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Abstract: The conventional Gibbs energy minimization methods apply elemental amounts of
system components as conservation constraints in the form of a stoichiometric conservation
matrix. The linear constraints designate the limitations set on the components described by
the system constituents. The equilibrium chemical potentials of the constituents are obtained
as a linear combination of the component-specific contributions, which are solved with the
Lagrange method of undetermined multipliers. When the Gibbs energy of a multiphase sys-
tem is also affected by conditions due to immaterial properties, the constraints must be
adjusted by the respective entities. The constrained free energy (CFE) minimization method
includes such conditions and incorporates every immaterial constraint accompanied with its
conjugate potential. The respective work or affinity-related condition is introduced to the
Gibbs energy calculation as an additional Lagrange multiplier. Thus, the minimization pro-
cedure can include systemic or external potential variables with their conjugate coefficients
as well as non-equilibrium affinities. Their implementation extends the scope of Gibbs
energy calculations to a number of new fields, including surface and interface systems, multi -
phase fiber suspensions with Donnan partitioning, kinetically controlled partial equilibria,
and pathway analysis of reaction networks.

Keywords: Donnan equilibrium; extent of reaction; Gibbs energy; immaterial constraints;
minimization; surface energy; virtual components.

INTRODUCTION

The development of functional materials and innovative processes, so often asked for in contemporary
society, require quantitative and interdisciplinary predictions connecting the appropriate physical,
chemical, and even biological phenomena. In macroscopic systems, where thermal, electrical, and
mechanical variables appear interconnected with the chemistry of the system, the thermodynamic free
energy is the most general property to be applied for relationships between different quantities. 

The conventional technique for multiphase systems is the minimization of the Gibbs (free) energy
to solve for equilibrium compositions at constant temperature and pressure. The results are used for
phase formation studies, generation of phase diagrams, and simulation of thermochemical processes
occurring in complex systems. The Gibbsian approach is based on experimental thermodynamic prop-
erties and phase equilibria, the data of which is then assessed and organized by application-specific
computer programs. Both new experimental techniques and evolving ab initio calculations are being
used to augment the existing databases. 

*Paper based on a presentation made at the 21st International Conference on Chemical Thermodynamics (ICCT-2010), Tsukuba,
Japan, 1–6 August 2010. Other presentations are published in this issue, pp. 1217–1281.
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The book by Smith and Missen [1] further remains the sole comprehensive treatise on numerical
calculation of multicomponent chemical equilibria by Gibbs energy minimization. The development of
such computer programs has continued nearly a half-century [2–4]. Additional features and improved
calculation techniques have been adapted during the decades while taking advantage of the constantly
improving computer capabilities. The pursuit for reliable phase diagrams has created an evolving tradi-
tion of Gibbs free energy calculations in metallurgy and high-temperature materials science [5,6]. The
benefits of the multiphase free energy methods have also been increasingly utilized in chemical and
petroleum engineering [7,8]. A bibliography of Gibbs energy methods in process calculations is pre-
sented, for example, by Nichita et al. [9]. Calculation of concentrated aqueous solutions is another
quickly developing field with industrial interest [10,11]. Furthermore, there have been efforts in apply-
ing the Gibbsian multiphase technique to pulp suspensions, since there is a worldwide industry that
manufactures pulp and paper products and operates the adjacent chemical recovery processes [12–14]. 

The conventional min(G) algorithms use constrained optimization, in which the feasible solution
space is determined by the (stoichiometric) conservation matrix of elemental amounts. Lampinen
applied immaterial constraining for the conservation of (battery) charge when dealing with the electro-
motive force of electrochemical cells [15]. Alberty [16] reported a structured method to create an extra
entity constraint without connection to the material content of the system. Due to the limited reactivity
of carbon atoms in benzene rings, he derived a static constraint by calculating the left null space of a
reaction matrix so as to conserve the “aromaticity“ of these compounds. Keck [17] used the term “gen-
eralized constraints” for describing the constraints not immediately associated with atom conservation
while introducing a passive reaction rate constraint for selected reactants or products, applied in fuel
combustion calculations and already used in an early publication by Keck and Gillespie [18]. 

