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Abstract: The key features of the phonon-induced relaxation of electronic excitations in the
(7,0) zig-zag carbon nanotube (CNT) and the Pb16Se16 quantum dot (QD) are contrasted
using a time-domain ab initio density functional theory (DFT) simulation. Upon excitation
from the valence to the conduction band (CB), the electrons and holes nonradiatively decay
to the band-edge in both materials. The paper compares the electronic structure, optical spec-
tra, important phonon modes, and decay channels in the CNT and QD. The relaxation is
faster in the CNT than in the QD. In the PbSe QD, the electronic energy decays by coupling
to low-frequency acoustic modes. The decay is nonexponential, in agreement with non-
Lorentzian line-shapes observed in optical experiments. In contrast to the QD, the excitation
decay in the CNT occurs primarily via high-frequency optical modes. Even though the holes
have a higher density of states (DOS), they relax more slowly than the electrons, due to bet-
ter coupling to low-frequency vibrations. Further, the expected phonon bottleneck is not ob-
served in the QD, as rationalized by a high density of optically dark states. The same argu-
ment applies to the CNT. The computed results agree well with experimentally measured
ultrafast relaxation time-scales and provide a unique atomistic picture of the electron–phonon
relaxation processes.

Keywords: carbon nanotubes; quantum dots; electron–phonon interaction; time-domain den-
sity functional theory; nonadiabatic molecular dynamics; time-resolved spectroscopy; non-
radiative decay.

INTRODUCTION

The ability to manipulate fundamental characteristics of a system merely by altering its physical attrib-
utes holds huge promise. Two nanostructures receiving massive attention in this arena are quantum dots
(QDs) and carbon nanotubes (CNTs). In QDs, also known as artificial atoms, changes in the size, shape,
or topology of the nanostructure determine its unique properties [1]. The electronic structure of a CNT
is dictated by its diameter, length, and chiral angle [2]. The tuneability of the properties of these low-
dimensional structures has led to a wide range of applications. The new types of physical processes
available in QDs motivate their use in spintronics [3] and quantum computing [4]. QDs have been
incorporated into photovoltaic [5,6] devices, lasers [7], field-effect transistors [8], and biological sen-
sors. The remarkable structural, mechanical, and electronic properties of CNTs [2] have suggested a va-
riety of applications including nanoscale logic gates [10], quantum wires [11], and field-effect transis-
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tors [12]. Further, new types of nanoscale graphitic systems are being developed 13–16]. As synthesis
of these nanostructures becomes more advanced and the realization of applications moves closer,
knowledge of the details of the material’s response to optical stimulation is becoming ever more im-
portant. The excitation, charge, and phonon dynamics are intimately intertwined and evolve over a
range of time-scales and mechanisms.

The nonradiative relaxation of electrons and holes in QDs and CNTs is the focus of many exper-
imental [5–7,17–24] and theoretical [17,25–28] efforts, as it may have a profound effect on a variety of
applications. For instance, the charge–phonon interaction determines conductivity and energy loss in
CNT wires [11] and field-effect transistors [12], and the electron–phonon relaxation rates determine the
efficiency of QD-based lasers [7] and photovoltaic devices [5,6]. Further, detailed information on elec-
tron and hole relaxation is pivotal to such applications as CNT logic gates [10] and optical switches
[29]. QD application to quantum information processing [3,4] is limited by the phonon-induced de-
phasing of electrons [25] and spin [20]. Clearly, insight into the charge–phonon interaction in these
nanomaterials is extremely important.

CNTs have been extensively studied with time-resolved optical experiments [21–24], producing
varying and controversial results. Differences in experimental techniques (i.e., sample preparation, ex-
citation energy, or light intensity) have produced time-scales ranging from less than 100 fs [21,22] to
hundreds of fs [23] to more than a picosecond [24] for intraband relaxation. The electron-hole recom-
bination takes at least an order of magnitude longer than the intraband relaxation. Isolated CNTs relax
slower than other samples, such as CNT bundles and CNTs incorporated in polymer matrices. The par-
ticipation of both low-frequency radial-breathing modes (RBMs) and high-frequency longitudinal opti-
cal (LO) G-phonons in the charge carrier relaxation has been detected [21,30,31]. A thorough under-
standing of the experimental data requires time-domain modeling of the observed results at the atomic
level.

