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Abstract: The constrained Gibbs energy method has been developed for the use of immate-
rial entities in the formula conservation matrix of the Gibbs energy minimization problem.
The new method enables the association of the conservation matrix with structural, physical,
chemical, and energetic properties, and thus the scope of free energy calculations can be
extended beyond the conventional studies of global chemical equilibria and phase diagrams.
The use of immaterial constraints enables thermochemical calculations in partial equilibrium
systems as well as in systems controlled by work factors. In addition, they allow the intro-
duction of mechanistic reaction kinetics to the Gibbsian multiphase analysis. The constrained
advancements of reactions are incorporated into the Gibbs energy calculation by using addi-
tional virtual phases in the conservation matrix. The virtual components are then utilized to
meet the incremental consumption of reactants or the formation of products in the kinetically
slow reactions. The respective thermodynamic properties for the intermediate states can be
used in reaction rate formulations, e.g., by applying the reaction quotients. 
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INTRODUCTION

The formulation of irreversible chemical–thermodynamic systems far from equilibrium has been devel-
oped over a period of several decades. The early target of such work was to deduce relations between
thermodynamic standard-state quantities and activation energy [1] and to connect the generic reaction
rate expressions with the thermodynamic affinity concept [1,2]. In the extensive work of J. Ross and his
co-workers, it was shown that the net reaction rate can be combined with the thermodynamic affinity,
and thus with the activities of a non-ideal system while the assumption of the local thermodynamic
equilibrium is valid [3,4]. This condition suggests that irrespective of a given concentration of chemi-
cal species in the reacting system at a given time, the thermodynamic intensive variables such as tem-
perature remain defined. Consequently, the chemical potential may be deduced for each species during
the course of such chemical change. As there are a large number of interesting phenomena in chemistry,
physics, and biology well within this assumption, it is of interest to have a method, by which the chem-
ical potential can be followed in a complex thermodynamic system during an arbitrary chemical change.

Chemical potentials are conventionally used as the basis of complex equilibrium calculations and
phase diagram studies [5,6]. For complex systems with a large number of phases and chemical con-
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stituents, the Gibbs free energy minimization, subject to mass balance constraints of the thermodynamic
system, is often used. A comprehensive treatment of the methods used in both chemical reaction and
phase equilibrium analysis has been given in a book by Smith and Missen [7], whereas, e.g., Eriksson
has developed efficient and multipurpose computational techniques for the use of the equilibrium
approach [8]. For methods used in chemical engineering, see, e.g., McDonald and Floudas [9] and the
review article by Seider and Widagdo [10]. The methods generally allow the consideration of
metastable phases as well as conservation of stoichiometric degrees of freedom in the minimization rou-
tines.

A few approaches to combine reaction kinetics with Gibbs energy minimization have also been
published. Keck and Gillespie [11,12] presented the rate-controlled constrained equilibrium (RCCE)
method for use in fuel combustion calculations. In order to overcome the problem of determining all
kinetic parameters, the approach simplifies a set of ordinary differential equations for reaction rates by
dividing them into slow and fast reactions. All fast reactions are assumed to reach equilibrium, while
all other reactions proceed according to their rate expressions. The equations are integrated so that the
time-evolution can be simulated and the solution is used as a set of “passive constraints” in the Gibbs
energy calculation. This technique has since been applied in the domain of combustion problems [13].
A related topic is the employing of differential equations to model the dynamic mass balances in
process simulation. For example, the approach of Pérez-Cisneros and Gani [14,15] uses the material
conservation matrix as input, but the numerical task involves only differential constraints derived from
it (see also Blomberg and Koukkari [16]). 

Introduction of global reaction rates as constraints to the Gibbsian calculation was suggested by
Koukkari [17,18]. The Ratemix method by Koukkari and Niemelä [19] describes a Gibbsian algorithm,
which can be used for reaction systems far from equilibrium. The use of reaction rates as constraints
was then refined to a more general approach by Pajarre and Koukkari [20–22] in the constrained free
energy (CFE) method. One of the immaterial constraints introduced in the new method is the extent of
chemical reaction, which then allows for the direct calculation of affinities during a chemical change in
a complex system. In what follows, we show that the method is also consistent with the disciplines of
thermodynamic equilibrium analysis and can be efficiently used for systems far from equilibrium under
the assumptions of the local chemical equilibrium (LCE).