The introduction of an “image component” by Koukkari [19] allowed for the use of an active reac-
tion rate constraint within the Gibbsian calculation. A static immaterial constraint was used by
Koukkari et al. [13] to model the Donnan partitioning in fiber suspensions. The method of immaterial
constraints was then generalized to model, for examle, surface tension, electrochemical potentials, and
rate-controlled affinities in multicomponent systems [20] and called the constrained free energy (CFE)
technique. Pajarre et al. [21] describe several practical applications that deal with this approach.
Blomberg and Koukkari [22] reported entity conservation implementations related to transformed
Gibbs energies for primarily biochemical systems. In short, the method of generalized immaterial con-
straints enables the association of the conservation matrix with structural, physical, chemical, and ener-
getic attributes, extending the scope of free energy calculations beyond the conventional studies of
global chemical equilibria and equilibrium-phase diagrams.

THE MINIMIZATION PROBLEM WITH IMMATERIAL CONSTRAINTS

When additional energy or work terms affect the Gibbs free energy [G = G(T,P,nk)], it is customary [23]
to transform the total differential of the Gibbs function to read as follows:

dG = S dT + V dp + Σμk dnk + Σzk Fϕkdnk + σ ΣdAk + ��� (1)

Here S denotes the entropy and V the volume of the system, μk is the chemical potential of the
species (k), T is temperature, P is pressure, and nk refers to mole amounts of chemical substances. The
two last terms refer to additional energy effects due to electrochemical potential (ϕk) and surface energy
(σ), with F being the Faraday constant, zk the charge number, and Ak the molar surface area of species
k. As the Gibbs energy is an additive extensive function, further terms due to either systemic or exter-
nal force fields are entered, respectively [24].

Gibbs energy minimization requires optimization of the nonlinear G-function with linear con-
straints and can be performed by the Lagrange method of undetermined multipliers. In the conventional
method, the molar amounts (mass balances) appear as necessary constraints. To incorporate the addi-
tional phenomena, a method with analogous immaterial constraints is needed. Thus, the question reverts
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to one of the fundamental problems in computational thermodynamics, i.e., to convex minimization of
the nonlinear objective function with its linear constraints. Gibbs energy is calculated as the sum of all
molar Gibbs energies, weighted by the respective molar amounts. The sum contains all constituents as
they may be chemical species in different phases, organic isomer groups, transformed biochemical
metabolites, or even virtual species. 

(2)

where nk is the molar amount of constituent k, μk is the molar Gibbs energy of constituent k, N is the
number of constituents, and G is the system Gibbs energy, objective function.

The objective function of the minimization problem is nonlinear because the chemical potentials
are functions of the molar amounts. The detailed mathematical expressions for the chemical poten-
tials/molar Gibbs energies depend greatly on the applied phase models. The linear constraints denote
the balance equations set on the components forming the constituents of the system. The conservation
matrix is the core of the matrix equation expressing these limitations.

CT n = b (3)

here, C is the conservation matrix, n is the molar amount vector for the constituents, and b is the molar
amount vector for the components.

Together, eqs. 2 and 3 constitute the problem for the nonlinear program (NLP) to be solved:

min G(n) s.t. (4)

The global minimum represents the equilibrium state with the lowest energy reachable with the
given set of constraints. The constraints typically refer to elemental abundances of a closed thermo -
dynamic system, but, as stipulated above, may include conservation of various attributes or entities
[20,25]. The solution may also be referred to as a constrained equilibrium or “virtual state” (without the
word equilibrium) if constraints of dynamic character have been used [18,19].

