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Abstract: The basic objective of this work is the development of an approximate, yet coher-
ent and consistent equation-of-state model of fluids, which will benefit from recent develop-
ments in the successful COnductor-like Screening MOdel (COSMO)-type group-contribu-
tion models with their quantum-mechanical description of fluids. The development is done
within our recent non-random hydrogen-bonding (NRHB) equation-of-state framework. In
contrast to NRHB, the new model will not need any new parameters for the strong specific
interactions, such as hydrogen bonds, since they will be provided by its COSMO component
and the associated quantum-chemistry calculations. The bridge between COSMO and NRHB
is the non-randomness factors as calculated by the quasi-chemical treatment of the non-ran-
dom distribution of molecular entities in the system. Analytical expressions are provided for
all basic thermodynamic quantities, including expressions for the cavitation and charging
components of the solvation Gibbs energy. The new equation-of-state model is tested against
experimental data for vapor pressures, heats of vaporization, and liquid densities of pure flu-
ids and on phase equilibria of mixtures. The strength and perspectives of the new model are
critically discussed. 
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INTRODUCTION

Solution thermodynamics has benefited very much in the last few years from osmosis with quantum
chemistry and its dielectric continuum solvation models [1–9]. In particular, the extension of
COnductor-like Screening MOdel, or COSMO, with a thermodynamic treatment of the molecular inter-
actions led to the recent development of the COSMO-RS or COSMOtherm group-contribution model
by Klamt and co-workers [4–7] and, subsequently, of the COSMO-SAC model by Sandler and co-work-
ers [8]. These developments were, doubtlessly, a significant step forward in solution thermodynamics.
We will refer to these models by the general term COSMO models. Their key characteristic is a refined
mixture of a remarkable distillate of hard-core quantum mechanics and ab initio calculations with a
group-contribution thermodynamic framework, identical to the relatively old but still widely used quasi-
chemical framework [10]. It is this mixture of quantum-chemical ab initio solvation calculations and
group-contribution thermodynamic treatments that led to the COSMO for realistic solvation (COSMO-
RS) model or to the COSMOtherm model, a truly predictive tool for phase equilibria and related ther-
modynamic calcu lations [4–9]. 

*Paper based on a presentation made at the 21st International Conference on Chemical Thermodynamics (ICCT-2010), Tsukuba,
Japan, 1–6 August 2010. Other presentations are published in this issue, pp. 1217–1281.
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One key limitation of the COSMOtherm model is its inadequacy for the gaseous state. From the
quantum-mechanical and conductor-screening point of view, the gaseous state is fundamentally differ-
ent from the liquid state. As the critical state is approached, or in the transition from the liquid to the
gas state, the molecules will continuously adjust their wave functions in order to minimize the inter -
action energy with their neighbors, but this is not easy to account for by keeping the COSMOtherm pic-
ture of molecules solvated by other molecules without non-contacting surface segments. The conse-
quence is the inability of COSMO models to account for high-temperature and -pressure vapor–liquid
equilibria, for the supercritical state, and for volume changes on mixing. Thus, an ever-increasing inter-
est is found in the recent literature for the extension of COSMO-type models to equation-of-state mod-
els [9,11–15]. In this work, we will present such an alternative extension to a COSMO equation-of-state
model, but, in order to more clearly present our approach, a couple of pertinent concepts will be
recalled, first, from the open literature. 

Guggenheim’s quasi-chemical theory [10] is an elegant approach to non-randomness in solutions
and has been widely used over the last few decades. The introduction of non-randomness factors in
early 1980s [16] and their calculation through the quasi-chemical theory, gave a physical meaning to
the widely used “group-activity coefficients” by various group-contribution models of the excess
thermo  dy namic properties of multicomponent mixtures, such as the ASOG [17] or the UNIFAC [18]
models. It was shown that in group-contribution formalism, the group-activity coefficient for group k is
identical to the non-randomness factor, Γkk, for the intera ction k–k, as calculated by the quasi-chemical
theory [10]. In an entirely similar manner, the surface “segment activity coefficient” of the COSMO-
SAC model [8] was proved to be intimately related to the same non-randomness factors [9,15]. The seg-
ment-activity-coefficient approach as implemented in the COSMO-SAC model [8] is in many ways an
excellent bridge between quantum-chemists and thermodynamicists for under standing and utilizing the
COSMO models. In fact, this analogy between group-activity coef ficients and segment-activity coeffi-
cients was the stimulus for the development of the COSMO equation-of-state model of this work. 

