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Abstract: Ordinary macroscopic thermodynamics is applied when the number of atoms in the
studied systems is “large”. Conditions where nanosystems are “large” with respect to thermo -
dynamics definition are first discussed. In the thermodynamical regime, size and shape ef-
fects are known to be important. It has been known for a long time that the melting temper-
ature of nanosystems decreases when their size decreases. A generalization of this leads to
the conclusion that phase diagrams are also size- and shape-dependent. In nanosystems, the
number of atoms is limited. This differs from classical thermodynamics, where the number
of atoms is assumed to be unlimited. The consequences of this difference for the definition
of phase diagrams are discussed. In particular, the liquidus and solidus lines have to be care-
fully defined. The structure of the two-phase nanoparticles also plays a role in the calculation
of the phase diagrams. 
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INTRODUCTION

Particles with diameter in the range of 1–100 nm are in a state intermediate between the solid and the
molecular ones. When the number of atoms in the particle is in the thousands range or above, proper-
ties evolve gradually from the molecular to the solid ones. The electronic, magnetic, optical, chemical,
and thermal properties of the nanomaterials are significantly different from the corresponding bulk ma-
terials [1]. 

Concerning thermal properties, it is well known, for instance, that the melting temperature, the
phase diagrams, and the diffusion activation energies are size- and shape-dependent. One way to study
these thermal effects is to use thermodynamics. Indeed, introducing surface effects in classical thermo-
dynamics allows us to understand the observed melting point depression, or the size-dependent phase
diagrams. 

One generally considers that thermodynamics is valid when the number of atoms is “large”. What
is “large”? Are nanosystems “large” with respect to the thermodynamics definition? In particular, it is
interesting to look at the definition of “temperature”, T. This is discussed in the first part of this paper. 

Assuming that the concept of temperature is applicable, size and shape are known to modify some
physicochemical properties, like the melting temperature and the phase diagram of compounds and al-
loys. This is the subject of the second part of the communication.

Regarding the phase diagrams, in the thermodynamical approach, it is implicitly assumed that the
number of atoms is unlimited. In nanosystems, this assumption is not justified. The limitation of the
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number of atoms leads to new effects, such as segregation and composition effects. This is studied in
the third part of the paper. 

NANOTHERMODYNAMICS?

Most works on so-called “nanothermodynamics” assume implicitly that the temperature, T, is defined
within a nanoparticle. This may be questioned. Indeed, if it is obvious that T is defined in the case of
macroscopic systems, it is also true that T is not defined for an individual atom or simple molecule. So,
where is the geometrical limit between the “defined” and “undefined” T zones? To our knowledge, there
are two approaches to this problem.

Thermal fluctuations

Thermodynamics gives a macroscopic description of a material in thermodynamical equilibrium, de-
fined as a volume where thermal fluctuations are «small». But what is “small”? Let us consider a cube
(of volume equal to L3), with n atoms per unit volume. The relative temperature fluctuation within the
cube is δT/T ≈ (nL3)–1/2, or L ≈ (δT/T)–2/3n–1/3. Let us assume that the temperature is uniform when it
fluctuates by less than 10–2 (10–1). In solids and liquids, n ≈ 1029m–3, so that L ≈ 4.6 nm (L ≈ 1 nm).

It is worth noting that the reasoning may be applied to phase transitions. In particular, in the case
of “bulk” first-order phase transitions, the temperature fluctuation means that the transition takes place
over a temperature interval given by δT. This implies that first-order phase transitions disappear in the
nanoworld. This is a well-known characteristic of the thermodynamics of nanoparticles. 

Definitions of temperature

In thermodynamics, the basic parameter is the temperature, defined as the partial derivative of energy
with respect to entropy. From the statistical point of view, for macroscopic systems, it is easy to define
a local temperature. But the size of the regions over which a local temperature can be defined must be
precise. Is it in the nanometer range or above? The usual definition of temperature is related to the av-
erage energy of a system of particles. There are three ways to define a local temperature [2].

The first definition is used, for instance, in molecular dynamics. In this method, one calculates the
position and the velocity of each atom in each time period. One then calculates the mean kinetic energy,
Ek, over M time steps. M must be high enough, so that the result is statistically valid. The calculations
are classical. The temperature is classically given by

Ek = <mvi
2>/2 = 3/2�kT

In this equation, k is the Boltzman constant, and vi is the velocity of atom i. The temperature is defined
locally, over one atom. This approach neglects quantum effects.