Optical studies of QDs have hardly been less intensive or thorough [5,6,17–20]. Among the semi-
conducting QDs studied recently, lead salts, particularly PbS and PbSe, have shown intriguing elec-
tronic and transport properties [32,33]. These lead salts have similar effective masses for their electrons
and holes due to nearly symmetric valence bands (VBs) and conduction bands (CBs) [34]. The conse-
quence of this, as well as small effective masses of the electrons and holes, is strong quantum confine-
ment effects [32], which induces quantization of bulk electron bands. This discrete electronic energy
spectrum has been predicted to have a large effect on the phonon–charge interaction. A phonon bottle-
neck is expected to greatly increase relaxation times in these QDs due to a mismatch between the en-
ergy available from the normal modes and the energy-gap between the electronic states [5]. This phonon
bottleneck coupled with low rates of Auger-type cooling due to the symmetric VB and CB is thought
to favor carrier multiplication in PbSe and PbS QDs. Time-resolved experiments have observed very
high quantum yields [6] via the formation of multiple electron-hole pairs per absorbed photon. Further
studies showed ultrafast charge–phonon relaxation [19,35], invalidating the phonon bottleneck theory
in PbS and PbSe QDs and postulating that the bottleneck was not necessary for efficient carrier multi-
plication. Carrier multiplication has great potential for increasing the efficiency of QD photovoltaic
cells, as energy normally lost to phonons is instead transferred to another electron-hole pair [5].
Understanding the details of its mechanism and that of the other competing decay channels requires fur-
ther investigation. Most current theoretical approaches focus on the QD structure and spectra
[17,25,36,37], however, real-time simulations of the charge–phonon relaxation are required to elucidate
many of the fine details.

The current work analyzes the results of the time-domain ab initio simulations in order to com-
pare and contrast the phonon-mediated electron and hole relaxation dynamics in a CNT and a QD. The
simulated dynamics agree with the experimental time-scales and expose a number of surprising aspects
of the relaxation processes. The analysis establishes that the electron and hole relaxation pathways are
common to the CNT and QD, however, the electronic states and phonon modes facilitating energy dis-
sipation are different in the two materials. In CNTs, the holes relax more slowly than the electrons and
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require a Gaussian and exponential fit to their energy decay, while electrons are well fit by pure expo-
nential. Both electrons and holes couple to the high-frequency C–C stretching optical modes. However,
the electrons couple to the optical modes more strongly than the holes, while the latter can also couple
to lower-energy acoustic modes. In QDs, the electron and hole relaxation is nearly symmetric, with no
observation of a phonon bottleneck. This is attributed to the relatively high density of states (DOS).
Though not all states are optically active, most of them facilitate the phonon-induced relaxation. The
slight asymmetry in the electron and hole band structure is sufficient to allow symmetry-forbidden tran-
sitions that can be detected in the optical spectra. Both electrons and holes in the QD couple primarily
to low-frequency acoustic modes. The relaxation proceeds through multiple states at intermediate en-
ergies and is notably nonexponential, agreeing with the non-Lorentzian spectral line-shapes [17]. The
holes decay slightly faster than the electrons due to their higher DOS. The difference in the hole and
electron relaxation times is insignificant, such that Auger energy exchange between the charge carriers
cannot speed up the overall relaxation. This is in contrast, for instance, to CdSe QDs, in which holes
relax significantly faster than electrons, and electrons are able to lose energy through holes by Auger
processes [18]. The relaxation is several times slower than the observed carrier multiplication time
[5,6].

The paper is constructed as follows. The next section presents the two essential and closely inter-
twined theories that form the foundation for the atomistic simulation of the excitation dynamics in the
nanoscale materials. These are the time-dependent density functional theory (TDDFT) and the nonadi-
abatic molecular dynamics (NAMD), which determine the evolution of the electronic and vibrational
degrees of freedom, respectively. Following the simulation details, the results section comprises three
subsections, focusing on the electronic structure and spectra of the CNT and QD, the phonon modes
that couple to the electronic subsystem, and the details of the electron–phonon relaxation dynamics. The
paper concludes with a discussion and summary of the key results, emphasizing the similarities and dif-
ferences of the two materials.

THEORY

The time-domain atomistic ab initio simulation of the charge–phonon relaxation dynamics was made
possible by the recent implementation [38] of trajectory surface hopping (TSH) [39–41] within time-
dependent Kohn–Sham (KS) theory [42–44]. TSH is a fully atomistic NAMD approach and is one of
the most common NAMD schemes [38,45–47]. It satisfies detailed balance [41] and can be viewed as
a quantum master equation for electron dynamics, in which the state-to-state transition rates depend on
time via coupling to explicit phonon dynamics.