A first quasi-chemical equation-of-state model had appeared in the early 1980s [19,20] and is
known as the PV model. A preliminary attempt to cast the COSMO approach into a quasi-chemical +
equation-of-state framework has also appeared recently [9,15]. In parallel, an alternative quasi-chemi-
cal equation-of-state model was developed recently [21,22], which treats separately the strong specific
interactions in the system, such as the hydrogen bonds, as quasi-chemical reactions at equilibrium. By
applying mass-action law in these quasi-reactions, their equilibrium constant turns to be directly pro-
portional to the density of the system. This idea may be generalized for multiple and simultaneous
hydrogen bonds through the Veytsman statistics [23,24], leading to a comprehensive treatment of
hydrogen-bonded systems, including complex systems of three-dimensional networks of hydrogen
bonds. The derived equation-of-state model treats the nonrandom distribution of all other interacting
sites and of the free volume by Guggenheim’s quasi-chemical theory [10] and, thus, it is called the non-
random hydrogen-bonding (NRHB) model [21,22]. This is a versatile and successful model of fluids
but requires the knowledge of the enthalpy and the entropy change upon formation of each type of
hydrogen bond present in the system, and this is not always simple. 

The aim of this work is to develop an equation-of-state model, which will have all qualifications
of the NRHB model but will not need any hydrogen-bonding para me ters. This will be done by replac-
ing the hydrogen-bonding component (partition function factor) of the NRHB model by the correspon-
ding component of the COSMO models and, thus, all needed information will be provided by the asso-
ciated cosmo files. These files can be obtained today either from commercially [25] or freely [26]
available cosmo databases, or they can be created from easily accessible software [27–29]. 

THEORY

In this section, we will summarize, first, the essentials of the NRHB model and the group-contribu-
tion/quasi-chemical features of the COSMO models, and then we will proceed to their combination.
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The NRHB model

Let us consider a multicomponent system of N1 molecules of type 1, N2 molecules of type 2,…, Nt mol-
ecules of type t, and N0 empty sites or noncollapsible voids, at temperature, T, and external pressure, p.
Each molecule of type i is considered to consist of ri equal segments of size νi

* (set equal to
9.75 cm3�mol–1) [20–22], and is characterized by two scaling constants, the hard-core density (or,
equivalently, the hard-core specific volume), ρi

* = 1/νsp,i
*, and the average per segment interaction

energy, εi
*. If Mi is the molar mass of component i, the above constants are related through the equa-

tion

riνi
* = Miν*

sp,i (1)

The scaling temperature and pressure are related through the equations

pi
*νi

* = kTi
* = εi

* (2)

with k being the Boltzmann’s constant. Having defined the scaling temperature, pressure, and density,
the corresponding reduced quantities are defined as follows:

(3)

The molecular segments and holes are assumed to be arranged on a quasi-lattice of coordina tion
number, z, set here equal to 10. It is further assumed that an encounter of two segments of empty sites
or of one molecular segment and one empty site lead to a zero energy change. A key assumption in
NRHB is the division of intermolecular interactions into physical and chemical or hydrogen-bonding
interactions. We will come back to this assumption after we make some further definitions.

In the case of a mixture, one has to apply the appropriate mixing and combining rules. Quantities
pertinent to mixture will be indicated without subscript i. The composition of the mixture may be rep-
resented either by the mole fraction 

(4)

or the segment (or volume) fraction

(5)

or the (contact) surface area fraction

(6)

zqi is the total number of external contacts per molecule i. We may have a measure of the compactness
or sphericity of the molecule through Stavermann’s l parameter [30], defined by the equation

(7)

The higher the value of l the more compact is the molecule. When the molecule is linear, li = 0. 
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The NRHB model [21,22] may provide the expressions for the chemical potential in the mixture,
or

(8)

where ωi is a characteristic quantity for each fluid that takes into account the flexibility and the sym-
metry of the molecule, Γii and Γ00 are the non-randomness factors [17,20,21] for the distribution of
molecular segment i around a central segment i and for the distribution of an empty site around a cen-
tral empty site, respectively. The hydrogen-bonding contribution to the chemical potential is given by

(9)

where νH is the total number of hydrogen bonds per segment, dα
i is the number of donors of type α in

molecule i, aβ
i is the number of acceptors of type β in molecule i, νd

α the number of donors of type α
per segment, νa

β the number of acceptors of type β per segment and

(10)

(11)

νij being the number of hydrogen bonds between donor i and acceptor j per segment.
The NRHB equation of state is given by

(12)

It is worth pointing out that the above equations, along with the equation for the chemical poten-
tial of the ideal gas

(13)

may be used to obtain the full expression for the Gibbs energy of solvation of component i through the
equation [31,32]: 

ΔGi
*S (T, P,{N}) = μi (T, P,{N}) – μi

IG (T, P,{N}) + RT ln Z (14)

as well as its cavitation and charging components. 

