData Engine, allows the required thermophysical proper-
ties to be obtained “on-demand” with confidence. Engineers can more easily develop accurate mixture
models based on experimental data that cover conditions relevant to the process of interest—with full
traceability of data and parameters to the original source. The technology helps accelerate process
model development and ensures higher-quality models. The resulting models also help companies opti-
mize operating conditions and run their processes with greater agility, helping them stay profitable in a
volatile market.
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