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Abstract: Generalization of the Hückel rule predicts that the (anti)aromaticity of a neutral
ring is qualitatively reverted upon a single twist of the π-orbital array (Möbius interconver-
sion), and is preserved upon expansion of all the bonds by single C2 units (ring carbo-mer-
ization). These opposite effects are addressed from quantitative theoretical and experimental
standpoints, respectively. (i) According to most resonance energy (RE) schemes, the RE
value of a Möbius ring is not the opposite of that of the Hückel version. This also applies to
the Aihara’s and Trinajstic’s topological resonance energy (TRE), where a non-aromatic ref-
erence in the topological limit is defined as being “as identical as possible” to the parent ring
but just “acyclic”. In spite of its conceptual merits, the computing complexity and fictitious
character of the TRE acyclic reference resulted in a disuse of TRE as a current energetic aro-
maticity index. Both the calculation and interpretation of TRE have been revisited in light of
a cross-reference between the Hückel and Möbius rings within the Hückel molecular orbital
(HMO) framework. Whereas the topological influence of triple bonds is currently neglected
in the first-level HMO treatment of π-conjugated systems, a graph-theoretical analysis allows
one to differentiate the TRE value of a [3n]annulene from those of the corresponding carbo-
[n]annulene. The C18 ring of carbo-benzene is thus predicted to be slightly more topologi-
cally aromatic than that of [18]annulene. (ii) Recent experimental and density functional the-
ory (DFT) theoretical studies of quadrupolar carbo-benzene derivatives are presented. The
results show that the “flexible aromaticity” of the p-C18Ph4 bridge between donor anisyl sub-
stituents plays a crucial role in determining the intriguing chemical/spectroscopical/optical
properties of these carbo-chromophores.

Keywords: aromaticity; carbo-benzene; Möbius ring; topological resonance energy; triple
bond. 

INTRODUCTION

The lively concept of aromaticity of π-conjugated molecules [1] was historically propounded within the
framework of the Hückel theory [2], and remains educationally grounded on the so-called “4n/4n + 2”
Hückel rule [3] which predicts that a cyclically nontwisted π-conjugated molecule exhibits aromatic
(resp. antiaromatic) physico-chemical properties if the corresponding number of π-electrons has the
form 4n + 2 (resp. 4n) for some integer n ≥ 0. As these aromatic properties (energetic, structural, mag-
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netic,…) are not uniquely determined [4], the rule remains qualitative in nature. Before addressing the
problem of its quantitative transcription, it is noted that the rule is reversed by applying elementary mo-
lecular transformations altering not only the electronic configuration (one-electron spin inversion or
two-electron ionization), but also the atomic configuration: one-bond 180°-twisting or one-bond C2-ex-
pansion, corresponding to Möbius conversion [5] and local carbo-merization, respectively [6]. The
quantitative variation of aromaticity upon both latter types of transformations is hereafter addressed
from both the theoretical and experimental standpoints.

TWISTING THE RING CONTENT: THE MÖBIUS KEY TO AROMATICITY 

After a critical survey of various energetic measures of aromaticity proposed in the literature [7], the
relative aromaticity of Hückel and Möbius rings will be scrutinized. Their complementary roles for the
quantification of topological aromaticity is then investigated not only for cyclenes, but also for conju-
gated alkynes and cyclynes, and in particular for ring carbo-mers.

Critical survey of HMO energetic aromaticity measures

The IUPAC-recommended definition of aromaticity is due to Minkin: “the concept of spatial and elec-
tronic structure of cyclic molecular systems displaying the effects of cyclic electron delocalization
which provide for their enhanced thermodynamic stability (relative to acyclic structural analogues) and
tendency to retain the structural type in the course of chemical transformations” [4]. The italicized ex-
pressions indicate that aromaticity is an energetic-topological concept, where the reference acyclic
structural analog is bound to be as identical as possible to the cyclic system, but just acyclic.
Aromaticity can therefore be measured by the corresponding resonance energy (RE), i.e., the energy
difference between the considered cyclic structure and its acyclic reference. This reference can be ei-
ther a virtual valence bond (VB) structure, as in the Pauling–Wheland adiabatic resonance energy
(ARE) and its recent developments at the ab initio level [8], or a chemical species. The two types of
acyclic reference can also be combined as in Schleyer’s definition of extracyclic resonance energy
(ECRE) [8]. Chemical acyclic references and their molecular orbital (MO) models are hereafter inves-
tigated. By virtue of its topological nature, particular attention is given to the Hückel MO (HMO) level
of theory. 

In the topological limit, however, the acyclic reference cannot be described by simple Lewis
structures because the bonding topology is not chemically independent from the geometry (Scheme 1). 
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Scheme 1 Pictorial view of the energetic-topological aromaticity of a given cyclic molecular structure. TRE is the
relevant RE at the topological limit [9,10].



Although the topological limit is attained only formally in the definition of topological resonance
energy (TRE, see below) [9,10], it can be chemically approached by molecular RE schemes. Relevant
chemical REs must, however, thus be 

i. considered as approximates of the absolute energy in the topological limit (not as simple scales);
ii. defined by unambiguous general processes for any molecular structure (for comparative purpose);
iii. evaluated for their specificity of reflecting pure cyclic effects (in particular, vanish for infinite ring

sizes). 

Many multicomponent acyclic references have been proposed [7]. When treated at the ab initio
level, the corresponding REs are termed as aromatic stabilization energies (ASEs). In this case, the
chemical species playing the role of the acyclic reference (in the topological sense) may, however, con-
sist in cyclic molecules in order to maintain the same strain as in the cyclic molecule (e.g., in the equa-
tion: 3 cyclohexene → benzene + 2 cyclohexane) [11]. In the σ/π separation approximation however,
only the σ-system of the reference is cyclically conjugated while the π-system is not. Focusing on
π-aromaticity at the HMO level, the fundamental relevance of selected REs is hereafter inspected vs.
the above requirements i–iii. These REs are based on various ring-cut processes which were devised
from either empirical, perturbational, or topological considerations. They are classified accordingly. In
the following, all energetic data are given in units of resonance integral of the “constant β ” HMO model
(β < 0), unless otherwise noted. 

Empirical REs
Hückel resonance energy (HRE). The first intuitive idea for estimating the energetic aromaticity of a
2m-membered ring refers to its formation from m of its edges [1a,12]. The ring-cut process of HRE (or
delocalization energy, DE) is thus an m-fold hydrogenolysis of m single bonds occuring in some Kekulé
structure (Scheme 2). For benzene, HRE(C6H6) = 2, which is very far from the exact topological limit
TRE(C6H6) = 0.273 (see Fig. 1 and below) [9,10].

Calculations also show that HRE of large [2m]annulenes tends to infinity as 2(4/π – 1)m (see
Supplementary Information), and HRE is thus definitely not representative of the pure cyclic effects of
requirement iii. Moreover, the HRE equation is not unique for dissymmetrically exo-conjugated rings
where several nonequivalent Kekulé structures can be drawn, and thus does not satisfy requirement ii
as well.

© 2010, IUPAC Pure Appl. Chem., Vol. 82, No. 4, pp. 769–800, 2010

Variation of aromaticity by twisting or expanding the ring content 771

Scheme 2 REs of [2m]annulenes based on C–C hydrogenolysis processes: HRE (top) and BRE (bottom).
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Fig. 1 Variation of the benzene REs as defined by empirical [REp,q(C6)], perturbational (ACEs) or topological
(TRE) considerations. The TRE value appears as the lower limit [9,10].



Breslow resonance energy (BRE) [13]. The ring-cut process of BRE is a simple hydrogenolysis
of one endocyclic C–C bond (Scheme 2). For benzene BRE(C6H6) = 1.012 (Fig. 1), and calculations
show that for large [2m]annulenes, BRE(C2m) tends to a non-zero finite limit BRE∞ (see Supplementary
Information): 

(1)

Thus, the BRE definition does not satisfy requirement iii. The BRE∞ limit can, however, be in-
terpreted as the difference in bond energy between ethylene (2) and the infinite annulene (4/π), and the
corrected quantity BRE'(C2m) = BRE(C2m) – BRE∞ (tending to zero as m → ∞) could be considered as
a more relevant estimate of the energetic aromaticity, at least for large annulenes. Rather surprisingly,
the BRE' definition provides also an excellent approximation of the topological aromaticity of small an-
nulenes: in the case of benzene, for example, BRE'(C6H6) = 0.285 (Fig. 1), which happens to be very
close (and slightly higher) than the exact topological limit TRE(C6H6) = 0.273 (see below) [9,10].
Nevertheless, the BRE and BRE' equations are not unique for dissymmetrically exo-conjugated rings,
where the 2m bonds to be possibly cut are no longer equivalent, and thus do not satisfy requirement ii.
To remedy this problem, the definition should be arbitrarily generalized to some average (e.g., an arith-
metic mean, weighted or not) of the 2m particular equations. In spite of their simplicity, BRE and BRE'
remain equivocal approximations of topological aromaticity in the general case.