The group- or segment-contribution formalism of COSMO models

Let us now focus on the alternative group-contribution or surface segment-contribution formalism,
which will facilitate the extension of NRHB with the COSMO approach.
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Let us consider that our system contains k types of molecular surface segments, namely, ni seg-
ments with charge density σi, i = 1,k, which are distributed in the t types of molecules N1, …, Nt. For
consistency of nomenclature, we will set the number n0 of segments of voids of no screening charge
equal to the number N0 of voids in the system. The dielectric continuum and continuum solvation pic-
ture of COSMOtherm is assumed to hold here. Any contact of two interacting segments m and n with
charge densities σm and σn, respectively, is characterized by a pair interaction energy εpair(σm, σn).

The chemical potential of surface segments or, equivalently, the surface segment activity coeffi-
cients of a segment with charge density σm and probability p(σm), is given by [1–8]

(15)

In order to establish the link between this COSMO terminology and the more widely used termi-
nology of surface area fractions, we may express the probability p(σm) as follows:

(16)

Θm in eq. 16 is the surface area fraction of segments m in the compact system without empty sites. zQm
is the number of external contacts of each segment m. The overall surface area fraction, θ, of molecu-
lar segments in the real system, containing n0 empty sites, is given by 

(17)

If nij is the number of contacts between segments of type i and j, the total potential energy of our sys-
tem is given by

(18)

The link between the segment-activity coefficients Γm and the non-randomness factors Γmn for
the distribution of a segment m around a central segment n is established by the equation

(19)

With these definitions, the number nmn of contacts between segments m and n is given by the equation

nmn = znQΘmθnΓmn = znQθΘmΘnΓmΓnτmn (20)

and between segments m and m, by the equation

(21)

In a similar manner, the number of contacts 0 – 0 between empty sites in our system is given by

(22)

where θ0 + θ = 1.
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Mass balance or conservation equations for the inter-segmental contacts take, then, the form

(23)

which gives the working equation for calculating segment-activity coefficients

(24)

This is the alternative way of writing eq. 15 in terms of surface area fractions. In the case of a
compact system without empty sites (as in the case of the plain COSMO models), eq. 24 becomes

(25)

As discussed previously [9,15], eqs. 15, 24, and 25 reflect the quasi-chemical character of the
COSMO models. In the quasi-chemical framework, then, we may write the full form of the configura-
tional partition function in its maximum term approximation as follows [9,10,15,16,21,22]:

(26)

ΩR is the number of distinguishable configurations in the case of random distribution of segments in
the system and E the potential energy of our system. ΩR is assumed to be given by Staverman’s com-
binatorial term [30] as in COSMOtherm and in NRHB. Superscript 0 refers to the perfectly random
case. The corresponding quantities in the case of non-randomness are given by

nmn = n0
mnΓmn = n0

mnΓmΓnτmn (27)

Before proceeding further, it is worth writing down some key equations expressing the equivalence
between quantities in NRHB and in COSMO models.

Each molecule i consists of a multitude of interacting segments. Let νmi be the number of seg-
ments of type m in each molecule of type i. Since each such segment has zQm external contacts, the con-
servation equation gives

(28)

and for each type m of segments in the mixture we have

(29)

and

(30)
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Combining eqs. 16, 17, 29, and 30, we obtain

(31)

The equivalent of eq. 31 in COSMO terminology is obtained by recalling that

(32)

and

Ai(σm) = Aipi(σm) (33)

where Ai is the total surface area per molecule i, Ai(σm) is the surface area of segments m in molecule
i, pi(σm) is the probability to find a segment of charge σm in molecule i, and αeff is the standard surface
area per segment in the COSMO approach. The correspondence between the two terminologies is estab-
lished through the equations

(34)

In group-contribution terminology, the equation for the chemical potential of component i
becomes

(35)

The last term in eq. 35 may be written in COSMO terminology as

(36)

In this combined terminology, the Gibbs energy of cavitation of pure component i is given by