Time-dependent density functional theory

In the KS representation [42–44] of TDDFT, the electron density is written as

(1)

Ne is the number of electrons in the system, and ϕp(x, t) represents the single-electron KS orbitals.
Application of the TD variational principle to the KS energy determines the evolution of the coeffi-
cients, ϕp(x, t).

(2)
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The right-hand side of eq. 2 gives the kinetic energy of noninteracting electrons, the electron-nuclear
attraction, the Coulomb repulsion of the density ρ(x, t), and the exchange-correlation energy functional
that accounts for the residual many-body interactions. Application of the variational principle leads to
a system of single-particle equations [42–44]

(3)

where the Hamiltonian H depends on the KS orbitals. This simulation utilizes the generalized gradient
approximation (GGA) [48], where Exc depends on both the density and its gradient, and the
Hamiltonian is written as

(4)

Expanding the time-dependent ϕp(x, t) in the adiabatic KS orbitals ϕk (x; R)

(5)

the TDDFT eq. 3 transforms into an equation of motion for the coefficients

(6)

The NA coupling

(7)

arises from the dependence of the adiabatic KS orbitals on the nuclear trajectory, and is computed most
easily from the right-hand side of eq. 7 [40].

The time-dependence in TDDFT for electron-nuclear dynamics is due to ionic motion, making
VN(x) ≡ VN [x; R(t)] dependent on time through the nuclear trajectory R(t). The evolution of R(t) con-
stitutes the quantum back-reaction problem. TSH uses a stochastic element that creates both classical
trajectory branching [39] and detailed balance [41]. The former mimics the ability of quantum me-
chanical wave-packets to split and evolve in correlation with different electronic states, an area of in-
tense interest [49]. The latter is essential for relaxation and leads to thermodynamic equilibrium.

Fewest switches surface hopping in the KOHN–SHAM representation

TSH propagates the electronic subsystem using a set of basis states. The classical nuclear trajectories
correlate with these states via hops between states. It has been shown that the adiabatic basis is prefer-
able for TSH [39–41]. The adiabatic states are eigenstates of the Hamiltonian eq. 4. While the adiabatic
forces for ground- and excited-electronic states as well as the NA coupling between them can be cal-
culated in TDDFT [42–44], the NA coupling between excited electronic states has not been rigorously
defined yet. TSH was performed in the zeroth order adiabatic basis in ref. [38], using Slater determi-
nants formed of adiabatic KS orbitals. In the present study, there is a further approximation by going
from the many-particle to the single-particle representation. TSH is performed in the basis of the sin-
gle-particle adiabatic KS orbitals. As the electronic structure of QDs is well represented by the inde-
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pendent electron and hole picture, it is advantageous to use the simplicity of the single-particle picture.
Quantum confinement effects in small-diameter QDs ensure that the electron and hole kinetic energies
dominate the electrostatic interaction, avoiding strongly bound excitons. As a result, the basic effective
mass theory provides a good description of the QD electronic structure, validating our simulation.
Quantum confinement effects are particularly strong in PbSe and are evident in QDs whose size is com-
parable to or smaller than the PbSe exciton localization length d = 46 nm [32].

In CNTs, optical excitations can lead to exciton formation due to its quasi-1D structure. Excitons
have been shown to be fairly strongly bound [26,50]. However, intraband relaxation occurs rapidly in
CNTs, and there is evidence that exciton formation does not occur until the hot electrons and holes have
cooled [22]. Further, electron-hole correlations are implicitly included in TDDFT, which is manifest in
the asymmetric DOS of a CNT. Thus, in the time-scale of our simulation, the single-particle represen-
tation should be valid for CNTs as well.

TSH prescribes a probability for transitions or “hopping” between electronic states. The proba-
bility is explicitly time-dependent as the motions of the ions induce coupling between electronic states.
In the fewest switches TSH [39], the probability to hop within the time interval dt between states m and
n is defined as

(8)

where

(9)

Here, cm and cn are the coefficients evolving according to eq. 6. The transition probabilities directly de-
pend on the NA coupling dmn � R

�
defined in eq. 7. If the calculated probability is negative, the hop is

denied. Physically, this feature minimizes the number of hops by restricting transitions from state m to
state n to events where the electronic occupation of state m decreases and the occupation of state n in-
creases. To conserve the total electron-nuclear energy after a hop and include back-reaction from the
electronic system to the ionic, the nuclear velocities are rescaled [39], along the direction of the elec-
tronic component of the NA coupling dmn. In order to avoid unphysical transitions predicted by eq. 8,
all NA transitions to higher-energy electronic states are checked against the kinetic energy available in
the nuclear coordinates along the direction of the NA coupling. If the kinetic energy is insufficient to
accommodate the increase in the electronic energy, the hop is rejected. The velocity-rescaling and hop-
rejection give detailed balance between upward and downward transitions [41].