The Lagrangian objective function to be minimized then becomes as follows: 

(5)

where πj are the undetermined Lagrange multipliers used to include the constraints into the objective
function L, NC is the number of components in the system, and superscript α refers to phase, while Ω
is the total number of phases [1]. The solution of the extremum problem then provides both the
Lagrange multipliers and the equilibrium amounts of constituents. The summation includes all system
components, whether elemental abundances or immaterial or even virtual entities. The chemical poten-
tial of each chemical species remains the linear combination of the Lagrange multipliers as defined by
the elements of the conservation matrix:

(6)

The Gibbs energy in terms of the Lagrange multipliers and the total amounts of the components
are, respectively 

(7)
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Supposing that the “stoichiometric part” (j ≤ NC') of the conservation matrix C defines entirely
the amounts of elements and electrons (mass balance) of the given system, the additional components
(NC' < j ≤ NC) descend from various immaterial sources affecting the free energy of the system. The
physical meaning of the Lagrange multipliers is then evident as the equilibrium potentials of the com-
ponents of the system. In the conventional Gibbs energy minimization method they give the chemical
potentials of the elements or other stoichiometrically defined components of the equilibrium system.
More generally, they represent the energy contribution of any appropriate property to the molar Gibbs
energy of a constituent. 

The introduction of immaterial constraints into the minimization problem then reduces to finding
the appropriate form for the conservation matrix C when the work or affinity-related terms affect the
chemical composition of the system. In general, C is of the following form:

(8)

In the conventional method, the components represent elemental building blocks of the constituents and
the matrix elements ckj are the respective stoichiometric coefficients. For example, the chemical poten-
tial of carbon dioxide (CO2) in an equilibrium system with the elements carbon (C) and oxygen (O) as
system components will be given in terms of their potentials. CO2 consists of one unit of carbon and
two units of oxygen, and the equilibrium chemical potential is accordingly μCO2

= πC + 2 πO. In eq. 8,
the matrix elements for the material-phase constituents remain equivalent with the conventional
approach, but the additional column with subscript NC' + 1 represents a new conservation equation.
Thus, the element ck,NC+1 = 0 for all those constituents k which are not affected by the additional con-
straint, whereas it is not zero for those constituents which are affected by the said constraint. The mass
balance of the total system remains unaltered if the molecular mass of the additional component, Mm+1,
is chosen to be zero. Thus, by using immaterial components, additional conservation conditions can be
included into the minimization of the objective function. In Table 1, characteristic examples of the
immaterial constraints with their conjugate potentials applicable in min(G) problems have been col-
lected. In what follows, some characteristic examples of thermodynamically meaningful systems with
immaterial components will be presented.
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Table 1 Immaterial constraints and their conjugate potentials used in CFE models. 

System Constraint Conjugate potential Practical examples

Chemical Multiphase chemical
equilibrium equilibria
systems Phase diagrams

Systems with Surface and
area constraints interfacial tension,

sorption phenomena,
surface compositions

Systems with Swelling pressure of
volume constraints fibers and

membranes

Electrochemical Process chemistry of
(Donnan) fibers and pulps
multiphase Multiphase
systems membrane systems

Extent of Paraequilibria,
reaction-controlled reactive systems
systems

Constant pH = const. Transformed Gibbs
contribution pH energies in

biochemical
systems (pH = 7 at
standard state)

Constant Transformed Gibbs
contribution ionic energies with
strength constant ionic

strength

Ak = molar surface area of constituent
A0 = unit area
A = total area of system 
σ = surface energy 
Vk = molar surface area of constituent
V0 = unit volume
V = total volume of a phase or subvolume within the system 
Π = volume constraining osmotic or other pressure 
zk = charge number of a species
Qα = total charge of a subvolume or a phase 
F = Faraday constant
Δϕ = electric potential difference for a phase
vkr(i) = stoichiometric coefficient for species k in reaction i
ξi = advancement of reaction i
Affi = affinity of reaction i
R = gas constant
T = temperature
I = ionic strength of aqueous solution
mk = molality of solute k
α, B = constants related to aqueous electrolyte activity theories
γk = activity coefficient of solute k
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CALCULATION EXAMPLES