The second approach takes quantum effects into account. The collective motion of atoms is de-
scribed by the phonon model. They are characterized by their pulsation, ω(q), depending on their wave
vector, q. The mean kinetic energy is given by

<mvi2>/2 = ∑{�ω(q)/[exp(�ω(q)/kT) – 1]}

At high T (well above the Debye temperature), the classical and quantum equations give similar
results. However, at low temperature (and near room temperature), when below the Debye temperature,
both definitions give different values of T, since the thermal energy as given by the Debye theory dif-
fers from the classical one. 

A third definition is to substract the zero temperature motion from the quantum definition. 
Among the three definitions, the correct definition depends on the size of the domain where T is

defined. The classical definition is purely local. T may be defined for each atom or row of atoms. With
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quantum definitions, the length scale is defined by the phonon mean free path, lph. If two space domains
are characterized by different temperatures, the phonon distributions are different. One domain is de-
fined by one phonon distribution. Hence, the characteristic length of a local domain at a given fixed T
must be larger than the phonon diffusion length. But this length is a function of the phonon frequency.
Low-frequency phonons have large mean free paths, while high-frequency ones have shorter mean free
paths. At high temperature, one may define an average mean free path. From this point of view, T may
not be defined on one atom or row of atoms. It may only be defined over a length larger than lph. At
high temperature, the phonon mean free path is governed by the so-called “Umklapp process”. In this
case, lph ∝ T–1. For many materials, at room temperature, lph is in the nanometer range [3] (NaCl:lph ≈
2.3 nm; quartz:lph ≈ 4.0 nm). Let us take lph = 3 nm. This implies that T may then be defined when the
characteristic dimensions of the systems are in the nanometer range. It is often stated that the statistical
collision theory holds when the dimension of the system is larger than D, such that parameter η =
exp(–lph/D) is small [1]. Taking η = 10–2 (10–1), this criteria is met when D = 4.6 × lph = 14 nm (D =
2.3 × lph = 7 nm). In other words, systems with characteristic dimensions below about 10 nm are in a
nonthermodynamical regime.

In spite of this fact, the thermodynamical concepts are often used in the case of numerical simu-
lations of heat transport, for instance, in nanosystems. There is no known way yet to solve this impor-
tant problem. 

In the following, it is assumed that the concept of temperature is applied, i.e., the size of the
nanosystems is in the 5 nm range and above.

MELTING

Let us start with the theory of melting of nanosystems [4,5]. The reasoning is based on the calculation
of the temperature variation of the isobaric free energy of the liquid phase, Gl(T), relative to that of the
solid phase, Gs(T). Let N be the number of atoms in the system. The condition Gl–Gs = 0 is applied at
the bulk melting point, Tm,∞. In the case of relatively large systems, where (1) N is such that the thermo -
dynamical arguments remain valid; (2) the surface of the particle may be characterized by a single value
of the surface tension, the melting temperature, Tm, varies with the size following:

Tm = Tm,∞ + f (γl – γs)/{B�N1/3} 

where f is a geometrical factor depending on the shape of the particle. γl and γs are the specific surface
energies of the liquid and the solid, respectively. For most inorganic materials, γ remains nearly con-
stant when T varies. B is the ratio between the latent heat for melting and the melting temperature. The
term f/N1/3 is directly proportional to the ratio of surface-to-volume atoms. For spherical particles, the
equation may be rewritten as a function of the radius of the particle, R

Tm = Tm,∞[1 – α/(2R)]

α depends on the material. It is between 0.4 and 3.3 nm [4,5]. The theory is easily extended to the case
of nonspherical nanosystems [6–8]. 

COMPETITIVE FORMATION OF NEW PHASES

The previous classical theory may be applied to various cases, like the competitive size-dependent for-
mation of new phases. Let us assume that the system is suddenly brought into a metastable state located
between binodal and spinodal curves. Then, clusters of the new phase may appear spontaneously and a
phase transformation takes place. Such first-order phase transition occurs through the nucleation and
the growth of particles of a new phase. Furthermore, often simultaneous multiple nucleation at the
nanometer scale is developing, like the decomposition of a supersaturated binary alloy α (containing A
and B components) leading to the formation of two-phase system α' + 1 or α" + 2, where 1, 2 are new
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intermediate phases which both have non-zero driving forces of transformation. The precipitation de-
velops in nanometric volumes which can be realized either in nanometric isolated particles or in small
spherical regions (of radius R) around nucleation sites in the case of simultaneous nucleation at many
sites as it could be in highly imperfect supersaturated alloy or fast multiple nucleation in bulk metallic
glasses. As an example of such a problem, let us mention the competitive precipitation of precipitates
of Al3Li and Al1Li ordered phases in supersaturated solid solution AlLi. The last one becomes
nanocrystalline, and the size effect comes into play. Theoretical description of size effect on competi-
tion of new phases formation is usually based on an increase of excess surface energy of small systems
(Laplace pressure). Indeed, it is clear that “anomalous” appearance of metastable phases in small sys-
tems is related to the change of the conditions of the phase equilibrium. In bulk material, the stable
phase (say, phase 1) is the one with the lowest bulk Gibbs free energy (per volume of the system), g:g1 <
g2. Subindexes 1 and 2 are referred to as the phase 1 or phase 2, respectively. In the nanoparticle, one
must take into account the surface and interphase free energies. Due to the different surface energy con-
tributions of the phases, the equilibrium condition may be changed so that the metastable (from usual,
“bulk” point of view) phase 2 becomes the stable one