The current, simplified implementation of TSH assumes that energy exchanged between the elec-
tronic and select nuclear degrees of freedom is rapidly distributed among all nuclear modes. Under this
assumption, the distribution of energy in the nuclear mode directed along the NA coupling dmn is
Boltzmann at all times. The velocity-rescaling plus hop-rejection is then replaced by multiplying the
probability, eq. 8, for transitions upward in energy by the Boltzmann factor. This elimination of the ve-
locity-rescaling gives great computational savings, allowing one to use a predetermined nuclear trajec-
tory to evolve the electronic subsystem.

To summarize, a simplified version of fewest switches TSH is performed in the single-particle
TDKS representation, with the hop-rejection replaced by multiplication of the TSH probability upward
in energy by the Boltzmann factor. The NA electronic evolution, eq. 6, is evaluated using the ground-
state nuclear trajectory. This treatment of the electron and hole relaxation creates a sophisticated ver-
sion of the quantum master equation with explicitly time-dependent transition probabilities that respond
to nuclear evolution and give the correct short- [51,52] and long-time dynamics [39–41].
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Simulation details

The VASP [53] DFT package was used to generate the nuclear trajectories, allowing the electronic evo-
lution via TSH in the TDKS basis [38]. The Perdew-Wang GGA [48], Vanderbilt ultrasoft pseudo-
potentials [54], periodic boundary conditions, and converged plane-wave basis sets are employed in the
simulation.

The structure of the nanotube and QD and the dimension of the simulation cell along the tube are
optimized to obtain the minimum energy structure. 8 Å of vacuum is added to the direction perpen-
dicular to the nanotube axis and in all directions of the QD cell to avoid nonphysical interactions. After
heating the system to 300 K by repeated velocity rescaling, a 1.5 ps (CNT) or 4 ps (QD) microcanonical
trajectory is run in the ground electronic state with a 1 fs time step, and 400 initial conditions are sam-
pled for the relaxation dynamics. The electron evolution is done on a 10–3 fs time-scale. The transition
dipole moments and oscillator strengths (OSs) for excitations between KS orbitals were computed and
used both to generate the optical absorption spectrum and to pick the most optically active excitations
for the initial conditions of the NAMD runs.

The (7,0) nanotube is the smallest semiconducting CNT [2]. It is an achiral zig-zag CNT with chi-
ral vector of 0 degrees and has a diameter of 5.5 ~Å. This tube has been chosen to minimize the size of
the electronic basis and simulation cell. Constructing the simulation cell from four CNT unit cells and
112 carbon atoms (see Fig. 1a) expands the available phonon spectrum [55].

The QD was constructed on a zinc-blend lattice of 16 atoms of Pb and 16 atoms of Se with bulk
Pb–Se bond lengths. It was then relaxed to its lowest energy configuration at zero temperature. This re-
laxed configuration was heated to 300 K by continuous velocity-rescaling and used for further dynam-
ics calculations. Figure 1d compares the relaxed atomic geometries at zero and at room temperatures
with the initial bulk structure. Significant structural deviation of the QD from the bulk was observed
even at zero temperature. Temperature-induced fluctuations further distort the dot, but do not cause sur-
face reorganization or bond reconnectivity, Fig. 1d. The diameter of the roughly spherical 32-atom PbSe
nanocrystal is about 1 nm. Since PbSe is strongly ionic, its electronic properties are not strongly influ-
enced by the surface structure [32], and the surface was not passivated, creating substantial computa-
tional savings.
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RESULTS

The implementation of time-domain ab initio simulation of charge–phonon processes allows for the de-
tailed study of the relaxation dynamics that was not previously possible. Traditional DFT studies pro-
vided the optimized structures and optical spectrum of the CNT and QD, respectively. Our NAMD ap-
proach directly probes the relaxation mechanisms, identifies the phonon modes that couple the adiabatic
states, and allows for direct comparison to time-resolved experimental data.
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Fig. 1 Schematic of the nanostructures used in the simulation and partial charge densities of important states. (a)
The 112-atom simulation cell of the (7,0) CNT is comprised of 4 units cells. Partial charge densities of the
important initial states for (b) electrons and (c) holes. The relaxation of the 32-atom PbSe QD from bulk geometry
at 0 and 300 K is shown in (d), Pb atoms are black and Se atoms are gray. In (e), the charge densities of the lowest
electronic states are shown. The states are classified by their overall symmetry.