THE GIBBS ENERGY MINIMIZATION PROBLEM WITH INEQUALITY CONSTRAINTS

Convex minimization with nonlinear objective function and linear constraints is one of the fundamen-
tal problems in thermodynamics. When the temperature and pressure are assumed known, the Gibbs
energy is the appropriate function to be minimized. It is calculated as the sum of all molar Gibbs ener-
gies, multiplied by the respective molar amounts. The sum contains all constituents, whether they are
chemical species in different phases, organic isomer groups [23], transformed biochemical metabolites
[24], or virtual phases [20]. The objective function is nonlinear because the chemical potentials are
functions of the molar amounts. The mathematical expressions for the chemical potentials (molar Gibbs
energies) depend largely on the phase models used. In terms of the chemical potentials of the con-
stituents, the Gibbs energy is as follows:

(1)

where nk is the molar amount of constituent k, μk is the molar Gibbs energy of constituent k, and N is
the number of constituents.

The minimization of the Gibbs energy function is subject to linear constraints, which are due to
the conservation of components forming the constituents.
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min G(n) s.t. (2)

where C is the component conservation matrix, n is the molar amount vector for the constituents, and
b is the molar amount vector for the components.

The global minimum represents the equilibrium state with the lowest energy reachable with the
given set of constraints. The constraints typically refer to elemental amounts of a closed system, but
may include conservation of various other components [20]. The solution may also be referred to as a
constrained equilibrium or “virtual state” (without the word “equilibrium”) if constraints of dynamic
character have been used [12,20].

In both cases, the solution of eq. 2 is obtained by using the method of Lagrange multipliers. The
chemical potential of each species is a stoichiometric linear combination of the (equilibrium) potentials
of the independent components [7,8,20]

(3)

where πj is the Lagrange multiplier corresponding to entity constraint j, NC is the total number of com-
ponents in the system, ckj is the (stoichiometric) element of the conservation matrix C.

The Gibbs energy of the entire system is, respectively

(4)

where ak denotes the activity of the species k and bj is the conserved amount of each component j; μk
°

is the chemical potential of the species as a pure phase in the given temperature and pressure. In both
equations, the equilibrium potential of the components is denoted by πj. 

The physical meaning of the Lagrange multipliers is that they represent how much potential
energy a component contributes to the molar Gibbs energy of a constituent. Thus, if immaterial entities
are used as components, their contribution becomes included as an additional term in the chemical
potential of each constituent. Keck has introduced the term “constraint potential” to these additional
factors appearing the RCCE method [12]. 

The physically reasonable solution of constituent amounts requires that all nk receive a non-neg-
ative value. This condition incorporates the inequality conditions 

(5)

(6)

Together with eq. 2, the conditions 5 and 6 represent the KKT (Karusch–Kuhn–Tucker) condi-
tions for the Gibbs energy minimization problem [7]. The latter have here been written for pure invari-
ant phases. For mixture phases the approach is more complex, yet the above expressions are completely
sufficient for the use of these inequality conditions in setting kinetic constraints for the minimization
algorithm.

As was stated above, a number of computer codes exist, which perform the Gibbs energy mini-
mization. Many of these have not been developed for merely academic purposes, but as well for use in
industrial simulations. The most widespread application is for generating phase diagrams of complex
systems, but the Gibbsian technique has also been increasingly adapted for process simulation purposes.
Of the many programs available, in this work we mainly refer to the properties of the subroutine
ChemApp [25], which in addition to performing the min(G) task, also provides the thermodynamic
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properties of the complex system with a flexible programmable interface and allows for the modifica-
tions of one’s calculation system. The latter feature is most important, when the immaterial constraints
necessary for rate-controlled calculations are applied. 