g1 + γ1/2R > g2 + γ2/2R

When R < R* = (γ1 – γ2)/(2g2 – 2g1), the advantage is for the metastable phase 2. Here, the size
R* is the critical size of a system transforming from phase 1 to phase 2. From this, the decrease of the
size of the system should lead to the situation when the phase with smaller surface tension becomes
more probable and stable. Thus, the size constraints may be the main reason for the formation of the
metastable phase instead of the stable phase.

Examples of such size effects may be thin films of Μο and W, which have bcc structure in the
bulk. At size below 5–10 nm, they become fcc metals [9]. Such behavior is also found in Y, Gd, Tb, Ho,
and Tm [10]. The same reasoning may be used to explain the size-dependent structural phase stability
of TiO2 nanosystems [11].

The theoretical modeling of competitive nucleation of two different phases inside metal alloy
nanoparticles predicted five possible outcomes of competitive nucleation: (1) total prohibition of sepa-
ration, (2) formation and total stabilization of the metastable phase instead of the stable one, (3) rela-
tive stabilization of the metastable phase with the temporary delay of its transformation into the stable
phase, (4) formation and growth of the stable phase, when the metastable phase does not appear at all,
and (5) formation and growth of the stable phase via the metastable phase [12].

Another argument, which is important for nanosystems but usually not considered, is related to
the nucleation. Nucleation needs the reconstruction of the structure of the system and yields the ap-
pearance of the new interphase surface (with corresponding value γ12). Owing to the competition be-
tween bulk driving force and surface terms, the Gibbs free energy required to form a nucleus of a new
phase goes through a maximum ΔG* (the so-called nucleation barrier). Hereby, the size of a nucleus is
called critical and does not coincide with the critical size of an all system. If the value ΔG* is very high
compared with the temperature term kT (k is the Boltzmann constant), then the phase transition is im-
possible.

PHASE DIAGRAMS OF BINARY SYSTEMS

In binary systems, the solid–liquid transition is generally described by the so-called solidus–liquidus
curves. In the case of ideal solutions, the liquidus and solidus curves can be calculated by the method
of geometrical thermodynamics. The equilibrium situation is related to the concavity (or convexity) of
thermodynamic potentials. One plots the Gibbs free energy as a function of composition, taking into ac-
count the additional surface energies. 

Let us assume that the nucleus of the new solid phase is born in an infinite liquid phase.
Depending on the size and shape of the nucleus, the Gibbs free energy curve for solidus (here the equi-
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librium is with the liquid state) will shift up. It turns out that the phase diagram of the nanoparticle dif-
fers from that of bulk material. 

Let us now consider the solid–liquid transition in a nanosystem. It turns out that the lens-like
solidus–liquidus curves are shifted toward the lower temperature when the size of the particle decreases
[13]. The reasoning is easily extended to the cases of other types of phase transitions [14].

When there is surface segregation, things are different, since, at constant global stoichiometry, the
«core» one depends on (A/V) at constant V. Indeed, in our binary system AxB, with N atoms, Nx/(1 +
x) are atoms A and N/(1 + x) are atoms B. Providing the shape is not changed with N, the number of
atoms at the surface of the particle is equal to

Ns = f N2/3

where f is a geometrical factor, depending on the shape of the particle. At the surface, the composition
of the particle is described by AxsB. The number of atoms in the «core» of the particle is then equal to
Nb = N – Ns. The composition of the core is described by AxbB. The surface segregation is introduced
via the segregation energy, Esegr

xs = xb�exp(Esegr/kT) = S�xb

Introducing the conservation of the number of A and B atoms into the previous equations, and as-
suming that the thickness of the surface is equal to one atomic layer, one obtains

2S�xb = –(1 + S – R) + [(1 + S – R)2 + 4S�x]1/2; R = S(1 + x) + fN–1/3�(1 – S) (1 + x)

From these equations, it turns out that xb (i.e., the stoichiometry of the core) and, hence, xs (i.e., the stoi -
chiometry of the surface) depend on N and x, at fixed T and E, and on the shape of the particle, via the
term (fN–1/3). This is precisely proportional to the ratio (A/V). Altogether, the phase diagram of non-
spherical particles may be calculated from the spherical case, at the corresponding value of (A/V), both
without and with surface segregation, provided the surface tension is isotropic [14].