(37)

while the charging component of the Gibbs energy of self-solvation is given by

(38)

The hydrogen-bonding factor: From NRHB to NRCosmo

An alternative way of expressing the partition function in NRHB is as follows:

Ξ = ΞpΞHB (39)

The first factor encompasses all contributions from all types of intermolecular forces except for
the hydrogen-bonding ones. The second factor is a correction factor and accounts for the contributions
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of the hydrogen-bonding interactions. As already mentioned, this second factor was formulated in
NRHB on the basis of the Veytsman statistics [23,24]. The key advantage of this formulation was the
capacity to handle complex 3-dimensional hydrogen-bonding networks in a simple and straight forward
manner at any external conditions of the fluid system.

In the COSMO approach, the hydrogen-bonding interactions are also separated from all other
interactions. The key advantage in this case is the availability of hydrogen-bonding interactions for
practically any system of interest (if the relevant cosmo files are not available in the existing databases,
they can be obtained in a rather straightforward manner from widely available packages for quantum-
mechanics calculations). 

If we wish to extract information for the hydrogen-bonding interactions from the COSMO
approach, we may write eq. 39 in the following manner:

Ξ = ΞpΞHB-COSMO (40)

There are various ways of formulating ΞHB-COSMO. In this work, we will present one simple way, just
as an example. The starting point is eq. 26, which can be rewritten as

(41)

The contact numbers, nmn = n0
mnΓmn = n0

mnΓmΓnτmn, in this equation obey the quasi-chemical condi-
tions [9,10,15,16]

(42)

where the interchange energy Δεmn is given by

Δεmn = εpair(σm,σm) + εpair(σn,σn) – 2εpair(σm,σn) (43)

In analogy to NRHB, a simple way of coupling the two approaches is to write eq. 40 as 

ln Ξ = ln Ξp + g(ρ) ln QHB-COSMO (44)

where g(ρ) is an appropriate function of the density satisfying two boundary conditions: 

1) At zero densities (gaseous state): g(ρ) = 0
2) In the absence of empty sites (compact state) g(ρ) = 1 

The second condition is a direct consequence of the fact that in the original COSMO formulation
[1–8], there were no empty sites and there was no density-dependent factor multiplying the partition
function Ξ, or, g(ρ) = 1. A simple function satisfying both boundary conditions is

g(ρ) = θ (45)

which will be adopted in this work. By applying the quasi-chemical conditions, eqs. 42 in the last term
of eq. 44, and by making, in addition, use of eqs. 19 and 41, eq. 44 becomes

(46)
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where Γm-HB is the activity coefficient of segment m, as calculated by the COSMO model excluding all
but the hydrogen bonding interactions. Equation 46 is the key equation of the NRCosmo model. By set-
ting g(ρ) equal to θ, the partition function of eq. 46 leads to the following equation for the chemical
potential:

(47)

where zεi,p/2 = εi* is the average interaction energy per segment of molecule i encompassing all types
of intermolecular interactions except for the hydrogen-bonding ones. It is the classical scaling constant
for the energy of the NRHB model. The last term in eq. 47 makes a practically insignificant contribu-
tion and may be neglected. A comparison of eq. 47 with the corresponding equation of the plain NRHB
model (eq. 8 above) leads to the following expression for the hydrogen-bonding contribution to the
chemical potential of component i in the mixture

(48)

In a similar manner, eq. 46 leads to the following expression for the equation of state

(49)

The last term in eq. 49 corresponds to the term ρ∼νH of the plain NRHB model (cf. eq. 12 above). In this
term, Θi is the surface fraction of component i in the compact (no empty sites) mixture. 

The equation for the cavitation component of the solvation Gibbs energy, in this case, is identical
to eq. 37, while the charging component is given by

(50)

The activity coefficient at infinite dilution of component 1 in solvent 2 is obtained from the rela-
tion

(51)
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where Z is the compressibility factor. By making the appropriate substitutions, we obtain

(52)

Sometimes it is more practical to use the activity coefficient based on the weight fraction rather
than the mole fraction. Their relation at infinite dilution is

(53)

Henry’s law constant is also obtained from γ∞1 by the equation

(54)

The infinite dilution partition coefficient of component 1 between solvent 2 and solvent 3 is obtained
as the ratio γ∞1/2/γ∞1/3.