Homodesmotic REs. In the isogyric HRE and BRE equations, the resemblance between the cyclic
molecule and the acyclic reference is limited by the fact that they do not contain the same number of
C–C bonds. This number can, however, be preserved by changing the H2 reactant by H-donor alkenes.
Many multicomponent schemes have thus been proposed on the examples of benzene or small annu-
lenes [1a,7,12]. Their generic form for [2m]annulenes is shown in Scheme 3, where H-donor [p]alkenes
couple to [p + q]polyenes, and where p ≥ 0 and q ≥ 1 are constant or vary as m (p, q = am + b, a, b con-
stants).

For p = 0, the equations are simply isogyric [14] and correspond to HRE and BRE for q = 1 and
q = m, respectively. For p ≥ 1, the equations are homodesmotic [15], and for p ≥ 2 hyper-homodesmotic
[16]. Although many of these reactions have been studied at the experimental and ab initio theoretical
level [15b], their respective topological components can be compared through their RE at the HMO
level. For [2m]annulenes, calculations show that the asymptotic behavior of REp,q(C2m) at large m de-
pends on p and q (see Supplementary Information):

• If p and q are finite constants (as for HRE: p = 0, q = 1), then: REp,q(C2m) → ∞. 
• If p or q varies as m, then

(2)
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Scheme 3 Generic form of chemical equations defining empirical resonance energies.
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• If p is a finite constant (and q = am + b, a ≥ 1) however, REp,q(C2m) tends to a non-zero finite
limit. For example, if p = 0 (the H-donor is H2, as in BRE for q = m) the limit is BRE∞/a ≈ 0.727/a
(see eq. 1), and if p = 1 (the H-donor is ethylene) the limit is lower, ca. 0.180/a. 

• If p increases with m (as p = am + b), then REam+b,q(C2m) → 0, and the essential condition of re-
quirement iii is satisfied. 

For example, if p = m – 1 and q = 1 (giving integer stoichiometric coefficients in Scheme 3),
REm–1,1(C2m) = HSRE(C2m), the generalized Hess–Schaad RE (HSRE) [16] corresponding to a
m-isoconjodesmic equation [17]. For benzene, HSRE(C6H6) = 0.453 remains however quite far
from the topological limit [TRE(C6H6) = 0.273, Fig. 1]. Moreover, the definition is not uniquely
generalized to dissymmetrically exo-conjugated rings, and does not fulfill the requirement ii.

• If p or q is infinite, then RE∞,q(C2m) = REp,∞(C2m) = RE∞(C2m) → 0, and the essential condition
of the requirement iii is satisfied. The chemical equations of RE∞ are equivalent to the limit
schemes of Aihara’s A-I [9] or ∞-isoconjodesmic RE [17] (Scheme 4).

The value for benzene RE∞(C6H6) = 0.361 is closer to the topological limit (0.273) than all
the preceding REp,q values (Fig. 1). Moreover, generalization of the RE∞ definition to dissym-
metrically exo-conjugated rings is unique because the substitution sequence of the ring is just the
period of the infinite acyclic reference. Requirement ii is thus also satisfied. RE∞ is therefore a
very relevant chemical approximation of topological aromaticity.

Perturbational REs
In the search of chemical approximations of the topological limit (Scheme 1), remaining acyclic con-
tributions are not exclusive a priori, but must be at least clearly identified. This is achieved by deriving
RE expressions from a perturbative analysis of the ring-cut process.

Double-cut aromatic cyclic energy (ACEDC) [18]. Considering a ring made of two fragments A
and B, the junction between A and B through bonds b1 and b2 is analyzed as a perturbation of the
Hamiltonians of the isolated fragments (Fig. 2). It can be shown that the second-order term is actually
the sum of two terms, one containing the contributions of the A–B interactions through twice the same
bond (2 × b1 or 2 × b2), the other containing the contributions of the A–B interactions through the two
bonds (b1 + b2).
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Scheme 4 Equivalent ∞-isoconjodesmic chemical schemes defining RE∞ for [2m]annulenes.



The optimal double-cut of a Kekulé structure is given by selection rules aiming at optimizing the
accuracy of the perturbative approach [18,19]. The first rule indicates that the most dissymmetrical cut
should be preferred, e.g., CH2=CH2 + H-(CH=CH)m–1-H for a [2m]annulene. The generic chemical in-
terpretation of ACEDC is given in Scheme 5.

The asymptotic HMO expression of the ACEDC(C2m) series is (see Scheme 5 and Supplementary
Information)

(3)

ACEDC(C2m) thus tends to the same non-zero finite limit as does RE1,m+b(C2m), whose chemical
equation also involves an ethylene molecule on the right-hand side of the equation (see eq. 2).
Individual ACEDC values are, however, more satisfactory, e.g., ACEDC(C6H6) = 0.496 < RE1,1(C6H6) =
0.584 and RE1,2 (C6H6) = 0.518 (Fig. 1). Following the same principle as for BRE, the corrected dou-
ble-cut aromatic cyclic energy ACEDC' = ACEDC – ACEDC∞ formally satisfies the vanishing condition
of requirement iii. The value for benzene, ACEDC'(C6H6) = 0.316, is, however, less satisfactory than
BRE'(C6H6) = 0.285.

The result of the double-cut perturbative approach of ACEDC can be more intuitively appraised
by resuming the default of the single-cut approach of BRE. Energetic aromaticity is indeed over -
estimated by BRE because the additional π-overlap present in the ring (e.g., there are six C–C bonds in
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Fig. 2 Schematic derivation of an aromatic cyclic energy (ACE) from a second-order analysis of the total energy
of a ring under a double-cut perturbation (ACEDC). H and E denote the Hamiltonian and the ground-state energy
of the cyclic system. HA (resp. HB) and EA (resp. EB) denote the Hamiltonian and the ground-state energy of the
isolated fragment A (resp. B), respectively. ε (2)AB denotes the second-order energy of the double-cut perturbation
(of Hamiltonian VAB) through bonds b1 and b2. EAb1B (resp. EAb2B) denotes the energy after cleavage of the bond
b2 (resp. b1).

Scheme 5 Generic equation of ACEDC for [2m]annulenes [18].

ACE ACEDC DCC m m2 4
12

0 1802( )⎯ →⎯⎯ = − ≈
→∞ ∞ π

.



benzene, but only five in its hexatriene acyclic reference) is anyway stabilizing even if it would not op-
erate a ring closure: the intrinsic acyclic stabilization ΔE* due to this bond must thus be substracted,
thus defining generalized double-cut aromatic cyclic energies as ACEDC* = BRE – ΔE*. 

A transferable ΔE* value might be the energy ΔE4 of formation of butadiene from two molecules
of ethylene (2 ethylene → butadiene + H2, ΔE4 = 0.472), thus giving the expression: ACEDC(4) = BRE –
ΔE4 (for benzene: ACEDC(4) = 0.540: see Fig. 1). 

In the ACEDC definition, a more accurate ΔE* value depending on the C–C bond environment is
the energy ΔE2m of formation of the longest open fragment (with 2m carbon atoms) from ethylene and
the last-but-one longest fragment (for benzene: ethylene + butadiene → hexatriene + H2: ΔE6 =
0.516 → ACEDC = ACEDC(6) = BRE – ΔE6 = 0.496: see Fig. 1). 

An even better ΔE* value would be the energy ΔE4m of formation of a C–C bond between two
open fragments having the size of the whole ring (with 2m carbon atoms), thus giving the expression

(4)

For benzene: 2 hexatriene → H-(CH)12-H + H2: ΔE12 = 0.617 → ACEDC(12) = 0.395. Due to sym-
metry, the double-cut inspiration of the ACEDC(4m) definition is not apparent in the chemical equation
(Fig. 1), and ACEDC(4m)(C2m) is equivalent to the generic resonance energy REm,m(C2m) (p = q = m, in
Scheme 3). The ACEDC(4m)(C2m) series vanishes for infinite annulenes and thus satisfies an essential
condition of requirement iii.