Electronic structure and optical spectra

The electronic DOS of the CNT and QD are presented in Fig. 2. The CNT has an asymmetric DOS, as
opposed to the symmetric DOS of the tight-binding model [2]. Van Hove singularities (vHS), due to
quantum confinement around the circumference of the nanotube are visible both above and below the
Fermi energy. Our simulation models ultrafast spectroscopic experiments where an electron is excited
from the second vHS below the Fermi level to the second vHS above the Fermi level (2'-2). These tran-
sitions are strongly optically active and are modeled by computing the OS. Over a third of all excita-
tions occur between two pairs of electron and hole states. The partial charge densities of these impor-
tant states are shown in Figs. 1b and 1c. Note the much smoother density of the hole states (Fig. 1c).
The relaxation of the electron and hole is then monitored as it moves through the DOS to the band-edge.
The calculated optical spectrum of the (7,0) CNT is shown in Fig. 3a. The three large peaks correspond
to transitions between vHS in the VB to vHS in the CB as labeled. The electron-hole correlation effects
included in DFT, together with the high amount of strain due to the narrow diameter of this nanotube,
allow for large OS of the 1'-2 and 3'-2 transitions.

The partial charge densities of the first four electronic states above the band-edge of the PbSe QD
are shown in Fig. 1e. The symmetries of these states are roughly S- and P-type, though strongly modi-
fied by the atomic structure. This agrees with effective mass theory [36,37], which represents the elec-
tron and hole wave-functions as products of Bloch functions that vary on the atomistic level. It also in-
cludes S-, P-, D-, etc. envelope functions that encompass the whole QD and are eigenstates of a particle
in a spherical well. The S- and P-symmetries are less pronounced in the corresponding hole states at the
edge of the VB.

The variation of the DOS of the PbSe cluster over a 3.5 ps time interval is presented in Fig. 2b.
The calculated average energy-gap of the 1 nm QD is 1.4 eV, which follows the expected trend of in-
creasing band-gap with decreasing QD diameter. The calculated gap exceeds the 1.25 eV gap observed
experimentally for a 1.4 nm QD [19]. The gap is likely underestimated, as is common in DFT. The elec-
tronic structure and optical properties of bulk lead salts computed with a similar approach agree well
with the experimental results [56].

The shape of the calculated DOS and the OS spectrum, Figs. 2b and 3b, follow the experimental
data [19,34,35] and the ab initio tight-binding results [57]. The three main peaks on each side of the gap
can be attributed to the expected transitions between the Se (Sh), Pe (Ph), and De (Dh) levels of electrons
(holes). The separation of the S-state from the main manifold is more pronounced with the electrons
than the holes, the latter having a denser distribution of states. The difference in the electron and hole
DOS for PbSe QDs is not nearly as pronounced as in other QDs, for instance, CdSe QDs [17,18]. The
arrows in Fig. 2b indicate the energies of electron and hole excitations, which are set to match three
times the QD energy-gap in correspondence with experiment [6]. The arrow in Fig. 3b indicates the ini-
tial excited states, which were chosen based on the transition dipole moment for a given nuclear con-
figuration. The excitation energy was chosen to match experiment at three times the band-gap. The sim-
ilarity in the electron and hole state structure results in selection rules that favor symmetric
photoexcitations across the gap [32].

Figure 3b shows the calculated optical absorption spectrum of the PbSe QD. The strongest peaks
in the spectrum correspond to symmetric transitions (e.g., S–S and P–P), as expected from the selection
rules. The slight asymmetry in the electron and hole DOS, Fig. 2b, is sufficient to allow asymmetric
transitions (e.g., S–P) that create optical bands. The asymmetric transitions can be less pronounced in
larger clusters, since the anisotropy of the small Pb16Se16 cluster shape and its deviation from the bulk
geometry (Fig. 1d), can have a strong effect on the broken selection rules.
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Phonon modes

The difference in the dimensionality, bonding topology, and atomic masses of CNTs and QDs lead to
very different vibrational spectra of the nanostructures, Fig. 4. Figure 4a shows the Fourier transform
(FT) of the energy fluctuations of the two most important initial CNT electron and hole states. The NA
coupling is directly proportional to the second derivative of the energy along the nuclear trajectory [58].
Therefore, the vibrational modes that regulate the oscillations in the energy levels create the largest cou-
pling.