Surface and interface energies of mixtures 

Computation of the surface energy of liquid mixtures provides a simple introductory example of the use
of immaterial constraints in the Gibbsian multicomponent systems. Existence of a surface monolayer,
being in equilibrium with the bulk system (the surface curvature effects are neglected), is assumed. It is
customary to separate the contributions of the bulk (b) and surface (s) contributions to the Gibbs energy
as follows [23]:

(9)

where Ak is the molar surface area of species k and σ the surface tension in the system. Both the bulk
and surface parts have the same constituents with the same index number k referring to same species in
eq. 9. The respective conservation equations corresponding to the condition (eq. 2) for the equilibrium
surface system are

(10)

(11)

Equation 10 is the mass balance equation for the components, presented in terms of the stoichio-
metric numbers (ckj), which appear as elements in the respective conservation matrix C (see, e.g.,
[1,3,20]). As the surface area of the equilibrium system is also a conserved quantity, eq. 11 is then

derived from the condition             , where A is the total surface area. To reach an analogous

(dimensionless) form with the mass balance constraint (eq. 10), the unit area [m2/mol] normalization
constant A0 has been used. The condition (eq. 11) is only applicable for the surface phase, and thus the
summation over phases is irrelevant and merely shown to indicate the formal similarity of the two con-
ditions.

When comparing eqs. 7 and 9 combined with eq. 11 one obtains for the surface energy of the mix-
ture

σ A0 = πj=NC'+1 (12)

The subscript j = NC' +1 indicates the additional immaterial “surface” component of the system.
This result can also be derived from eq. 5 by using eqs. 9–11 in the minimization procedure as was
shown in [25,26]. The additional elements of the conservation matrix are the Ak/A0 ratios as deduced in
eq. 11. The molar surface areas of the pure substances can be derived from the respective molar vol-
umes [27] or by using estimates of the molecular diameters ([24] p. 212). The constant A0 can be cho-
sen arbitrarily, but for practical calculation reasons it is advantageous if the ratio Ak/A0 has a numerical
value close to unity, being of the same order of magnitude as the stoichiometric coefficients appearing
in the conservation matrix. 

To perform the surface tension calculations with a Gibbs energy minimizing program, the input
data must be arranged in terms of the standard state and excess Gibbs energy data of chemical poten-
tials of the surface system. The relation between the appropriate standard states was originally deduced
by Butler [28] 

μk°
,s = μk° + Ak σk (13)
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The necessary input for a Gibbsian surface energy calculation thus must include not only the stan-
dard state and thermodynamic activity (excess Gibbs energy) data for the constituents of the bulk and
surface phases but also the data for surface tensions of the pure substances (σk) as well as their molar
surface areas (Ak). As a simple calculation example, the melt of silver (Ag) and lead (Pb) is presented
in Fig. 1. The figure shows the calculated surface tension and the composition of the surface phase in
terms of the mole fraction of lead in the bulk. The excess Gibbs energy is formulated as a
Redlich–Kister polynomial with parameters assessed for the Ag–Pb bulk binary system [25]. 

The CFE method applies to surface and interfacial energy problems in a wide range of tempera-
tures and mixtures ranging from binary and ternary melts to aqueous-organic and organic systems and
have been further discussed, for example, in [26,32,33]. 