Multiple-cut aromatic cyclic energy (ACEMC) [20]. The selection rules of the ACEDC definition
are required by the second-order limitation of the perturbative expansion [18,19]. In order to avoid this
arbitrariness, the double-cut approach was generalized to a multiple-cut version. Given a reference
Kekulé structure, the single bonds are simply denoted as “bonds”, while the double bonds are capital-
ized as “Bonds”. The zero-order wave function φ0 is taken as the product of the isolated C=C Bond
functions ϕi, while their connection through σ-C–C bonds is analyzed as a perturbation. The expansion
of the total energy E over charge transfers ϕi → ϕj* between Bonds through bonds allows for the iso-
lation of properly cyclic contributions from kth-order energy corrections E(k) to E(0), k = 2, 3, 4… de-
pending on the topology. These contributions can be globally interpreted in terms of a multiple-cut aro-
matic cyclic energy, ACEMC: given a cyclic molecule with N double bonds, ACEMC is equal to the
energy of the whole system, minus the energies of the N open systems in which one bond has been cut,
plus those of the N subsystems in which one Bond has been removed. Saturating the valence of the dis-
connected C atoms by H atoms, the chemical equation of ACEMC for [2m]annulenes (Scheme 6) is the
hyperhomodesmotic m-isoconjodesmic equation of REm–1,1(C2m) (p = m – 1 and q = 1 in Scheme 3),
which is also equivalent to the generalized HSRE [16]. Therefore, ACEMC(C6H6) = 0.453 (Fig. 1) and
ACEMC(C2m) → 0 as m → ∞ (see above).

Although both ACEMC and HSRE thus satisfy the essential condition of requirement iii for
[2m]annulenes, the merit of the ACE definition is its generality for any exo-conjugated rings, in agree-
ment with requirement ii. The ACE values however remain dependent on the selected zeroth-order
Kekulé structure (the REp,q not only depend on the Kekulé structure, but also on the selected particular
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Scheme 6 Generic equation of ACEMC for [2m]annulenes.



single bond to be cut). Although the equations can be averaged over all the possible or relevant Kekulé
structures, some arbitrariness will remain regarding the resonance weighting method to be used. The
fundamental problem of the zeroth-order reference structure is revisited below within the framework of
graph theory. 

TRE
Although energetic aromaticity measures have been hitherto examined at the HMO level, the chemical
equations underlying the RE definitions discussed above can also be considered as ASEs and calculated
at higher level of theory (DFT, e.g.) [7]. This is not the case of TRE, which intrinsically refers to graph-
theoretical pictures of real molecules, and thus to the HMO level.

TRE of molecular graphs. The topological limit of aromaticity is abstractly but exactly quantified
by the TRE defined by Aihara [9] and the Trinajstic’s Zagreb group [10] using the graph-theoretical
translation of HMO theory. The TRE definition is based on the Sachs theorem [21], allowing for ex-
tracting the “energy” of an abstract “acyclic reference” from the characteristic polynomial P0(x) of the
molecular graph G0, whose roots λ0

i (1 ≤ i ≤ n) are the HMO energy levels of G0. The coefficients a0
k

of P0(x) (0 ≤ k ≤ n) can indeed be deduced from a decomposition of the molecular graph in terms of so-
called Sachs subgraphs, which are constituted by two types of non-incident primary components: edges
and rings. Contrary to what is assumed in the definition of the above empirical and perturbational REs
(where single bonds are distinguished from double bonds), all the edges are here locally equivalent: this
is the key for obeying the requirement ii.

(5a)

(5b)

where S0(k) is the set of Sachs graphs covering k vertices of G0, and c(s) is the total number of com-
ponents and r(s) is the number of rings in the Sachs graph s. 

Discarding the terms involving ring components allows to generate truncated acyclic coefficients
aac

k defining the “acyclic” or “matching” polynomial Pac(x) from subsets Sac(k) of Sachs graphs with-
out a ring component [r(s) = 0] and of order k:

Sac(k) = {s ∈ S0(k); r(s) = 0} (6a)

(6b)

(6c)

Though not properly characteristic in nature (it is not the secular determinant of a molecular graph
in the general case), Pac(x) turns out to have real roots only: the latter are thus interpreted as the eigen-
values xi = λac

i (1 ≤ i ≤ n) of some putative acyclic reference. Ranking the roots of P0(x) and Pac(x) in
non-increasing order (λ0

1 ≥ λ0
2 ≥…≥ λ0

n and λac
1 ≥ λac

2 ≥…≥ λac
n), the electronic state and the “en-

ergy” Eac of the acyclic reference are defined from the same set of occupation numbers of the ith lev-
els, gi (i = 0, 1, 2), as that corresponding to the considered electronic state and energy E0 of the cyclic
molecule. The TRE value of the latter is finally defined as

(7)
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A concise analytical expression of TRE can be derived for [2m]annulenes in the ground state [22].
It is readily checked to converge to zero at infinite size: 

(8)

The TRE value for benzene [TRE(C6H6) = 0.2726] is the smallest among all the RE values con-
sidered hitherto. It corresponds to the strict effect of the cyclic character of the π-conjugation in the mol-
ecules. Since RE ≥ TRE, all other RE values contain non-purely cyclic effects of the π-conjugation,
which are globally stabilizing (Fig. 1).

For [4n + 2]annulenes, a comparison of the variation of TRE with those of other REs tending to
zero at infinite m is shown in Fig. 3. It is remarkable that the best approximation of TRE is here the cor-
rected version BRE' of the early BRE (see eq. 1 and Fig. 1) [13].

TRE of real molecules. The design of an ab initio version of TRE for measuring the aromaticity
of real molecules in their real geometry remains a challenge to be explored. Nevertheless, projection of
a real molecule to a relevant HMO picture is a directly applicable alternative through the semi-empiri-
cal variable β Hückel method [23,24]. The comparison between different geometries of cyclobutadiene
in the singlet spin state is here exemplified (see details in Supplementary Information). For generic rec-
tangular geometries with bond lengths d1 and d2 (Scheme 7), the corresponding resonance integrals β1
and β2 can thus be calculated from empirical formulae in reference HMO β units [24]. 
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Fig. 3 Variations of (possibly corrected) RE(C2m) values for [4n + 2] annulenes (m = 2n + 1): (a) TRE: (eq. 8); (b)
BRE' = BRE – (2–4/π): (eq. 1); (c) ACEDC' = ACEDC – (4 –12/π): (eq. 3); (d) RE∞ = A–I: (eq. 2) for q = ∞; (e)
ACEDC(4m): (eq. 4) ; (f) ACEMC = HSRE = REm–1,1(C2m): (eq. 2) for p = m – 1, q = 1.



Assuming β1 ≤ β2 and setting u = β1/β2, calculation and factorization of the characteristic and
matching polynomials afford the following TRE expression for the ground state of any geometry
(Fig. 4):

(9)

In the rectangular equilibrium geometry, calculations at the B3PW91/6-31G** level give d1 =
1.572 Å and d2 = 1.334 Å [25], and thus TREeq = –0.606 for u = ueq = 0.669 and β2 = β2eq = 1.1878.
The ground-state singlet cyclobutadiene in its real equilibrium geometry is therefore antiaromatic, but
ca. twice less than in the constant β HMO reference (–1.226 for β1 = β2 = 1).
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Scheme 7 Equilibrium (B3PW91/6-31G**) and transition state (CASSCF/cc-pVTZ) geometries of cyclobutadiene
in the singlet state [25,26]. The variable resonance integrals values given in reference β units are obtained from
empirical formulae of ref. [24].
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Fig. 4 Variation of the TRE/β2 value ((eq. 9) where β2 is given in β units) of singlet cyclobutadiene in geometries
ranging from square (u = 1) to infinitely rectangular (u = 0, in the dissociated state C4H4 = 2 H–C≡C–H).



In the particular interconversion transition-state square geometry, calculations at the complete ac-
tive space self-consistent field (CASSCF) level give d1 = d2 = 1.447 Å [26], and thus TRETS = –1.057
for u = usq = 1 and β2 = βTS = 0.8622. The squared cyclobutadiene is thus slightly less antiaromatic in
the real transition state geometry than in the constant β reference (–1.226 for β1 = β2 = 1) [9,10,22].