With the above equations, one may easily calculate the solubility of solid 1 in solvent 2 by adopt-
ing the procedure proposed by Kramer and Thodos [33], or

(55)

The term in parenthesis is the ratio of the fugacity coefficients of component 1 in the pure solid and the
pure liquid state, and it can be approximated by

(56)

where ΔH1
m is the enthalpy of fusion of 1 and T1

m its melting point.

APPLICATIONS

All calculations will be done by using either the Cosmotherm-C12 and Cosmo base package of
Cosmologic GmbH [25] or the Virginia Tech database of sigma profiles [26], while TURBOMOLE [28]
will be used for obtaining cosmo files. There are many possible combinations of NRHB and COSMO
approaches, but here we will confine ourselves to one approach, named hereafter as NRCosmo, where
the calculations will be done with eqs. 47 and 49. Before proceeding further, however, it is essential to
comment at this point on the nature of the intermolecular interactions that we will consider in this work. 
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As already mentioned, in systems of non-electrolytes, the interactions considered in NRHB are
of two types: the strong specific (hydrogen-bonding) interactions and all other interactions collectively
called “physical” interactions. In the COSMO approach and apart from the hydrogen-bonding inter -
actions, the remaining interactions can be broken down into four types [1–8]. The “misfit” interactions
are the first type. The misfit and the hydrogen-bonding interactions can be accounted for when the
COSMO sigma profiles of the fluids are available. The other three types of interactions are discussed
in the frame of the solvation picture, but in the COSMO approach they are not considered to contribute
to the non-random distribution of the interacting segments. Of these, the second type is the van der
Waals or dispersion interactions. In the COSMO approach, these interactions are nonspecific and are
considered proportional to the exposed surface of the atoms in the system. The third type of interaction
is associated with the ideal solvation energy or the energy difference of solute between the ideal gas
state and the ideal conductor state. The fourth type of interactions is the charging correction and
accounts for the energy shift due to a charge averaging process. The last three types of interactions will
be collectively called cosmo-dispersion or cd interactions. Thus, the “physical” interactions of the
NRHB model correspond to the sum of the misfit and the cd interactions of the COSMO approach. 

In the approach adopted in this work, we consider that the physical intera ctions contribute to the
actual free-volume distribution and account for it through the plain NRHB procedure [21,22]. The phys-
ical interactions for each component in the system are assumed to vary linearly with the temperature,
or

εh = ε*h + ε*s (T – 298.15 K) (57)

The hydrogen-bonding interactions are considered to contribute to the non-random distribution of
interacting molecular segments and account for it through the COSMO approach. This is entirely anal-
ogous to the corresponding structure of NRHB, where the hydrogen-bonding interactions are treated
separately from all other interactions.

In this approach, each pure fluid is characterized by the two NRHB scaling constants, the specific
hard-core volume, v*sp, and the average per-segment interaction energy, ε*. Table 1 presents the scal-
ing constants for some representative common fluids. A weak variation with temperature is allowed for
both constants, as shown in Table 1. No other parameters are needed as long as the COSMO sigma pro-
files [1–8] of the fluid are available. The NRHB constants were obtained as before [21,22] from vapor
pressure, heat of vaporization, and density data of the DIPPR compilation [34], Perry’s handbook [35],
and Zoller’s compilation [36]. 

Table 1 Characteristic constants of pure fluids (NRCosmo).