In CNTs, two modes generally domintate the vibrations: the low-frequency acoustic RBM and the
high-frequency optical G-mode. The RBM corresponds to the atoms in the CNT collectively moving
inwards and outwards and is found near 300 cm–1. The G-mode represents C–C stretches and is around
1600 cm–1. From the calculated vibrational structure, the CB states couple strongly to higher-energy
modes, particularly the G-mode. The VB states also couple to high-energy modes, however, not as

© 2008 IUPAC, Pure and Applied Chemistry 80, 1433–1448
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Fig. 2 Evolution of the DOS with time for (a) CNT and (b) QD. The arrows show the energies of the initial states,
chosen to model experiment and representing the most optically active transitions. In both the QD and CNT, the
holes at negative energies have a denser manifold of states than the electrons at positive energies.

Fig. 3 Calculated absorption spectra of (a) CNT and (b) QD. In both systems, the strongest transitions are those
between states of the same symmetry. Due to the small diameters of the CNT and QD, however, transitions
typically forbidden by symmetry have substantial OS.



strongly, and they couple to the lower-energy acoustic phonons such as the RBM. This stronger cou-
pling to the RBM can be rationalized by the energies of the states. The VB (hole) states are lower-en-
ergy and thus have fewer nodes. These “smoother” charge densities are then more strongly influenced
by the lower-energy acoustic modes, which also have fewer nodes than the optical modes. The CB states
are higher in energy, have more nodes, and couple more strongly to the optical phonons that also have
more nodes.

Figure 4b shows the phonon modes that influence relaxation in PbSe QDs. The figure depicts the
FTs of the energies of highest occupied and lowest unoccupied molecular orbitals (HOMO/LUMO) and
the most optically active electron and hole states. In a QD, the vibrational spectrum has contributions
from spheroidal acoustic phonons and LO phonons. Our simulation agrees well with experiment [32]
that the spheroidal acoustic phonons with frequencies around 100 cm–1 and below dominate the elec-
tron and hole dynamics. The LO phonons around 200 cm–1 also effect the energy fluctuations, however
with much smaller amplitude. The acoustic modes modulate the QD size, which has a profound effect
on the state energies and wave-functions. The optical phonons are local stretching modes, and these
atomic displacements tend to average out over the whole QD, creating smaller NA coupling.

In contrast to the CNT, the amplitudes and frequencies of the active phonon modes are quite sim-
ilar for both the electron and holes of the QD. This suggests that the charge relaxation dynamics should
be similar for both electrons and holes. The electrons have a slightly broader influence spectrum with
more high-frequency contributions than the holes. As the electron states represent higher-energy KS or-
bitals, which contain more nodes, they better couple with the higher-frequency LO vibrations.
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Fig. 4 Spectra of the phonon modes that couple to the electronic subsystem in (a) CNT and (b) QD. For the CNT,
the electrons couple primarily to high-energy optical phonons. Holes couple to the optical phonons as well,
however, they also strongly couple to the lower-energy acoustic modes. States shown are the most common initial
VB and CB states. For the QD, both electrons and holes couple more strongly to the acoustic phonons around
100 cm–1 and below. Electrons couple slight better to the higher-energy optical phonons near 200 cm–1.



Phonon-induced electronic relaxation

Relaxation of the electrons and holes through the DOS of the CNT and QD are shown in Figs. 5a and
5b, respectively. The decay was fit using a Gaussian plus exponential equation

(10)

and the results are shown in Tables 1 and 2. Surprisingly, for the CNT, the holes relax slower than the
electrons despite the greater DOS for the holes (Fig. 5a). As shown, the electron energy decay can be
fit well with a pure exponential, while the hole decay has a much stronger Gaussian component
(Table 1). The data is in good agreement with experimental time-scales [23], especially considering our
simulation is in vacuum and experiments involve interactions with outside environments [59], espe-
cially complex solvation [60] or incorporation into polymer matrices. Interaction with solvent can
broaden spectral lines and provide or enhance vibrational decay channels [61]. The Gaussian relaxation
observed with holes at short times is associated with coherent quantum dynamics [51,62] that results in
delocalization of holes over their dense state manifold. The lower density of electronic states restricts
the amplitude of the coherent dynamics. Holes starting closer to the Fermi energy have smaller DOS
and relax more slowly, in agreement with the experimental data [23]. This Gaussian and exponential
decay of the holes is rationalized by its coupling to both the RBM and G-mode (Fig. 4a). The electron’s
single component decay is due to its lack of coupling to the RBM or other lower-frequency acoustic
modes.