Electrochemical Donnan-potential in multiphase systems

When two aqueous solutions at the same temperature are separated with a semi-permeable interface,
which allows transport of some ions but not others, the Donnan equilibrium is formed in the system of
the two compartments ([24] p. 307). The system consists of two aqueous phases with water as solvent
and mobile and immobile ions as solute species. Gas as well as precipitating solids affecting the solu-
tion equilibria may yet be present. The aqueous solutions in both compartments remain electrically neu-
tral. The essential feature of the Donnan equilibrium is that due to the macroscopic charge balance in
the separate compartments, immobility of some of the ions will cause an uneven distribution also for
the mobile ions. This distribution strongly depends on the acidity (pH) of the system in such cases
where dissociating molecules in one of the compartments (being immobile acidic groups typically pres-
ent, e.g., in the fibrils of cellulose fibers) may release mobile hydrogen ions, while their respective
(large or bound) counter anions remain immobile due to the separating membrane interface or chemi-
cal bonding.
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Fig. 1 Calculation of the surface tension of a non-ideal binary system. The excess Gibbs energy (GE) is included
as the Redlich–Kister polynomial and the GE(surface) = 0.83GE(bulk) as deduced from the reduced coordination
number between atoms in the surface region [31]. Experimental values are from [29,30].



By applying the electroneutrality condition together with other physical conditions of the mem-
brane system, the approach with immaterial constraints allows the calculation of the multiphase Donnan
equilibrium with Gibbs energy minimization. Thus, the distribution of ions in the two compartments,
together with, for example, formation of precipitating phases can be reproduced with a computational
multiphase model.

Table 2 shows the additional immaterial constraints in the Donnan system including the electro -
neutrality conditions for both aqueous phases and conservation of water in the secondary aqueous com-
partment. Gibbs energy data for each constituent can be obtained from standard sources. The HAc/Ac–

dissociation constants for the immobile acidic groups can further be transformed to ΔG data applicable
in the calculations. The activity coefficients of the solute species are obtained from an appropriate Pitzer
interaction model [13,34].

Table 2 Elements of the conservation matrix in the multicomponent
Donnan equilibrium model.

Assuming the same standard state of solute ions in both aqueous compartments and using the
Lagrange method to solve the πj values there is [35] 

F Δϕ = πq" (14)

where Δϕ is the electrochemical potential difference between the two aqueous phases, F is Faraday con-
stant and πq" is the Lagrange multiplier for the immaterial charge component. Respectively, the addi-
tional constraint set for the incompressible solvent water gives

(15)

where the (p'' – p) factor is the osmotic pressure difference between the two liquid parts and therefore
also the pressure effect required for the pulp structure to exert in order to prevent further swelling of the
fibers [35]. 

In Fig. 2, the Donnan potential calculation has been compared to the values deduced using the
experimental concentration ratios of Ca2+, Mg2+, and Mn2+ ions together with modeled activity coeffi-
cients. The open symbols at high pH are calculated subtracting from the experimental fiber metal con-
tent the amounts of model predicted precipitated Mg and Mn hydroxides. The steep rise of the Donnan
potential at high pH is also caused by the predicted hydroxide precipitation, as this reduces the ionic
concentrations in the aqueous phases. The input data, as taken from [36], is explained in more detail in
[34,35]. The advantage of the multiphase Gibbsian model is in its ability to take into account not only
the multicomponent ion exchange equilibria but also other chemical and phase changes in the system.
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In Fig. 3, this is illustrated by showing the distribution of Ca2+ ions in an aqueous suspension of typi-
cal thermomechanical pulp. Thus, the effects of precipitating phases and that of gaseous components
can be included, as well as possible reactive solute effects, such as chelants. The method has been exten-
sively used for practical studies and process simulations of various unit processes in pulp- and paper-
making [34].
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Fig. 2 Donnan potential in an aqueous fiber suspension as function of pH. The experimental values are deduced
from the measured solute concentrations of the ions Ca2+, Mn2+, and Mg2+, respectively. The result thus also
indicates the non-selectivity of the ionic distribution in the Donnan system.

Fig. 3 The Donnan distribution coefficient (ratio of solute concentrations in the two aqueous phases) for Ca2+ ions
in thermomechanical pulp. The continuous curve shows the range of the actual Donnan equilibrium within the salt
solubility range. The dotted line has been calculated by including the precipitated calcium (CaCO3) in the
nominator of the distribution coefficient. This is in agreement with the experimental observation, as the Ca
precipitate nucleates onto the fibers and is thus analyzed from the fiber samples.