Relative aromaticity of Hückel and Möbius rings

Given a cyclic nuclear topology of sp2-hybridized atoms, two types of orbital topology may be assigned
to the strip embedding the axes of the remaining p-orbitals: strips with zero or an even number of twists
are said of Hückel type, those with an odd number of twists are said of Möbius type. At the HMO level,
all the Hückel-type molecules are equivalent to the prototype with no twist, and all Möbius-type mole-
cules are equivalent to the prototype with a single twist. Therefore, only the basic prototypes with zero
or one twist are henceforth implicitly considered. According to the Heilbronner rule (the generalized
Hückel rule for Möbius rings) [5a], the Möbius version of an aromatic (resp. antiaromatic) Hückel ring
is qualitatively antiaromatic (resp. aromatic). However, whereas all first aromatic and antiaromatic
Hückel-type [2m]annulenes are known (for m > 1), none of the antiaromatic or aromatic Möbius-type
[2m]annulenes have been hitherto evidenced [5b]. Although the difference in stability is primarily due
to the steric constraint enforced by the Möbius topology, the relative topological aromaticity of stereo -
isomeric Hückel and Möbius cyclic molecules deserves to be scrutinized. Given a σ-skeleton G of some
neutral Lewis structure, the Hückel and Möbius forms are denoted as G0 and G1. Since the two forms
have the same acyclic reference (corresponding to the open planar strip of p-orbitals “with the same
conjugation”), whatever is the RE scheme: 

(10)

Due to its topological nature, TRE is particularly relevant for the analysis of the orbital topology
effects. Thus, plotting TRE(G0) values vs. TRE(G1) values over a set of 88 neutral unicyclic molecules
reveals three subsets of points with specific regular variations (Fig. 5).

Each subset actually corresponds to a well-defined structural type depending on the parity of the
ring size and on the topology of the susbtituents. An acyclic substituent R is thus said of even type, if
at least one path joining the anchoring atom of the ring to one of the terminal atoms consists in an even
number of bonds. Otherwise, R is said of odd type. For example, –CH=CH2, –C(=CH2)–CH=CH2,
–C•(–CH2

•)2 are of even type, while –CH2
•, –CH=CH–CH2

•, –C•(CH=CH2)2 are of odd type.

i. For odd-membered ring, TRE(G0) = TRE(G1). This is a consequence of the Pairing theorem.
ii. For even-membered rings, two situations depend on the nature of the substituents.

ii-a If all the substituents are of even type, TRE(G1) is roughly proportional to TRE(G0) with
inverse factors f and 1/f for aromatic and antiaromatic Hückel forms, respectively: 

TRE(antiaromatic G1 or G0) ≈ – f TRE(aromatic G0 or G1), f = 2.7 ± 0.3           (11)

Monocationic and monoanionic species with an odd-membered ring (such as C3H3
+,

C5H5
–,…) also satisfy eq. 13. This is empirically interpreted by the existence of an ap-

proximate expression of the acyclic reference energy Eac in terms of a weighted mean of
the energies E0 and E1 of the Hückel and Möbius forms, respectively:

- If G0 is aromatic and G1 antiaromatic:

(12a)
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- If G1 is aromatic and G0 antiaromatic:

(12b)

The quality of these approximations for TRE calculation is very good (ΔTRE < 0.03
for –1.2 ≤ TRE ≤ +0.4, see Supplementary Information), and remains acceptable if the same
value f = (f1 + f2)/2 ≈ 2.70 is adopted for both types of graph.

ii-b If at least one of the substituents is of odd type, TRE(G1) varies smoothly with TRE(G0).
This nonlinear correlation must be related to the existence of an empirical equation (eq.
13b) allowing for a highly accurate calculation of Eac from E0 and E1 only. It should be
noted that truncation of (eq. 13b) to the first term gives (eq. 13a), which holds very crudely
for all kinds of molecular graph but is not sufficient for relevant estimation of TRE values
(eq. 13a would be equivalent to eq. 12a and 12b for f0 = f1 = 1):

Eac ≈ (E0 + E1)/2 (13a)

Eac = (E0 + E1)/2 + 0.1305 (E0 – E1)2 + 0.0956 (E0 – E1)3 + (13b)
0.1046 (E0 – E1)4

The quality of the approximation (eq. 13b) for TRE calculation is excellent (ΔTRE < 0.003 for
–0.6 ≤ TRE ≤ +0.4, see Supplementary Information).
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Fig. 5 Correlations between the TREs of the Möbius and Hückel forms of 88 neutral unicyclic totally conjugated
hydrocarbons (see Supplementary Information).



These correlations between TRE values of Möbius and Hückel unicycles suggest a strong rela-
tionship between the “abstract” acyclic reference and the “real” Hückel and Möbius unicycles. These
empirical relationships, however, do not systematically apply to ionic species: an easy way to calculate
the acyclic eigenvalues is still desired. The fundamental complementary roles of the Hückel and Möbius
forms in the definition of the acyclic reference is addressed in the next section.

Chemical interpretation of TRE: The Möbius key

In spite of its fundamental relevance, TRE is sparingly invoked by organic chemists for assessing the
aromaticity of molecules in order to predict related properties (energetic but also geometric or mag-
netic). Beside the effects of few paradoxical predictions [27], this disuse is due to the conceptual and
mathematical complexity of the TRE calculation as compared to more empirical approaches [1a,12].
Application of the Sachs theorem is indeed a tedious task that is not easily implementable. The match-
ing polynomial can, however, be more rapidly generated from various graph analyses based on either
ring fragmentation, ring masking, or ring twisting processes [28a]. The latter can be summarized by
stating that the matching polynomial is actually the arithmetic mean of the characteristic polynomials
of the corresponding Hückel and Möbius chemical graphs. For a unicyclic molecule, the twisting analy-
sis reads: 

(14a)

where P0(x) and P1(x) denote the characteristic polynomials of its Hückel and Möbius versions, re-
spectively. This equation is the exact polynomial version of the approximate energetic version (eq. 13a).
This equation has been generalized to polycyclic molecule as:

(14b)

where Pj(x), j ≥ 1, denote the characteristic polynomials of the 2N – 1 generalized graph Gj of the
Hückel graph G0 [28a]. The generalized graphs are derived by twisting one or more bonds belonging
to different rings of G0, and are thus of Möbius type. It is, however, noteworthy that no generalized
graphs contains Möbius circuits only: at least one of the circuits remains of Hückel type. 

Beyond a molecular property, aromaticity is a ring property [4] which may take as many values
as rings in a polycyclic molecule. Partial aromaticity inside a polycycle is thus currently estimated by
the values of NICS at the centers of irreducible rings (also called fundamental circuits) [1c–e,h,i], e.g.,
2 in biphenyl and naphthalene, 3 in anthracene and phenanthrene, 32 in buckminsterfullerene, some of
them being equivalent by symmetry. The definition of a partial TRE for quantifying the local aro-
maticity of a given circuit ci inside a polycycle is thus a challenge that has been tackled in different ways
[29]. The definition of a partial acyclic polynomial Pci

ac(x) from the Sachs theorem (by removing from
P0(x) only the Sachs graphs involving the cyclic component of the considered circuit) is the natural way
[29b]. The problem is that Pci

ac(x) may have non-real roots that cannot be interpreted as “energies”.
Retaining the real parts of the complex roots (directly or by approximation methods) is a possibility that
remains, however, somewhat arbitrary [29e]. A method proposed by Aihara appeared to be a rigorous
alternative, but relies on a mathematical conjecture that has not been proved nor disproved hitherto
[29c].

TRE of conjugated cyclynes

Most of the RE schemes aiming at quantifying π-aromaticity were developed for molecules containing
a single π-conjugated system. Within the framework of the HMO theory, their topographical represen-
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tation is thus based on simple graphs of degree three. The graphs can be approximated to be non-
weighted for cyclenes with small bond-length alternation, but require to be weighted for heterocycles
and strongly antiaromatic cyclenes (e.g., for cyclobutadiene: see above). Pseudo-degenerate π-systems
involving (triply) bonded sp-hybridized atoms are currently treated by considering orthogonal com-
ponents independently: out-of-plane HMOs of a conjugated cyclenyne are thus approximated to be
identical to the HMOs of the corresponding conjugated cyclene (e.g., in benzyne vs. benzene). The
purely topological approximation is justified for most systems made of sp2-conjugated carbons only
(dsp2–sp2 ≈ 1.40 ± 0.05 Å), but becomes less acceptable for systems involving sp-conjugated carbons
(dsp–sp ≈ 1.25 Å ± 0.05 Å << 1.40 Å) [30]. The distinction between sp2–sp2 bonds and sp–sp bonds can
actually be made purely topological in nature without resorting to a β-variable Hückel treatment (i.e.,
to graph weighting): the topological influence of the presence of triple bonds in a conjugated hydro-
carbon is here adressed by considering non-simple but nonweighted graphs. 