SYSTEMS CONTROLLED BY REACTION RATES

Reaction rates, or, alternatively, extents of reaction can be included in the min(G) calculation by extend-
ing the conservation matrix by a particular immaterial component connected with the advancement of
a given reaction. To use this feature merely as a passive constraint, a new immaterial component may
be included for any given reactant or product. By adapting the technique of virtual invariant phases,
both forward and reverse reactions may be considered and the subsequent calculation steps can be per-
formed through the entire range of the extent of reaction. The chemical change is then also calculated
by the minimization algorithm itself, and thus the respective changes in the thermodynamic properties
are inherently taken into account within the thermodynamic procedure. 

The details of using the immaterial components together with virtual invariant phases to control
the extent of forward or reverse reactions in Gibbs energy minimization have been described earlier
[26,27]. When chemical reactions are constrained by using the virtual components, the following rela-
tions can be deduced from the Gibbsian system for the equilibrium reactions and restricted non-equi-
librium reactions as follows:

(7)

(8)

In eqs. 7 and 8, νk is used for the stoichiometric coefficient of species k in a given reaction and
the respective summation is over the reactants and products. The summation of the Lagrange multipli-
ers (πj) in eq. 8 goes over all the virtual components in the system, for which then j > NC' as NC' has
been used for the number of physical components. It is obvious that through the latter equation the cal-
culated potentials on the virtual components (“constraint potentials”) are related to the affinity of the
non-equilibrium reactions. The affinity (A) is defined as [1,4,28]

(9)

Here, ak relates to the thermodynamic activity of a given constituent and Keq is the activity-based
equilibrium coefficient of a given reaction. Formulation of the reaction rate of a elementary reaction in
terms of the activities was presented by Haase [1] as follows:

(10)

where

(11)

The reaction quotient has been denoted by Q. In practical process engineering the authors have
found eq. 11 as a useful approximation even for non-elementary reactions, giving an acceptable value
for the reaction rate when the activities are known. This will hold true during the path, provided that the
necessary LCE assumptions are valid and the rate coefficient k is known from experiments. The Gibbs
energy calculation thus provides the means to deduce the affinities of non-equilibrium reactions and the
activities of all constituents in the system through the component potentials.
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In practical computation problems, it is of course possible to use other than thermodynamically
deduced expressions for the reaction kinetics, including concentration-based, net, or global reaction rate
expressions deduced from mechanistic models as well as purely empirical formulations [20,26].

INTRODUCING REACTION RATE CONSTRAINTS WITH VIRTUAL PHASES 

In Table 1, the key properties of the real chemical constituents and virtual phases have been listed. The
chemical constituents are those with a true stoichiometric formula, such as, e.g., nitrogen dioxide (NO2)
consisting of one nitrogen and two oxygen atoms, bearing a molecular mass in the respective ratio of
its elemental components. The virtual constituent in the conservation matrix appears with zero molec-
ular mass and with zero standard chemical potential, having a stoichiometric factor of +1 for the for-
ward and –1 for the reverse reaction.

Table 1 Properties related to the virtual components. 

Type of Stoichiometric Standard Molecular
constituent elements state data mass

Chemical ckj μk
° = hk

° – Tsk
° Mk = Σ ckjMj

Virtual (forward) +1 μk
° ≡ 0 Mk ≡ 0

Virtual (reverse) –1 μk
° ≡ 0 Mk ≡ 0

The incremental calculation of the progress of a kinetically constrained system is then quite sim-
ple. The original input for the system is defined as for any thermodynamic calculation in terms of the
initial amounts of substances and the conditions of the G = G(T,P,nk) system. The increments due to
known reaction rates are deduced from the appropriate reaction rate equations and then introduced to
the sequential calculation as initial values of the virtual phases. During the minimization procedure, the
molar amounts of reactant and product species of the constrained reactions will adjust according to the
incremental changes as obtained from the reaction rate equations and the rest of the system will reach
the constrained equilibrium.

While the Lagrange multiplier (chemical potential) for the constraint component affecting reac-
tant(s) remains positive (πNC'+1 = πR > 0), based on eqs. 8 and 9, it follows that the corresponding affin-
ity > 0 and the net reaction is proceeding. The inequality condition 6 then holds for the Gibbsian cal-
culation. When any of the constraint multipliers becomes zero, the respective constraint entity becomes
ineffective. When all of them are zero, affinities of all reactions also are zero and the system has reached
chemical equilibrium. Thus, the algorithm provides inherently the thermodynamic equilibrium condi-
tion for the kinetically constrained calculation. 