© 2008 IUPAC, Pure and Applied Chemistry 80, 1433–1448

Carbon nanotube vs. quantum dot 1443

E t E E A t Ai f( ) = −( ) − ( )





 + −( )G G Gexp . / ex0 5 1

2τ pp / exp−















+t E fτ

Fig. 5 Evolution of the electrons (positive energies) and holes (negative energies) with time in (a) (7,0) CNT and
(b) PbSe QD. The initial Gaussian component of the holes in the CNT is visible as is the pure exponential decay
of the electrons. In the QD, the electrons and holes relax nearly symmetrically until they are near the band-edge.
The electrons take slightly longer due to a smaller DOS. The larger splitting between the S- and P-symmetry states
in the CB keeps the electrons from relaxing to the LUMO in the time-scale of this simulation.



Table 1 Parameters of the Gaussian plus
exponential fits, eq. 10, to the average electron
and hole energy decays in the CNT, Fig. 4a.

τG, ps τexp, ps AG

Electrons (squares) 0.20 0.32 0.20
Electrons (squares)a – 0.38 0.00
Holes (circles) 0.28 0.71 0.65
Holes (pluses) 0.41 0.94 0.55

aThe purely exponential fit line (not shown in Fig. 4a) is
very close to the Gaussian plus exponential fit.

Table 2 Parameters of the Gaussian plus
exponential fit, eq. 10, to the average electron and
hole energies in the QD, Fig. 4b.

τG, ps τexp, ps AG

Holes 0.45 2.7 0.70
Electrons 0.80 2.7 0.75

The fit of the energy relaxation of the QD electrons and holes shown in Fig. 5b is not exponen-
tial, which agrees with the strongly non-Lorentzian line-shapes observed experimentally [17]. Note that
standard master-equation treatments [63] with constant transition rates give exponential relaxation. The
nonexponential profile of the energy decay present in the current simulation is due to the explicit time-
dependence of the relaxation rates provided by TSH [38–41]. TSH correctly represents the vanishing
time-derivative of the quantum mechanical transition probability at zero time, which is manifested in
the quantum-Zeno effect [51,52] and gives the Gaussian relaxation component at early times.

This initial Gaussian component of the QD decay accounts for 70 % of the hole and 75 % of the
electron relaxation amplitudes. It dominates the exponential portion in both particles. The DOS and ac-
tive mode frequencies both influence the relaxation rate and profile. The large DOS promotes faster re-
laxation, while the mode frequencies determine the time-scale at which the phonons are able to inter-
act with the charge carriers. The electrons have a smaller DOS than the holes, but couple slightly better
to higher-energy phonons. In this case, however, the DOS is more important, as the holes decay more
quickly than the electrons. The calculated Gaussian and exponential components (Table 2) of the
charge–phonon relaxation are in good agreement with experiment. The measured results are sub-
picosecond to picosecond times, and become faster for smaller QDs [19,35]. The reported results indi-
cate that the phonon bottleneck to the electron and hole relaxation occurs only at the last stages of the
simulated relaxation, and even then mostly for the electrons due to the pronounced energy difference
between the S- and P-symmetry states. The lack of the bottleneck in the initial relaxation may be ra-
tionalized via the relatively dense spacing of the electron and hole states at higher energies. Except for
the two lowest-energy states of the CB, the typical spacing between the photoexcited state and its near-
est neighbors nearly matches the phonon frequencies.

DISCUSSION AND CONCLUSIONS

The phonon-mediated electron and hole dynamics in the CNT and the QD simulated by ab initio
TDDFT provides a unique comparison of the excitation decay in these materials in real time and at the
atomistic level of detail. The calculated relaxation time-scales agree with the direct experimental data
[19,21–24,35] showing subpicosecond to several picosecond relaxation that becomes faster in smaller
QDs and subpicosecond relaxation times in a CNT that depend on the excitation energy. In our simu-
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lation of a small dot, the bulk of the relaxation occurs within 0.45–0.8 ps. The minor 2.7 ps component
seen once the particle has neared the band-edge is due to the small size of the simulated QD, which cre-
ates gaps between the first and second band-edge states, particularly for the electron. The simulated
0.45–0.8 ps relaxation also agrees with the experimental detection of charge carrier multiplication that
occurs within 0.25 ps and successfully competes with the relaxation [6]. In CNTs, the electron relaxes
to the band-edge exponentially within 200–300 fs, while the hole takes a 300–400 fs Gaussian and a
700–900 fs exponential decay of about equal importance.