TRE of acetylene. Acetylene possesses degenerate π-MOs due to the D∞h molecular symmetry.
The graph-theoretical picture of the acetylene π-MOs is a digon, and the off-diagonal coefficients of the
associated adjacency matrix A0 = (a0

ij) are equal to 2 (a0
ij = number of edges between vertices i and j)

[31]. The π-bonds of acetylene are thus represented by a “looped edge”, suggesting that the molecule
can be regarded as a “two-membered ring” (Scheme 8). 

Beyond the formalism, the digon analysis making acetylene a [2]annulene is actually suggested
by the observation of quasi-circular local diatropic π currents above the two carbon atoms induced by
a magnetic field perpendicular to the C–C axis (Fig. 6) [32]. It must be noticed that both orthogonal πz
and πxy systems contribute to the diatropic ring current in a given plane (Fig. 6), showing that they do
not independently operate on their own “local aromaticity”.
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Scheme 8 Graph representation of the π-MO system of acetylene as a “two-membered ring”.

Fig. 6 Current density maps of acetylene (black dots feature carbon atoms). The planes of the maps are distant by
1a0 from the nuclear axis and perpendicular to the external magnetic field. The two maps depict the diatropic
contributions of the out-of-plane πz MOs (left) and in-plane πxy MOs (right) (ipsocentric CTOCD-DZ/6-
31G**//B3PW91/6-31G** level) [32a].



According to Scheme 8, the secular determinant of acetylene thus reads

P0(x) = x2 – 4 

This characteristic polynomial can also be obtained by application of the Sachs theorem and
(eq. 5):

The coefficients aac
k (k = 0, 1, 2) of the matching polynomial Pac(x) of acetylene can be obtained

by excluding from the Sachs graphs performing a k-matching, all those containing the C2 cyclic com-
ponent through (eq. 6): 

and thus 

Pac(x) = x2 – 2 

By generalization of the principles of chemical graph theory, the formal ground-state energy of
the graph G0 (the energy of one of the two π-electron pairs) is identified to the sum of the absolute
eigenvalues:

E0(G0) = 4 

The graph energy is thus equal to the sum of the HMO energies of the orthogonal π-systems con-
sidered as independent: E0(G0) = Eπ(acetylene) = 2Eπ(ethylene) = 4.

Following the same principle, the energy of the neutral acyclic reference is given by

Eac(G0) = 2 √2
—

According to (eq. 7), the TRE of acetylene is thus

TRE(C2H2) = E0(G0) – Eac(G0) = 4 – 2 √2
—

≈ 1.172

Acetylene can thus be claimed to be twice more “topologically aromatic” than the iso-π-elec-
tronic cyclopropenium cation (TRE = 0.536), and ca. three times more topologically aromatic than
other 4n + 2-electrons unicyclic systems: cyclobutadiene dication and dianion (TRE = 0.305), cyclo -
pentadienide (TRE = 0.317), and benzene (TRE = 0.273).

Going further in the analogy, one may wonder about the definition of a Möbius version G1 of the
two-membered ring G0. Let P1(x) denote the corresponding putative characteristic polynomial.
Application of the Sachs formula (eq. 6) yields

and P1(x) = x2. The polynomial can also be obtained as det(A1 – xI), where A1 is deduced from the ad-
jacency matrix A0 (Scheme 8) by replacing the off-diagonal coefficients equal to 2 = 1 + 1 by 1 – 1= 0
(in the Möbius C2 component, one edge is bonding, the other is anti-bonding).
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The arithmetic mean of P0(x) and P1(x) reads 

The general formula (eq. 14a) expressing Pac(x) from the characteristic polynomials of the Hückel
and Möbius graphs thus formally applies to two-membered rings as well.

The two-electron “Möbius acetylene” has a zero graph energy, and can thus be regarded as the
acetylene molecule in the second excited state (or the biscarbene form in the VB language):

E1(G1) = 2 × 0 = 0

The energy of the two-electron acyclic reference remains the same: Eac(G0) = 2 √2
—

The “TRE value of Möbius acetylene” can therefore be formally defined as

TRE (Möbius acetylene) = E1(G1) – Eac(G0) = 0 – 2 √2
—

= –2.828

The “Möbius acetylene” is therefore formally twice more antiaromatic than the cyclopropenide
anion (TRE = –1.464 ) and even more than cyclobutadiene (TRE = –1.226).

Before being applied to carbo-annulenic species, the formalism is first applied below to model
fragments thereof.

TRE of butenyne. Butenyne can be regarded as a singly exo-conjugated C2 “ring” (Scheme 9).
This C4 fragment is also a model of the vertex environments in the ring carbo-mers of annulenes (see
below).

The coefficients of the characteristic polynomial can be obtained by either application of the
Sachs theorem, or calculating det(A0 – xI). The coefficients of the matching polynomial can be obtained
similarly by either application of the Sachs (eq. 6), or of (eq. 14a) from the characteristic polynomial
of the “Möbius enyne” [P1(x) = det(A1 – xI], where A1 is deduced from A0 by replacing the off-diago-
nal coefficients equal to 2 by 0):

P0(x) = x4 – 6x2 + 4 

P1(x) = x4 – 2x2

Pac(x) = x4 – 4x2 + 2 

The energies of the neutral graph of butenyne and of the neutral acyclic reference, identified to
the corresponding sums of the absolute eigenvalues, are therefore

E0(G0) = 6.3246

Eac(G0) = 5.2263

It is noteworthy that the graph energy E0 (in negative β units) is smaller than the sum of the en-
ergies of the ortho gonal π-systems considered independently: Eπ(butadiene) + Eπ(ethylene) = 6.4721.
In contrast to the case of acetylene exhibiting two identical π-systems, the coupling between the two
different π-systems introduced by the non-simple graph approach of Scheme 9 is therefore destabiliz-
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Scheme 9 Representation of the π-MO system of butenyne as a singly exo-conjugated C2 ring.



ing. The difference (6.4721 – 6.3246 ≈ 0.148) can be regarded as a measure of the non-degeneracy of
the orthogonal π-systems (equivalently, of the two C2 edges) of butenyne. Finally:

TRE(butenyne) = 1.098

Butenyne is therefore less “aromatic” than acetylene (TRE = 1.172), but the effect of the vinyl
substituent remains quite weak.

TRE of butatriene. Butatriene can be regarded as a doubly exo-conjugated C2 “ring” (Scheme 10).
This illustrates that C2 component more generally results from the occurence of a sp–sp bond rather
than from a pure triple bond. This C4 fragment is also a model of the edges of the ring carbo-mers of
annulenes (see below).

The coefficients of the characteristic polynomials of butatriene and Möbius butatriene are ob-
tained by either application of the Sachs theorem through (eq. 5), or by calculating the corresponding
secular determinants. The acyclic polynomial is obtained by application of (eq. 14a):

P0(x) = x4 – 6x2 + 1 

P1(x) = x4 – 2x2 + 1

Pac(x) = x4 – 4x2 + 1 

The energies of the neutral graph of butatriene and of the neutral acyclic reference, identified to
the corresponding sums of the absolute eigenvalues, are therefore:

E0(G0) = 5.6568 

Eac(G0) = 4.8990

Here again, the orthogonal π-systems are different and the non-simple graph energy E0 (in nega-
tive β units) is lower than the sum of their energies calculated independently: Eπ(butadiene) + Eπ(eth-
ylene) = 6.4721. The difference (6.4721 – 5.6568 ≈ 0.8163) can be regarded as a measure of the non-
degeneracy of the orthogonal π-systems (i.e., of the C2 edges) of butatriene.

From eq. 7, finally:

TRE(butatriene) = 0.758

Butatriene is therefore much less “aromatic” than butenyne (TRE = 1.098). This could be intu-
itively predicted from the relative contributions of the triple character of the sp–sp bonds in the Lewis
structures of these molecules (Schemes 9 and 10).

TRE of the carbo-cyclopropenylide anion. The graph G0 of [C9H3]– is considered as a “tetra -
cycle” whose primitive ring components are a C9 macrocycle and the three C2 components of the iso-
lated sp–sp bonds. The molecular graph thus contains 24 = 16 generalized circuits, consisting in 23 = 8
equivalent C9 simple circuits, three equivalent C2 simple circuits, three equivalent double circuits (made
of the union of two C2 components), one triple circuit (made of the union of the three C2 components),
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Scheme 10 Representation of the π-MO system of butatriene as a doubly exo-conjugated C2 “ring”.



and the empty circuit. According to the Mizoguchi theorem [28b], 16 generalized graphs are thus de-
fined, 15 of them being of the Möbius type. Due to molecular symmetry, only five nonequivalent types
of generalized graphs remain: they are denoted as Gj (j = 0–4), depending on the minimum number and
location of the twisted edges (Fig. 7).