It is typical for the Gibbs energy minimizing algorithms that metastablity of a phase can be taken
into account by suppressing a more stable phase or a given phase constituent from the final calculation,
even though it might appear in the given stoichiometric system [25]. In those cases, the algorithms indi-
cate the greater activity of a certain phase, but provide the final calculation for the suppressed
metastable system. In ChemApp, the respective identification is “dormant” for the suppressed phase
(constituent) and “entered” for the phases allowed to be formed. For the dormant species, however, the
activities are calculated using the final (metastable) state as a reference.

Thus, with the “dormancy” of a phase, it is straightforward to follow and control the affinity for
the formation of metastability in the system. This feature is extensively used in many conventional min-
imization algorithms. It is also of practical advantage when performing calculations with the virtual
phases in a constrained Gibbs energy system. 

For an equilibrium system, eq. 3 can be considered defining a value of the chemical potential also
for a species that is not present in the system. It follows that the virtual invariant phases, for which the
standard term is zero, can be used for the calculation of alternative reactivity options in systems which
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apply reaction rate constraints. The chemical potential of a pure invariant equals zero, when the pure
phase appears as “entered” and eq. 5 is valid for a stable phase (the Lagrange multiplier πNC'+1 = πR = 0,
respectively). When eq. 6 is valid, the phase is not stable and chemical potential of the virtual phase is
less than zero. If the calculation is performed in the “dormant” mode, the chemical potential of a vir-
tual feed phase may be less than zero and a forced calculation beyond the equilibrium point becomes
possible. This behavior is presented in Fig. 1. 

SIMPLE EXAMPLES OF GIBBSIAN SYSTEMS WITH REACTION KINETIC
CONSTRAINTS

In the following examples, the basic features of using the reaction rate constraints in Gibbs energy min-
imization are illustrated. With a simple absorption example, the use of reaction quotient (or affinities)
in the computation of aqueous systems is presented by using pH as the thermodynamic control variable.
The method then can be generalized for, e.g., industrial solution models. 

Use of the virtual constraints with reaction rates

By adapting the technique of virtual invariant phases, both forward and reverse reactions may be con-
sidered and the incremental advancement of chemical reactions can be performed within the Gibbsian
calculation. The choice whether the virtual phases appear as “dormant” or “entered” can be used to
track the Gibbs energy curve of the reactive system from both sides of the point of equilibrium. This
can be illustrated with a simple system often used in modern physical chemistry and thermodynamics
textbooks (see, e.g., [29]) as an example for the development of Gibbs energy and affinity in terms the
extent of reaction. The decomposition of dinitrogen tetroxide (N2O4) to nitrogen dioxide (NO2) is a gas-
phase reaction occurring with a finite rate in close to ambient temperatures 

N2O4 → NO2 + NO2 (12)

The rate of N2O4 decomposition can be approximated as a first-order reaction as follows

(13)
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Fig. 1 Affinity of the kinetically constrained reaction calculated as the Lagrange multiplier of the virtual
component. Virtual phase as “entered” reveals the equilibrium point at ξ ≈ 0.45 (πR = 0). The virtual phase as
“dormant” leads to a forced calculation beyond the equilibrium point (πR < 0). 

d

dt
k k t

N O
N O N O N O

2 4
2 4 2 4 2 4

⎡
⎣⎢

⎤
⎦⎥ = − ⎡⎣ ⎤⎦ ⇒ ⎡⎣ ⎤⎦ = ⎡⎣ ⎤⎦⋅Δ Δ



The extended conservation matrix of the simple system is presented in Table 2. The matrix
includes nitrogen as an inert gas (not participating in the reaction) and the immaterial component R con-
nected with either forward or reverse reaction via the virtual invariant phases denoted by Rv+ and Rv–.
The gaseous species have been indicated as (g), the virtual phases appear formally as separate (pure)
condensed invariants in the Gibbs energy minimization.