Fluid εh*/J�mol–1 εs*/J�K–1�mol–1 v*sp = ρ*–1/cm3�g–1 vsp1/cm3�g–1�K–1

Methane 2047 –0.8710 2.2560 –0.0003
Ethane 2965 –0.6369 1.6195 –0.0003
Propane 3420 0.1617 1.4330 –0.0003
n-Butane 3693 0.9716 1.3490 –0.0003
n-Pentane 3843 1.0577 1.2930 –0.0003
n-Hexane 3959 1.4147 1.2766 –0.0003
n-Heptane 4071 1.3553 1.2520 –0.0003
n-Octane 4134 1.5842 1.2287 –0.0003
n-Nonane 4122 1.6535 1.1972 –0.0003
n-Decane 4242 1.6900 1.1991 –0.0003
n-Undecane 4272 1.8159 1.1913 –0.0003
n-Dodecane 4281 1.9678 1.1863 –0.0003
n-Hexadecane 4419 1.6596 1.1242 –0.0003
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Cyclohexane 4559 0.7663 1.1500 0.0001
Benzene 5098 0.1899 1.0808 –0.0000
Toluene 5059 0.1507 1.0714 0.0001
Methanol 3478 –1.9495 1.2676 –0.0001
Ethanol 4220 –2.2019 1.2180 –0.0001
1-Propanol 4321 –0.9417 1.1889 –0.0001
1-Butanol 4428 –0.3947 1.1640 –0.0001
1-Pentanol 4446 0.2570 1.1468 –0.0001
1-Hexanol 4497 0.4639 1.1394 –0.0001
1-Octanol 4545 0.9546 1.1250 –0.0001
1-Decanol 4594 0.9550 1.1002 –0.0001
Phenol 7237 2.7430 0.9630 –0.0001
2-Methoxy ethanol 4507 0.3715 1.0163 –0.0001
2-Ethoxy ethanol 4383 0.5146 1.0337 –0.0001
Ammonia 4048 –2.9690 0.8589 –0.0001
Acetic acid 5644 –0.7503 0.9510 –0.0000
Propionic acid 5220 –1.8283 0.9676 –0.0000
n-Butyric acid 5307 –1.3141 1.0015 –0.0000
Water 1234 –11.697 1.0090 –0.0000
Carbon dioxide 3509 –2.6270 0.7907 –0.0000
Acetone 4858 –0.4754 1.1597 –0.0000
Butyl acetate 4488 0.5572 1.008 –0.0000
Vinyl acetate 4637 –0.2817 0.9410 –0.0000
Tetrahydrofuran 4702 0.3031 1.0037 –0.0001
Chloroform 4968 0.0249 0.6124 –0.0000
Paracetamol 6449 2.5944 1.1065 0.0001
Poly(vinyl acetate)—PVAc 5970 2.5919 0.8092 0.0001

The scaling constants of the NRCosmo model vary in a regular manner within homologous series.
Thus, Fig. 1 shows the variation of hard-core volume of normal alkanes vs. the number of carbon atoms
of the hydrocarbon chain and vs. the corresponding COSMO volume [1–8]. In both cases, a straight line
is obtained.

Figure 2 shows that, in the case of normal alkanes, there is a linear relation between the inter -
action energy ε*h and the corresponding hard-core density. In addition, the mean molar intermolecular
energy, rεh*, varies linearly with the corresponding COSMO surface area, as shown in Fig. 3. Almost
linear is also the variation of the mean intermolecular energy, rεs*, with the corresponding COSMO sur-
face area as shown in Fig. 4.

A similar picture is observed for the homologous series of 1-alkanols. Figure 5 shows the varia-
tion of hard-core volume of normal 1-alkanols vs. the number of carbon atoms of the hydrocarbon chain
and vs. the corresponding COSMO volume. Again, a straight line is obtained in both cases.

Figure 6 shows the linear relation between the mean molar intermolecular energy, rεh*, of 1-alka-
nols and the corresponding COSMO surface area. 

Regarding the correlation of orthobaric densities, heats of vaporization, and vapor pressures of
pure fluids, the performance of the NRCosmo model is practically identical to that of the plain NRHB
model. The significant advantage of NRCosmo over NRHB is the availability of hydrogen-bonding
parameters for any fluids as long as the corresponding cosmo files or the sigma profiles are available.
In contrast, in NRHB one must estimate the hydrogen-bonding parameters, and this is not always easy.
Thus, for simplicity, NRHB uses one single set of hydrogen-bonding constants for all 1-alkanols. With

C. PANAYIOTOU

© 2011, IUPAC Pure Appl. Chem., Vol. 83, No. 6, pp. 1221–1242, 2011

1232

Table 1 (Continued).

Fluid εh*/J�mol–1 εs*/J�K–1�mol–1 v*sp = ρ*–1/cm3�g–1 vsp1/cm3�g–1�K–1
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Fig. 1 Hard-core volume of normal alkanes as calculated by the NRCosmo model. (a) Hard-core volume vs. the
corresponding number of carbon atoms of n-alkanes. The line corresponds to the equation: M/ρ* = 20.0618 +
14.8581Nc (R = 0.9996). (b) Hard-core volume vs. the corresponding COSMO volume. The line corresponds to the
equation: M/ρ* = 10.1748 + 0.6783Vcosmo (R = 0.9994).

Fig. 2 Interaction energy ε*h of normal alkanes as calculated by the EOS model vs. the corresponding hard-core
density of carbon atoms of n-alkanes. The line corresponds to the equation: ε*h = –431.62 + 5565.73ρ* (R =
0.998).