The corresponding characteristic polynomials of G0–G4 are

P0(x) = x9 – 18x7 + 108x5 – 228x3 + 72x – 16

P1(x) = x9 – 18x7 + 108x5 – 228x3 + 72x + 16 

P2(x) = x9 – 14x7 + 60x5 – 80x3 + 32x

P3(x) = x9– 10x7 + 28x5– 28x3 + 8x

P4(x) = x9– 6x7 + 12x5– 8x3
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Fig. 7 The five nonequivalent types of the 16 generalized graphs of the carbo-cyclopropenylide skeleton (C9H3).



Using eq. 14b, the total acyclic polynomial is thus equal to

Pac(x) = 1/16 [P0(x) + P1(x) + 6 P2(x) + 6 P3(x) + 2 P4(x)] = x9 – 12x7 + 48x5 – 70x3 + 24x

The energies of the anionic graph of [C9H9]– and of the corresponding anionic acyclic reference
are deduced by weighting the lowest roots of P0(x) and Pac(x) by the 10 πz electrons, respectively. 

E0(C9H3
–) = 15.8708 

Eac(C9H3
–) = 13.0210

Application of eq. 7 finally gives

TRE(C9H3
–) = 2.8498

The global TRE actually accounts for the aromaticity of the 16 generalized circuits of the poly-
cycle. For comparative purpose, the partial TRE value for the eight C9 macrocycles only is, however,
needed. Although the challenge of defining partial TREs of individual true circuits inside polycycles
has been tackled by several authors [29], the definition of TRE for a set of circuits had not been ex-
plicitly addressed until recently [28a]. Re-interpretation of Aihara’s bond RE (here denoted as bRE)
[33] indeed showed that the bRE of a p–q bond is the partial TRE for all the circuits revealing a Möbius
type when the p–q bond is twisted. It happens that if the p–q bond is any of the sp–sp2 bonds of the
carbo-cyclopropenyl skeleton, the twisted circuits in the corresponding generalized graph G1 are ex-
actly the eight C9 macrocycles of interest. The corresponding partially acyclic polynomial is, therefore,
given by eq. 14a:

Qpq(x) = Pac'(x) = 1/2 [P0(x) + P1(x)] = x9 – 18x7 + 108x5 – 228x3 + 72x

The same polynomial can also be generated through Gutman’s approach [29b], by removing the
contributions of the eight C9 equivalent rings from eq. 5, giving the P0(x) coefficients (0 ≤ k < 9 →
aac'

k = a0
k, and aac'

9 = a0
9 – 8 (–1)121 = –16 + 16 = 0).

The ground-state energy of the corresponding anion is calculated by weighting the highest roots
of Pac'(x) (i.e., the lowest energy levels) by the 10 πz electrons:

Eac'(C9H3
–) = 15.6942 

Using the total energy of the carbo-cyclopropenylide anion [E0(C9H3
–) = 15.8708], the partial

TRE value is obtained from eq. 7:

TRE'(C9H3
–) = TRE(8xC9, C9H3

–) = E0(C9H3
–) – Eac'(C9H3

–) = 0.1766

The aromatic parent is the cyclopropenium cation, whose TRE value is given by (eq. 8) [22]:

TRE(C3H3
+) = 2[1 – cos(π/6)]/sin(π/6) = 0.5359

The carbo-cyclopropenylide anion is thus three times less aromatic than the cyclopropenium par-
ent.

For further comparison, the TRE value of the [9]annulenide anion C9H9
– is given by eq. 8 [22]:

TRE(C9H9
–) = E0(C9H9

–) – Eac(C9H9
–) = 2[1 – cos(π/18)]/sin(π/18) = 0.1750

The cyclyne structure is, therefore, just very slightly more aromatic than the corresponding cyc-
lene structure.

TRE of carbo-benzene. Following the same principles as those set out for the carbo-cyclo-
propenylide anion (see Supplementary Information), the partial TRE for the 64 C18 macrocycles of the
carbo-benzene graph (Fig. 8) reads

TRE (C18H6) = 0.08906
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Carbo-benzene is thus found to be very slightly more aromatic than the [18]annulene parent
[TRE(C18H18) = 0.08765], and three times less aromatic than benzene [TRE(C6H6) = 0.27259]. These
variations are parallel to those observed for the carbo-cyclopropenylide anion. 

Further prospects of the TRE of cyclynes. The above formalism can be applied to the partial TREs
of the 2n equivalent macrocycles of any carbo-[n]annulenic species. For carbo-cyclobutadiene and the
carbo-cyclopentadienylium cation, the following values are obtained (see Supplementary Information):

TRE (C12H4) = – 0.4001

TRE (C15H5
+) = 0.1052

According to eq. 8, carbo-cyclobutadiene is, therefore, very slightly more antiaromatic than
[12]annulene [TRE(C12H12) = –0.3944], and three times less antiaromatic than cyclobutadiene
[TRE(C4H4) = –1.2263]. Conversely, the carbo-cyclopentadienylium cation is very slightly more aro-
matic than the [15]annulenium cation [TRE(C15H15

+) = 0.1048], and three times less aromatic than the
cyclopentadienylide anion [TRE(C5H5

–) = 0.3168]. These variations are thus basically identical to
those observed for the aromaticity of the carbo-cyclopropenylide anion and carbo-benzene.

The formalism can also be used for other conjugated alkynes, and in particular for  non-carbo-
meric cyclynes. This challenge will be addressed in a future work.

In conclusion, the non-simple graph approach allows to generalize the concept of aromaticity to
sp–sp bonds considered as “cyclic” C2 components. It not only gives further consistency to the rela-
tionships between the energetic and magnetic criteria of aromaticity (local ring currents occur above
sp–sp bonds; see Fig. 6), but also allows to distinguish between the aromatic characters of cyclynes and
corresponding cyclenes by applying a graph-theoretical coupling between quasi-degenerate orthogonal
π-systems. 
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Fig. 8 The first Hückel and Möbius types of the 128 generalized graphs of carbo-benzene (C18H6). In the graph
G1 (twisted once on any of the 12 sp–sp2 bonds), all the 64 C18 components are of Möbius-type.



EXPANDING THE RING CONTENT: FROM BENZENE TO CENTRO-SYMMETRIC
CARBO-BENZENES

On the relative aromaticity of benzene and carbo-benzene

The prediction of the Hückel rule symmetry by even C2-expansion of a π-conjugated ring has been sys-
tematically confirmed and refined at the theoretical level (using various methods, from HMO to post-
HF, through DFT) for the ring carbo-mers of annulenes and heterocyclic versions [17,25,34]. This has
been achieved by using aromaticity indices (REs and ASEs, MO analysis, GEO and HOMA, 1H chem-
ical shifts and NICS,...) [1], but also fundamentally suitable tools for each of the classical criteria of aro-
maticity: TRE calculation from a HMO projection of the molecular picture for the energetic criterion,
ELF analysis of the electron density for the geometric criterion [34a], mapping of the ring current den-
sity for the magnetic criterion [32a] (Fig. 9). 

These results clearly suggest that carbo-benzene is energetically and geometrically slightly less
aromatic, but magnetically much more aromatic than benzene according to NICS. Although the two
kinds of “static” and “dynamic” criteria have been proposed to vary independently [17,35], such a sharp
orthogonality may appear somewhat provocative. However, whereas the size-dependence is explicit for
magnetic measures, it is only implicit for energetic measures. For illustration, whereas the magnetic
susceptibility exaltation is directly proportional to the surface area encompassed by the ring, the total
energy depends in a concealed way on the total number of electrons occupying the MOs (the basic
quantum effects operating differently in the reference structure). Several authors suggested to correct
this complex size effect by dividing crude resonance energies (whatever the “de-cyclization” reaction
scheme) by the number of electrons occupying the active π-MOs, thus defining resonance energies per
electron (REPE), which were assumed to be more directly comparable for molecules of different size
[10,12]. Similar normalization can also apply to magnetic measures. There is however no a priori re-
quirement that “quantitative aromaticity” should be normalized to ring size, unless it has to be done for
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Fig. 9 Illustrative summary of theoretical results aiming at apraising the aromatic character of carbo-benzene
according to the magnetic, energetic, and structural/electron density criteria.



both energetic and magnetic measures. For example, the Breslow REPEDFT of benzene and carbo-ben-
zene are equal to –15.2/6 = –2.53 and –14.8/18 = – 0.82 kcal/mol/e, respectively, while their respective
NICS per electron are equal to –8/6 = –1.3 and –18/18 = –1.0 ppm/e. Carbo-benzene then becomes for-
mally less aromatic than benzene for both criteria, but the loss of aromaticity remains higher for the en-
ergetic criterion than for the magnetic criterion. This illustrates how literary over-interpretations of
quantitative aromaticity measures might be misleading.