Table 2 The extended conservation
matrix of the N2O4 dissociation

system.

N O R

N2(g) 2 0 0

N2O4(g) 2 4 1

NO2(g) 1 2 0

Rv+ 0 0 1
Rv– 0 0 –1

The incremental decomposition of N2O4 from eq. 13 is then given as input of Rv– in a sequen-
tial calculation. The value of the first-order reaction rate constant k is from [30]; A ~ 1.E06 μs–1 and
Ea ~ 40 kJ mol–1 (k = A.exp[–Ea/(RT)]; T-range 270–320 K, P = 1 bar; N2 is assumed to be the inert
gas present).

Based on the conservation matrix, with the input of Rv– in the Gibbsian calculation, the molar
amount of N2O4 decreases respectively, provided that the virtual phases will not emerge as stable in the
minimization calculation. This condition prevails while the inequality (6) is valid (πR > 0). This condi-
tion is illustrated in Fig. 2 where the virtual invariant phase Rv– has been activated as “entered” in the
Gibbs energy calculation. The figures indicate the appearance of the virtual Rv– phase after reaching
the min(G) value at ξ ≈ 0.45. 

When the reaction proceeds, πR equals zero at the equilibrium position and (eq. 5) becomes valid.
Thus, the appearance of the virtual invariant phase in the Gibbsian system indicates that equilibrium has
been reached. Yet, if the virtual phase is set “dormant” in the system, the full Gibbs energy curve cov-
ering the whole range of the extent of reaction (0 ≤ ξ ≤ 1) can be calculated, then forced by eq. 5
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Figs. 2A,B Use of the virtual invariant phase with reaction rate constraints in Gibbs energy minimization in the
N2/N2O4/NO2 system. When the virtual phase (Rv– in this case) is used as “entered”, the min(G) calculation allows
it to form when the equilibrium value of the extent of reaction (ξ = ξeq ) has been reached. The energy and mass
of the virtual phase are zero by definition, thus its “presence” is virtual without any effect on the physical system.
Model input: N2 2.0 mol (inert); N2O4 1.0 mol; P = 101 kPa, T = 40 °C.



(Figs. 3 and 4). This feature is practical when, e.g., supersaturated phase conditions or systems with
external work need to be simulated. 

The reverse reaction (formation of N2O4) could be calculated respectively, by using the virtual
phase Rv+ in a similar way. This would of course require the presence of NO2 in the initial system, as
only reactions consistent with the conservation of all components are allowed.

Use of the affinity and reaction quotient for reaction rates 

In Table 3, a simple aqueous system is described with virtual constraints set for the absorption and
 desorption of gaseous CO2 to and from the aqueous solution. 
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Figs. 3A,B Use of the virtual phase with reaction rate constraints in Gibbs energy minimization in the
N2/N2O4/NO2 system. When the virtual phase (Rv–) is used as “dormant”, the min(G) calculation proceeds past
the equilibrium value of the extent of reaction (ξ > ξeq), representing composition and Gibbs energy of the system
in this range. Model input: N2 2.0 mol (inert); N2O4 1.0 mol; P = 101 kPa, T = 40 °C.

Fig. 4 Shift of Gibbs energy minimum as function of the temperature calculated by using Rv– as “dormant”.



Table 3 The extended
conservation matrix of the
simple CO2 absorption
system.

The matrix then allows for the equilibrium between the solute species H+, HCO3
– and CO3

2– as
it follows directly from eq. 3 that

μHCO3
– = μH+ + μCO3

2– (14)

But, instead of equilibrium of gaseous and aqueous CO2 we have in terms of the Lagrange multi -
pliers 

μCO2(aq) – μCO2(g) = –πR (15)

Equation 15 again defines the affinity of the absorption/desorption of CO2 in the system. The
affinity can be applied with eq. 12 for the reaction rate equation while interpreting, e.g., the pH effect
of CO2 absorption into an aqueous solution. The technique of virtual constraints was then used to model
the time development while combining two artificial salt solutions, prepared to observe the effect of
mixing to the system pH. The solution A was a saturated solution of CaSO4 (2.14 g CaSO4 in 1 kg of
water) and the solution B 22.8 mg of CaCO3 in 1 kg of water. When the clear solutions were mixed the
initial pH value was 8.35, which corresponds the given salt solution with 1.62E-6 moles of dissolved
CO2. The mixing continued in an open vessel at 40 °C for ca. 2 h, during which time a continuous pH
drop to 7.66 was observed. This final pH corresponds to the equilibrium pH of such a solution with
ambient air. As no precipitation products were observed, it was concluded that the solution absorbed
additional CO2 from the air, which then held the Ca2+ ions soluble in the system. 