NRCosmo this simplification is not necessary. Figure 7 shows the free-energy change upon formation
of the OH���OH hydrogen bond in 1-alkanols, which varies from ca. –20000 up to ca. –15000 J�mol–1.
The single value adopted by NRHB (–17200 J�mol–1) is in-between the values calculated by
NRCosmo.

The above-mentioned equivalence between NRHB and NRCosmo in the calculation of the
thermo dynamic properties of fluids extends to other thermophysical properties, such as the surface ten-
sion. Figure 8 compares the calculations of NRHB and NRCosmo for the surface tension of 1-propanol.
As shown, the two calculations are practically identical.
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Fig. 3 Mean intermolecular energy, rεh*, as calculated by the present EOS model vs. the corresponding COSMO
surface area for n-alkanes. The line corresponds to the equation: E* = –12552.19 + 362.41Acosmo (R = 0.9997).

Fig. 4 Mean intermolecular energy, rεs*, as calculated by the present EOS model vs. the corresponding COSMO
surface area for 1-alkanes, from methane to n-dodecane. The line corresponds to the equation: rεs* = –17.1711 +
0.2027Acosmo (R = 0.995).
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Fig. 5 Hard-core volume of normal 1-alkanols as calculated by the NRCosmo model. (a) Hard-core volume vs. the
corresponding number of carbon atoms of 1-alkanols. The line corresponds to the equation: M/ρ* = 26.47865 +
14.8577Nc (R = 0.9999). (b) Hard-core volume vs. the corresponding COSMO volume. The line corresponds to the
equation: M/ρ* = 7.9979 + 0.6867Vcosmo (R = 0.9999).

Fig. 6 Mean intermolecular energy, rεh*, as calculated by the NRCosmo model vs. the corresponding COSMO
surface area for 1-alkanols. The line corresponds to the equation: E* = –9584.81 + 376.95Acosmo (R = 0.9994).



NRCosmo may be used for calculations in mixtures with the same ease as with the plain NRHB
model. Once again, NRCosmo does not need any knowledge of cross-association hydrogen-bonding
interactions that may operate when mixing different fluids. Figure 9 compares the predictions of the
NRCosmo with experimental vapor–liquid equilibrium data for the CO2–ethanol mixture at two tem-
peratures. Of particular interest are the applications to polymer systems. In this case, one has to create
the mcos files for the polymer [7] starting from the cosmo files of fragments or smaller molecular enti-
ties of the repeating units. Figure 10 compares the predictions of the NRCosmo model with the exper-
imental vapor–liquid equilibrium data for the system methanol–poly(vinyl acetate). An analogous com-
parison is made in Fig. 11 for the system ethanol–poly(vinyl acetate). The same figure shows the
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Fig. 7 Free-energy change upon hydrogen-bond formation in 1-alkanols as calculated by the COSMO approach at
298.15 K. The corresponding value for NRHB is –17200 J�mol–1 for all alkanols. The line through the data is to
aid the eye.

Fig. 8 Experimental [34] (symbols) and calculated (lines) surface tension of 1-propanol. Solid line was calculated
by the NRCosmo approach while dashed line with the plain NRHB model [21,22].



corresponding calculations with the plain NRHB model. The picture that emerges from these last fig-
ures for the performance of NRCosmo is rather satisfactory and, essentially, equivalent to that of the
NRHB model. 

One may appreciate the advantages of NRCosmo by applying it to systems with many types of
hydrogen bonds. Typical examples are the systems with paracetamol, whose molecule is shown in
Scheme 1. In a mixture of paracetamol with ethanol, one has to account for nine different types of
hydrogen bonds (considering the hydroxyl groups of paracetamol and ethanol different) or five differ-
ent types (considering the two hydroxyls identical). In either case, the task of determining the corre-
sponding hydrogen-bonding parameters is rather tedious for NRHB, while for NRCosmo these inter -
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Fig. 9 Experimental [37] and calculated vapor–liquid equilibria for the system CO2–ethanol at 313.15 K (circles +
solid lines) and at 328.15 K (squares + dashed lines). The lines are predictions (ξ12 = 1.0) of the NRCosmo model.

Fig. 10 Methanol–PVAc predictions of NRCosmo model (solid lines) and comparison with experimental data [38]
(symbols).



actions are already available when the cosmo files and sigma profiles for both molecules are available.
Figure 12 compares the predictions of NRCosmo with the calculations of plain NRHB and with the
experimental solid–liquid equilibrium data or solubility of paracetamol in ethanol. A similar compari-
son is made in Fig. 13 for the solubility of paracetamol in methanol. In view of the complexity of these
systems, the predictions of the NRCosmo model are quite satisfactory.
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Fig. 11 Ethanol–PVAc predictions by plain NRHB (dashed lines) and by NRCosmo (solid lines). Comparison with
experimental data [38] (symbols). 