The prediction of the Hückel rule was however also qualitatively confirmed at the experimental
level for the benzene ring by the synthesis and characterization of a dozen of carbo-benzene or carbo2-
benzene derivatives [6,17]. Carbo-benzenes are generally less stable than their benzene parents, but
their aromaticity is primarily revealed by the planarity of the C18 rings and by the—anyway—appre-
ciable stability of the three formal dialkynyl butatriene edges appearing in their Kekulé structures.
Details are published elsewhere [6,41,43,46], but a concise structural typology is proposed below. 

Multipolar typology of carbo-benzenes: A rationale for synthesis and properties

Two types of carbo-benzenes synthesized to date can indeed be distinguished according to the possible
centro-symmetry of their substitution pattern (Scheme 11).

The typology shown in Scheme 11 underlies not only the allowed physico-chemical—in particu-
lar, photophysical—properties, but also the allowed most convergent synthetic strategies based on op-
timal [(18 – n) + n] schemes for the C18 ring formation process of the [6]pericyclynic precursor. Non-
centro-symmetric representatives may thus possess second-order nonlinear optical properties (sizeable
quadratic hyperpolarizability β) [36], but require poorly convergent syntheses based on [11 + 7] and
[14 + 4] schemes for octupolar [37] and dipolar representatives [38,39], respectively. In contrast,  centro-
symmetric representatives may only possess higher-order nonlinear optical properties (e.g., sizeable
cubic hyperpolarizability γ) [40], and can be prepared more easily via a versatile [6]pericyclynedione
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Scheme 11 Symmetry-based typology of the carbo-benzene derivatives synthesized to date with up to three
different kinds of substituents.



precursor obtained by a [8 + 10] macrocycle formation process [38,41]. Although homoleptic hexa-
phenyl- and hexaalkynyl-carbo-benzenes could be alternatively obtained by [11 + 7] or [14 + 4] routes
[37–39,42], the [8 + 10] strategy is particularly valuable for di-heteroleptic quadrupolar targets
(Scheme 12). For comparison, whereas the pericyclynediol precursor 3b of bis(trimethylsilylethynyl)-
tetraphenyl-carbo-benzene 6b was initially prepared via a [14 + 4] route in 12 steps [38], the same
[6]pericyclynediol 3b could be later obtained via the [8 + 10] route in 10 steps and the same 3 % over-
all yield [41]. The [6]pericyclynediol 3b was produced by double addition of the corresponding
Grignard alkynide to the [6]pericyclynedione 4, itself prepared by optimized dioxidation of the [6]peri -
cyclynediol 3a. The key-intermediates 3a and 4 were obtained and used as near-statistical mixtures of
14 and 5 diastereoisomers, respectively, and 4 could be henceforth considered as a potential versatile
key-intermediate for a generic series of quadrupolar tetraphenyl-carbo-benzenes [41]. Reductive arom-
atization of 3a and 3b allowed to obtain tetraphenyl-carbo-benzene 6a in 80 % purity to obtain, and
pure dialkynyl-tetraphenyl-carbo-benzene 6b in 10 % yield [39].
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Scheme 12 [8 + 10] synthetic route to quadrupolar carbo-benzenes (TMS = SiMe3).



The four phenyl substituents of the quadrupolar carbo-benzene derivatives 6 being kept as versa-
tile reference π-conjugated substituents, their π-accepting vs. π-donating response is anticipated to be
revealed by the corresponding π-donating vs. π-accepting character of the para-substituents R.
Referring to the Qzz maximal diagonal element of the quadrupole tensor (Fig. 10), the mesomeric flex-
ibility of the phenyl substituents is illustrated by the quite high Qzz value of hexaphenyl-carbo-benzene
(Qzz = –317 D.Å at the B3PW91/6-31G** level of calculation). According to the same criterion, the H
and ethynyl substituents appear much less flexible (Qzz[C18H6] = –103 D.Å, Qzz[C18(C2H)6] = –168
D.Å). The acidic character of sp2-C–H and sp-C…C–H units are anticipated to induce π-donation to-
ward the π-flexible phenyl groups by hyper-conjugation (C–H ↔ C:–, H+: the π-electrons being pushed
away by the underlying negative σ-charge). And indeed, the quadrupole moment was calculated to be
higher in the ideally C2-symmetric tetraphenyl derivatives than in the corresponding nonphenylated D6h
or D2h parent. The lateral donating character is maximized for R = OH or O– in the tetraphenyl-carbo-
hydroquinone (Qzz = –258 D.Å) or its dianion (Qzz = –400 D.Å). 

In all the examples of Fig. 10, the central carbo-benzene ring is expected to be intrinsically re-
sistant towards π-donation, and thus plays the role of a passive transmitting bridge between the R and
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Fig. 10 Representative centro-symmetric carbo-benzenes and the corresponding maximum diagonal element Qzz
of the electric quadrupole tensor calculated at the B3PW91/6-31G** level (field-independent basis, in D.Å units).
Geometry optimization was performed under the indicated symmetry constraints. Ar = p-anisyl group.



Ph substituents. The carbo-benzene ring was indeed shown to behave as a full 18 π-electron reservoir,
even masking the π-donor effect of an amino substituent in dipolar carbo-chromophores [25a]. This be-
havior is a consequence of the aromaticity of the carbo-benzene ring, but the situation is reversed for
the challenging carbo-quinoid motif [43]. The latter indeed formally contains 16 endocyclic paired
π-electrons, and, as a consequence of this antiaromatic character, is thus anticipated to act as a π-ac-
ceptor toward strong donor substituents such as dithiafulvenes [44]. In contrast, strong acceptor sub-
stituents such as carbonyl oxos are anticipated to provide the carbo-quinoid with oxidative reactivity.
By comparison with the hydroquinone/benzoquinone redox system, the quadrupolar carbo-hydro-
quinone could thus be targeted by reduction of the putative carbo-benzoquinone. The carbo-meric
redox system proved to be viable at the DFT level of theory (Scheme 13) [45], but attempts at prepar-
ing derivatives of either components failed hitherto. 

En route to the challenging preparation of carbo-hydroquinone, the dianisyl phenylogue ether 6c
(R = 4-MeO–C6H4) was thus envisioned as a stabilized hexaaryl model thereof [46].

Synthesis of quadrupolar carbo-benzenes

Reaction of 2 equiv of 4-anisyl magnesium bromide with pericyclynedione 4 thus afforded the diani-
syl-[6]pericyclynediol 3c as a mixture of stereoisomers in 76 % yield. In view of preventing anisyl-di-
rected polymerization, pericyclynediol 3c was treated with SnCl2/HCl at low temperature. An etheral
solution of 3c was thus treated with SnCl2/HCl –78 °C, and the temperature was slowly increased up to
–40 °C over 1 h. The resulting dark green mixture was then neutralized with aqueous NaOH (1 N at
–40 °C), and extracted with diethylether. The combined organic layers were dried and evaporated to
dryness, and the residue was purified by column chromatography over silica gel to give several chromo -
phores, two of which could be identified.

The less polar product was a sparingly soluble golden solid (8 %), which on the basis of NMR,
MS, IR, and electronic spectra proved to be the targeted dianisyl-tetraphenyl-carbo-benzene 6c. The
presence of the carbo-benzene macrocycle was confirmed by the characteristic absorption bands in the
visible region (λmax = 482 nm and λ = 525, 580 nm) and by the strongly deshielded ortho-1H nuclei of
the phenyl (δ = 9.46 ppm, d, 3JHH = 7.2 Hz) and anisyl substituents (δ = 9.41 ppm, d, 3JHH = 8.1 Hz).
The latter chemical shifts are induced by the strong diamagnetic ring current of the carbo-benzene ring,
which was shown to be the signature of its magnetic aromaticity.