Systems constrained by the extent of reaction 

As shown with the above examples, the CFE minimization generally results in another undetermined
Lagrange multiplier, which gives the desired property as a constraint potential. The same technique can
be used for a fixed amount of a virtual system component, which then serves to limit the time-depend-
ent extent of a selected chemical reaction or phase change. The additional Lagrange multipliers then
appear as the non-zero affinities of the kinetically constrained non-equilibrium reactions [20,37]. This
feature enables the use of the Gibbsian multiphase method effectively, e.g., in the simulation of various
chemical and combustion processes [38–40]. Such applications often include mass and heat transfer
models and other process-specific features which are beyond the scope of this text. From the thermo-
dynamic point of view, an appropriate example is, however, the construction of reactive phase diagrams
for systems where the chemical change appears at a given (non-equilibrium) extent of reaction, while
the respective phase composition is at equilibrium.

Chemical reaction kinetics can often prevent equilibriation in chemically reactive fluid mixtures,
particularly at low temperatures and in conditions where the phase separation is to take place in a short
residence time [41]. The well-known ethanol-acetic acid, water-ethylacetate system serves as a viable
example [42] and was chosen to illustrate the respective calculation by using the constrained Gibbs
energy technique. 

As physical components of the model system, those corresponding to ethanol, acetic acid, and
water were selected. Yet, the same result can be obtained with the elements (C, H, and O) as physical
components. Additional immaterial constraint was applied to the ethyl acetate species allowing the con-
trol of the advancement of the esterification reaction. The standard-state chemical potentials from [43]
were adjusted by using the vapor pressure data from several sources [44–47]. The vapor phase was
regarded as an ideal gas including the acetic acid dimer, while the liquid mixture is modeled using the
UNIFAC data [48].

Dew and bubble temperatures plotted in terms of the feed composition and reaction advancement
as two-dimensional surfaces are shown in Fig. 4 (left). For depicting vapor–liquid equilibria, it is more
relevant to compare the vapor and liquid phase not with the same reaction advancement of the esterifi-
cation reaction, but the two phases with equal affinity for the reaction [41]. It is straightforward to per-
form the respective isoaffinity calculation, as in the CFE method the Lagrange multiplier adjacent to the
extent of a kinetically constrained reaction provides directly the non-equilibrium affinity [37,49]. The
result is shown in Fig. 4 (right) where one of the coordinates is the advancement of the reaction in the
liquid phase.
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Fig. 4 Dew and bubble point surfaces for the reactive ethanol acetic acid system. The chemical reaction is the
esterification of acetic acid with ethanol: CH3CH2OH + CH3COOH → CH3CH2COOCH3 + H2O. The graphs are
produced by using one of the axis either as reaction advancement (left) or as reaction advancement in the liquid
phase together with isoaffinity condition (right). 



CONCLUSION

The use of immaterial and virtual constraints provides a thermodynamically consistent extension of the
Gibbs energy minimization calculation for multiphase systems. Adjusting the thermodynamic system
for constrained Gibbs energy calculations appears mathematically identical to the procedure involved
in the conventional Gibbsian equilibrium calculations. The immaterial constraints must be defined in
advance for the calculation system and be included as parts of the conservation matrix. The immaterial
constraints and their conjugate potentials are principally those which may appear in the generalized
Gibbs energy function or, alternatively, may be derived from it by using the appropriate Legendre trans-
form. Within a few years, the new method has found applications in solving surface and interfacial ener-
gies of mixtures, electrochemical potentials of membrane systems, and non-equilibrium affinities for
reactive systems. The consistent thermodynamic basis of the method suggests that new interesting top-
ics may appear in various fields of process chemistry and materials science as well as in, for example,
biochemical pathway analysis. 
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