Scheme 1 Chemical form of paracetamol.
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Fig. 12 Prediction of solubility of paracetamol in ethanol (SLE) as a function of temperature (solid line) with
NRCosmo and calculations of plain NRHB with kij = 1 (dashed line). Symbols are experimental data [39].

Fig. 13 Prediction of solubility of paracetamol in methanol (SLE) as a function of temperature (solid line) with
NRCosmo and calculations of plain NRHB with kij = 1 (dashed line). Symbols are experimental data [39].



DISCUSSION AND CONCLUSIONS

The approach that we adopted in this work amounts to replacing the hydrogen-bonding factor in the
configurational partition function of the NRHB model by the corresponding factor from the COSMO
models [1–8]. In order to do this, one has to recognize that the configurational partition function of the
COSMO models can be written down as a plain quasi-chemical group-contribution (or rather segment-
contribution) model. Once this is recognized, the next step is the selection of the hydrogen-bonding
interactions out of all intersegmental interactions. For this selection, we have adopted here the same cri-
teria as those in the COSMO models (threshold sigma values and value of the hydrogen-bonding con-
stant chb). 

Having the exact form of the COSMO hydrogen-bonding factor of the partition function, the next
step is the introduction of density or free volume in the system. One rather straight forward way of doing
this is to allow for a number of empty sites to be present in the system and then follow the standard
thermo dynamic procedure as was done, as an example, in the PV model [19,20]. This approach was
adopted earlier [15] and led to a consistent COSMO equation-of-state model where the density depend-
ence of all interactions was emerging from the free-energy minimization (derivation of the equation of
state). However, since this minimization was performed simultaneously with the free-energy mini-
mization with respect to all cross non-randomness factors, Γij, this approach is computationally inten-
sive and relatively slow. 

The alternative approach adopted in the present work is very much faster than the earlier one [15]
and without any significant reduction in its overall performance. The density dependence of the
COSMO term is done in a manner analogous to that for the NRHB model. The rationale amounts to
adopting eq. 44 and the two boundary conditions for g(ρ). This is certainly an approximation but, as in
NRHB, the performance of the resulting model indicates that the approximation is not, at least, con-
ceptually wrong. In essence, with the adopted approximation, the resulting NRCosmo model is as good
as the NRHB model. However, NRCosmo has a great advantage over NRHB: It does not need any addi-
tional information regarding hydrogen bonds, no matter how involved they may be. All needed infor-
mation, derived from quantum-mechanics calculations, is incorporated in the associated cosmo files or
sigma profiles of the pure components of the system.

The new equation-of-state model can practically do all that NRHB does. It is applicable to mol-
ecules of any size, to the liquid, to the vapor as well as to the supercritical state, to homogeneous as well
as to heterogeneous systems. The model can satisfactorily predict solid–liquid equilibria in rather com-
plex systems like the ethanol-paracetamol one.

In its present form, the NRCosmo model requires two scaling constants per fluid, an interaction
(free) energy, and a hard-core density. In homologous series, these constants vary in a regular manner
obeying simple linear relations with the corresponding COSMO surface area or COSMO volume. A
systematic study of these relations for a large number of fluids might uncover simple universal relations
between the NRCosmo scaling constants and some basic properties available with the sigma profiles
and the cosmo files of the fluids. This could turn NRCosmo into an entirely predictive equation-of state
model even for pure fluids.

Thus, the present work has shown that, following the classical quasi-chemical approach
[9,10,16,19] of group contributions of interacting surfaces, one may turn the COSMOtherm or the
COSMO-SAC models into an equation-of-state model. With the same approach, one may derive the
relation between the non-randomness factors and the chemical potentials or the activity coefficients of
interacting surfaces. By further adopting a simple approximation for the density dependence of the
hydrogen-bonding interactions, one may derive a versatile equation-of-state model—the NRCosmo.
This new model can, practically, do what NRHB does but much easier and without the requirement to
know the interaction constants for the various types of hydrogen bonds in the system. This broad range
of applications makes this model a particularly useful one in the rational design of numerous processes
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of fluids, including the new paths for the production of high-technology materials such as drug nano -
carriers, transpa rent aerogels, or the macroporous scaffolds for tissue engineering.
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