The less polar product was a much more soluble dark green solid (14 % yield). Full characteri-
zation by matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry (MALDI-
TOF MS) (m/z = 800.39) and NMR spectroscopy showed that its consisted in a 60/40 mixture of the
meso/dl epimers of a partly reduced [6]pericyclyne macrocycle, which could be resolved by semi-
preparative high-performance liquid chromatography (HPLC) techniques. By confrontation with DFT-
calculated NMR and UV–vis spectra of the two possible regioisomers, the exact structure was assigned
to the cyclo hexadiene ring carbo-mer 7c (Scheme 12), where the anisyl substituents are conjugated
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Scheme 13 Carbo-meric version of benzoquinone/hydroquinone redox system.



through two butatriene edges. The absence of a macrocyclic π-ring current in 7c is revealed by the rel-
ative shielding of the ortho-1H nuclei of the phenyl (δ = 7.93 ppm, d, 3JHH = 8.0 Hz) and anisyl sub-
stituents (δ = 7.75 and 7.77 ppm, d, 3JHH = 9.0 Hz) as compared to 6c. 

Prolonged treatment of a sample of pure 7c with SnCl2/HCl cleanly produced the carbo-benzene
6c, thus showing that 7c is an intermediate in the reductive aromatization of 3c. Aromatization of hexa-
oxy-[6]pericyclynes indeed requires three steps, each of them being characterized by a two-electron re-
duction potential of a 1,4-dioxy-but-2-yne edge. Isolation of 7c as major product thus suggests that
while the second reduction would be favored with respect to the first one (the mono-butatriene product
was not detected), the third reduction is relatively disfavored. Whereas aromaticity of 6c could be a pri-
ori considered as a thermodynamic driving force for the final reduction step [47], the reduction of two
conjugated edges adjacent to the anisyl substituents could thus be kinetically favored (at –40 °C)
through the stabilization of the corresponding carbo-cationic intermediates. 

The availability of both chromophores 6c and 7c provides a new key for a close analysis of the
aromaticity of 6c: the macrocyclicity of the π-conjugation in 6c is indeed “minimally” interrupted in 7c
on single π-system and on a single edge only. A further analogy between 6c and 7c making them “struc-
turally as close as possible except the macrocyclic π-topology” is provided by the quasi-quadrupolar
character of both 6c and 7c (the dipole moment of 7c is indeed of 0.68 D only). The redox equation
“7c + H2 → 6c + 2 MeOH” is thus a relevant scheme for an accurate ASE estimate of 6c. Using the
zero-point corrected energies, calculation at the B3PW91/6-31G** level affords a significantly negative
ASEDFT value: 

ASEDFT = ΔH°(0 K) = ZPE(6c) + 2 ZPE(MeOH) – ZPE(7c) – ZPE(H2) = –42.85 kcal/mol

Beyond the energetic criterion, the magnetic criterion shows that the carbo-benzene ring of 6c is
strongly aromatic while the carbo-cyclohexadiene ring of 7c is definitely not. The conclusions brought
by the relative magnetic shielding values (see above) are indeed confirmed by comparison of the cal-
culated NICS values [1b] at the centroids of the rings for models 6c' and 7c' of 6c and 7c, respectively
(Scheme 14): whereas 6c' exhibits the classical diatropic signature of carbo-benzenes (NICS(6c') =
–15.90 ppm), its precursor 7c' does not (NICS(7c) = +0.14 ppm). 

Inspection of the complementary structural criterion of aromaticity was hitherto hampered by a
lack of suitable crystals of 6c and 7c for X-ray diffraction analysis. Insights into their structural features
were thus gained by detailed analysis of their calculated structure at the B3PW91/6-31G** level. The
structural aromaticity of the carbo-benzene ring is thus locally revealed by the relative fixation of the
butatriene bonds in 7c (sp2–sp = 1.357, 1.355 Å, sp–sp = 1.249 Å) as compared to 6c (sp2–sp ≈ 1.380 Å,
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Scheme 14 Models of the quadrupolar carbo-benzene 6c (left) and carbo-cyclohexadiene 7c (right) (see
Scheme 12), illustrating (on the basis of the NICS(0) values [1b]) that the magnetic aromaticity of a carbo-benzene
ring vanishes in the corresponding carbo-cyclohexadiene ring.



sp–sp ≈ 1.235 Å). Although the carbo-cyclohexadiene ring adopts a twist conformation, 7c preserves
significant conjugation between the butatriene units (with a dihedral angle of 18.1°), and between each
butatriene and the adjacent anisyl ring (with a dihedral angle of 7.1°). This conjugation is ultimately re-
sponsible for the intriguing chromophoric properties of 7c. Indeed, diluted solution of 7c in various sol-
vents (CHCl3, CH2Cl2, Et2O, pentane, toluene,…) display spectacular dichromism [48], oscillating be-
tween a turquoise-blue color for short optical paths and a bright purple color for deeper paths. The
absorption spectrum of 7c displays two sharp left-shouldered bands of equal intensities at 437 and
602 nm, that are accurately reproduced by ZINDO calculations (λcalcd = 615, 433 nm). Detailed analy-
sis by reference to previously reported data [48] shows that the dichromism phenomenon is due to the
sharpness of the bathochromic band and to the complete transparency from 650 nm to the end of the
visible region (700 nm). 

Further studies of the fascinating couple of chromophores 6c and 7c are in progress and will be
communicated in due course. It is henceforth worth noting that dianisyl-carbo-benzene p-(4-MeO-
C6H4)2C18H4 is the central ring carbo-mer of dianisyl-benzene, a stronger quadrupolar fluorophore
than its terphenyl parent [49]. A rationale for the fluorescence properties of these terphenyl derivatives
is based on the decrease of the local aromaticity of rings upon UV light-induced co-planarization [50].
Although the tetraphenyl derivative 6c proved to be only very weakly fluorescent, conjugation with
methoxy auxofluors could be a guideline for the design of other carbo-benzene derivatives with valu-
able photophysical properties. 

CONCLUSION

The concepts of Möbius conversion and ring carbo-merization are symmetric in terms of qualitative ef-
fects on the Hückel rule. They have been addressed along different lines, which meet at two points re-
garding quantitative topological aromaticity.

i. If the sp-C2 units of carbo-mers are considered as pseudo-rings, as it is allowed in chemical graph
theory, formal consideration of the “Möbius version” of this units allows to calculate TRE values
of conjugated cycloalkynes which are slightly different from those of the corresponding cyclo -
alkenes. The discrimination has been illustrated for carbo-[n]annulenes and corresponding
[3n]annulenes.

ii. The topological aromaticity of benzene is divided by 3 in carbo-benzene, while it is multiplied by
–3 in “Möbius benzene” (Scheme 15) [51]. These two relationships also hold approximately for
other annulenic species with an even-membered ring and even-type substituents only (see eq. 11
and ref. [52]). 3 is also the approximate factor of the ring size expansion upon carbo-merization.
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Scheme 15 Quantitative parallel between the variations of topological aromaticity by twisting (right) and
expanding (left) the ring content.



Whereas TRE is the abolute energetic measure of aromaticity in the topological limit (at the con-
stant or variable β HMO level [23]), an ab initio version remains to be devised for real molecules [28a].
Moreover, although the tedious graph-theoretical calculation of TRE values is much simplified by con-
sidering the Hückel and Möbius molecular forms in eq. 14, a chemical RE scheme of TRE is still miss-
ing. Alternatively, an easy-to-calculate approximate TRE might also be defined from the empirical eqs.
12 and eq. 13, giving the acyclic reference energy Eac in terms of the Hückel and Möbius energies (see
Supplementary Information), but their values, though quite good, should remain less exact than those
of TRE [9,10] and other topological approaches [53]. Efforts for improving chemical interpretation, cal-
culation and use of TRE are in current progress. Parallel experimental investigations of carbo-benzenic
chromophores provide a source of inspiration for extending and understanding the domain of nonclas-
sical aromatic systems [54].

SUPPLEMENTARY INFORMATION 

Analytical expressions of REs for [2m]annulenes. Variation of the cyclobutadiene TRE through the vari-
able β HMO method. HMO calculations of the TRE of Hückel and Möbius ring (data for Fig. 5, eqs.
12 and 13b). Calculation of the TRE of carbo-cyclobutadiene. Calculation of the TRE of the  carbo-
cyclopentadienylium cation. Calculation of the TRE of carbo-benzene. Supplementary Information is
available online (doi:10.1351/PAC-CON-09-11-07).
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