The absorption of CO2 was described with the simple reaction

CO2(g) → CO2(aq) (16)

for which the reaction rate is r = dnCO2(g)/dt. This can be expressed in terms of the affinity (or reaction
quotient) as follows

(17)

where the affinity A equals the difference of the molar Gibbs energies of gaseous and dissolved CO2. It
is assumed that the reactions in the solution are fast when compared to the absorption process, and thus
the measured pH value indicates the state of the solution system gradually proceeding toward equilib-
rium with a large amount of ambient air, consisting of 0.035 % CO2. Again, for the practical calcula-
tion we adapt the reaction rate as the increase of the virtual component in the system r = dnCO2(g)/dt ≡
dnR/dt. Adding of the virtual phase Rv– will then reduce the amount of the immaterial component R to
the system according to the reaction rate specified by eq. 17. The single reaction rate parameter is the
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first-order rate coefficient k1, which was adjusted to 1.07E-3 mol l–1 min–1 by the measured data. In
Fig. 5, the respective calculation result is shown. 

In this example, the calculated curve only shows the applicability of the supposed rate equation
to the data used for the fitting parameter. From the thermodynamic point of view, the example shows
the attainment of the thermodynamic absorption limit in terms of the pH of the solution. The use of the
affinity, as received from the Gibbsian method, can be used to recognize the thermodynamic curb in the
reaction rate calculation. Figure 6 further shows the monotonically descending G = G(t) curve for the
absorption system. 

The method of virtual components in combination with virtual phases gives a practical method to
incorporate reaction kinetic constraints to multicomponent-multiphase Gibbs energy calculations.
Though the examples here have been confined to problems with only one rate-controlling reaction, the
method complies without difficulty for problems with a reduced number of constrained reactions.
Figure 7 shows results from a three-phase industrial reaction system for CaCO3 production from aque-
ous Ca(OH)2 slurry and CO2 gas [26,33]. The rate-determining reactions were deduced to be the dis-
solution of gaseous CO2 and the subsequent CaCO3 precipitation. The Gibbsian model with two con-
strained reactions could thereby give a sufficient description of the reactive behavior. The technique can
also be further systematized, and work is in progress to include, e.g., complex biochemical reaction
mechanisms to the frame of Gibbs energy computations [20]. In addition, a particular data-assembling
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Fig. 5 Use of the reaction rate constraint when modelling pH drop due to CO2-absorption into a carbonaceous
Ca-sulfate solution. The reaction quotient (Q) is used together with the virtual phase input to achieve a smooth
approach toward equilibrium. The activities of the aqueous species were calculated in ChemApp by using the Pitzer
interaction coefficients [31,32].

Fig. 6 Gibbs energy of the CO2 absorption system as function of time. 



program has been developed, so that the input data in connection with the stoichiometric formulations
of equilibrium systems can be transmuted to solve problems including kinetic constraints with virtual
components and phases [34].

CONCLUSION

Multiphase Gibbs free energy methods are increasingly used in the simulation of various phenomena,
their manifold applications ranging from materials and surface science to chemical engineering, aque-
ous process solutions, and biochemical processes. The introduction of kinetic constraints allows for the
use of rate-determining steps within the thermodynamic system, thus accounting for the simultaneous
and interdependent calculation of the chemical and energy changes. In addition to concentrations, the
thermodynamic model always provides the activities of constituents, which in several practical prob-
lems appear as the important measurable variables. The improved methodology to construct predictive
models then also encourages efforts to implement rigorous measurements of thermodynamic and
kinetic data from such complex systems. 
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