DEPLETION EFFECTS

The previous reasoning is based on the assumption that the quantity of matter is infinite. In the nanopar-
ticles, this is far from being justified. Let us consider the solidus–liquidus curve of a binary AxB1–x sys-
tem. Let us take an Ax0B1–x0 starting particle, with N atoms, in the initial liquid phase. The particle
cools down and, at a temperature T1, the phase diagram is such that xs and xl are the compositions in
the solid and liquid phases, respectively. Usual thermodynamics says that the number of atoms in the
solid (Ns) and liquid (Nl) phases are given by 

Ns = N(x0 – xl)/(xs – xl)

Nl = N(xs – x0)/(xs – xl)

Thermodynamics applies when N, Ns, and Nl are all “large”, as discussed earlier. Indeed, the def-
inition of the solid phase, for instance, requires that the number of atoms in this phase be larger than,
say, Ns,cr. This implies that N has to be larger than

N > Ns,cr (xs – xl)/(x0 – xl)

The same is true for the liquid phase.
Moreover, given that these conditions are fulfilled, the fact that the quantity of matter is finite

gives rise to new effects [15]. This is the so-called depletion effect [16]. In other words, there exists one
more fundamental size effect in multicomponent nanosystems, where the first-order phase transforma-
tion includes change of composition [17]. Depletion effects always appear when phase transitions take
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place in nanoparticles or in other finite systems and when the “new-born” phase has another composi-
tion than the parent phase.

Let us consider an isolated binary nanoparticle, made of A and B atomic species. Let x0 be the
mole fraction of species B in the particle before nucleation, xn is the mole fraction of species B in the
new phase (xn ≠ x0). If the embryo of the new phase appears, it will need the neighboring region of the
parent phase from which it takes the atoms B. Nucleation and phase transition becomes impossible for
particles consisting of fewer than N* atoms

N* = N*
n�xn/x0

Here, N*
n is the number of atoms in the critical nucleus of the new phase. Thus, the effect of de-

pletion of the parent phase on nucleation and growth in nanovolumes cannot be neglected. Furthermore,
there is a dependence of driving forces of transition and nucleation barrier on the size of particles and
compositions. 

The driving force of transformation and solubility limits is often determined by assuming that the
concentration of the parent phase is constant (that is, in accordance with the Gibbs method of geo metric
thermodynamics, by common tangent rule). That is far from being true for nanoparticles [17]. The gen-
eral peculiarity of nucleation is that the stoichiometry of the nucleus coincides neither with the initial
stoichiometry of the parent phase nor the stoichiometry of the new phase after transformation nor the
stoichiometry of the parent phase after separation. So we cannot use quantitatively the analysis based
on the usual method of geometrical thermodynamics (the rule of common tangent). Nonetheless, it is
helpful for understanding qualitatively how the configuration of the nanosystem influences the phase
diagram.

In order to show how to deal with the depletion effect, let us consider the following example. Let
us assume that a small isolated initially supersaturated particle of a given alloy is quenched into the two-
phase region. Then, a phase transition from the single-phase state to a two-phase one takes place. A sin-
gle nucleus of a new phase forms inside the particle, as shown in Fig. 1.

In the starting state, the Gibbs free energy of the nanoparticle is given by

G0(x0,N) = N�Δg0(x0,T) + γ (x0)�S0

where S0 is the surface area, Δg0(x0,T) is the Gibbs free energy density (energy per atom) of formation
of the compound, γ (x0)�S0 is the specific surface energy. The Gibbs free energy Gn(xn,Nn) of the two-
phase nanoparticle related to formation of a new nucleus is

Gn(xn,Nn) = Nn�Δgn(xn,T) + (N – Nn)�Δg0(xp,T) + γn(xn, xp)�Sn + γ0(xn, xp)�S
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Fig. 1 Representation of the particle of concentration x0 before transformation (a) and the same particle after the
transition (b): xp - concentration of ambient parent phase, xn - concentration of new-born phase.



Here, Nn is the number of atoms in a new phase nucleus, Δgn(xn,T) is the Gibbs free energy density of
the new phase, γn(xn, xp)�Sn is the specific surface energy of the new appeared phase, γ0(xn, xp)�S is the
specific surface energy of the old phase after the transition, Sn and S are the surface areas of the new-
born phase and old phase, respectively.

We see that the compositions in the new and old phases may be different. So one must take into
account the conservation of matter

x0�N = xp�(N − Nn) + xn�Nn,

The general thermodynamic equilibrium conditions for the Gibbs free energy function
ΔG(Nn,xn) = Gn(xn,Nn) – G0(x0,N) requires the investigation of the equations of the first and second de-
rivatives of ΔG(Nn,xn) with respect to the variables. The result of phase transition in the last ones de-
pends on size, interface energies, driving forces, initial composition, compositions of the new phases,
and temperature. The general behavior of the energy of nanosystems is represented in Fig. 3, where
ΔG(r)≡ΔG(Nn,xn) [18].

The effects of size on nucleation and phase transitions related to parent phase depletion were
shown also in previous works [17,18], in the cases of ideal solutions and intermediate phase, regular so-
lutions, parabolic approximations. The condition that the Gibbs free energy of the total system for new
two-phase configuration (11) is smaller than for starting single-phase (10) is defined as the transition
criterion (case 4 in Fig. 2).

Let us consider briefly these results related to the notion of phase diagram. The thermodynamic
analysis shows that, at the transition criterion, one can find the optimal compositions xp and xn. It turns
out that there are three limiting points:

1. initial composition as the limit solubility x0 of one component in another;
2. composition of the depleted ambient parent phase xp after the separation; and
3. composition of the new-born phase xn as the result of separation.
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Fig. 2 Qualitative dependence of Gibbs free energy ΔG(r) on the radius r of nucleus for: (i) different temperatures
T (decreasing from 1 to 5), provided other parameters are fixed, (ii) for different sizes radii (increasing from 1 to 5)
and fixed other parameters, (iii) for different initial compositions x0 (increasing from 1 to 5) at fixed other
parameters [18].



These three compositions are different because of the above-mentioned depletion and finite size
of the system, while, from the usual point of view and Gibbs method of geometric thermodynamics, the
solubility and equilibrium compositions after the transition in bulk material must coincide.
Qualitatively, the shift of phase diagrams of solid–liquid transition and depletion effect is shown (only
for liquidus for simplicity) in Fig. 3a. The case of phase separation (solid–solid phase transition) is rep-
resented in Fig. 3b.

Actually, phase diagrams in nanosystems are: (i) shifted in comparison to bulk infinite system,
and (ii) split as well, implying the reconsideration of such basic concepts as phase diagram, solubility
curve, etc. Let us discuss this (Fig. 4). Here, point P1 indicates the initial composition x0 before nucle-
ation, point P2 characterizes equilibrium composition xp after the transition, P3 shows optimal mole
fraction in the new phase xn. The conode links the points P1, P2, and P3 (P'1, P'2, and P'3 at some other
temperature) corresponding to states with the same Gibbs free energy value and to the leverage rule for
starting phase and new two-phase (solid–liquid) equilibrium. On Fig. 4b, the effect of size increase on
the phase and solubility diagrams shift for transforming system is indicated by vertical and horizontal
arrows. Thus, there is a need for some “new” language. We used our previous theoretical and other ex-
perimental results to modify the notions of “solubility”, “solidus”, and “liquidus” and outline the new
notions of “solubility diagram” and “nanophase diagram” and recently applied them to the case of
metallic Cu–Ni nanosystem [20]. We believe that this new understanding is only the first example.

It implies that new meanings and difficulties appear in the explanation of the state diagrams of a
nanosystem. Such notation as “phase diagram”, “solubility”, “solidus”, “liquidus”, and “vaporus” must
be reviewed in nanophysics.

M. WAUTELET AND A. S. SHIRINYAN

© 2009 IUPAC, Pure and Applied Chemistry 81, 1921–1930

1928

Fig. 3 Representation of size-dependent temperature-concentration diagram of a nanoparticle at fixed radius R of
a nanoparticle: (a) freezing and melting as an example of liquid–solid transition [19], (b) separation as a case of
solid–solid transition [17]. Point P1 indicates the initial composition x0 before nucleation, point P2 characterizes
equilibrium composition xp after the separation, P3 shows optimal mole fraction in the new phase xn. P1P2 is the
depletion in the parent phase.
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