The atomistic picture of the PbSe QDs provided by the simulation explains the seemingly con-
tradictory experimental observations of the large line spacing in the optical spectra of QDs and the ab-
sence of the phonon bottleneck. The spacing between the state energies nearly matches the phonon fre-
quencies, in contrast to the common belief that the quantum confinement results in strong quantization
of electronic energy levels in QDs. The optical absorption spectrum displays discrete bands that may be
attributed to S–S, P–P transitions as described in the effective mass theory [36,37], with each band rep-
resenting multiple excitations between electron and hole states. The optical selection rules, which are
clearly defined in the effective mass approach, are also seen in the ab initio calculation, in which most
of the states are weakly optically active. The optical selection rules are determined by the x, y, and z
light polarization components. The electron-phonon coupling selection rules, however, are much more
relaxed. Single or multiple phonons of various symmetries couple nearly all of the electronic states,
which facilitates the nonradiative relaxation. While not all states are equally optically active, the ma-
jority of them take part in the relaxation due to the relaxed electron-phonon selection rules.

The small asymmetry in the DOS and the slight deviation from the bulk geometry is sufficient to
break the optical selection rules that require symmetric transitions (e.g., S–S and P–P). The excitations
between different symmetry states, such as S–P and P–S, in the VB and CB create additional absorp-
tions in the optical spectrum. These excitations are not as strong as the symmetric excitations, however,
they can be detected experimentally. The S–P and P–S transitions occur at different energies owing to
the larger energy spacing between the states in the CB. The higher hole DOS provides more relaxation
pathways, and the holes relax slightly faster than the electrons to the band-edge. However, since the
DOS is only slightly larger and the electrons and holes couple to very similar phonons, the slight dif-
ference in the electron and hole relaxation time-scales renders inefficient the hole-assisted Auger re-
laxation pathway, in which, first, the electron energy is transfered to the hole and, second, the hole rap-
idly loses its energy. The highly nonexponential profile of simulated energy decay agrees with the
strongly non-Lorentzian spectral line-shapes observed experimentally.

The calculated relaxation of the CNT charge carriers support the picture where the photoexcited
state scatters into the continuum of hot electron and hole pairs, which relax by phonon emission [22].
The absorption spectra of the CNT is dominated by excitons that arise due to confinement of the wave-
function along the axis of the tube. However, the intermediate bands, which represent states that are de-
localized along the length of the nanotube, contribute greatly to the nonradiative relaxation of electrons
and holes. These bands provide a channel, through which the charged particles relax to the band-edge.
In this sense, the phonon-induced electronic relaxation is similar in both CNT and QD. The relatively
few optically active excited states decay through the multitude of dark states, and the wide energy spac-
ing between the optically active states does not create a phonon bottleneck.

The G-type LO phonons with frequencies around 1500 cm–1 provide the fastest relaxation path-
way for both electrons and holes in the CNT. The G-mode and RBM are most effective in modulating
the state energies, thereby creating avoided crossings between the states and promoting the NA transi-
tions that are responsible for the relaxation. The LO phonons dominate both electron and hole relax-
ation, though the hole relaxation is influenced greatly by its greater DOS and coupling to the RBM. The
involvement of RBM in the CNT charge carrier dynamics has been detected by both current/voltage
[30] and spectroscopic [21] measurements. The coupling of the electronic system to the LO phonons
has been detected in the Raman spectra [31]. The reported ab initio NA dynamics also agree with the
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tight-binding electronic structure calculations, in which the electron-phonon scattering was dominated
by the RBM and LO phonons in two narrow frequency regions [64].

The relaxation in this simulation occurs through NA charge–phonon interactions. In QDs, charge
carriers interact more strongly with acoustic than with optical phonons. This is because the NA cou-
pling is directly related to the second derivative of the energy, and the latter is more sensitive to acoustic
modes that modulate the shape and size of the dot and less sensitive to optical modes, whose effect on
the energy tends to average out over the multiple bulk semiconductor unit cells that form the QD. In
CNTs, the charge carriers interact more strongly with optical phonons. The optical phonons are higher-
energy than in QDs, have a greater effect on the energy fluctuations of the bands, and allow larger
amounts of electronic energy to be lost to heat. In both QDs and CNTs, electrons interact better with
optical modes, as can be rationalized by the better match between the nodal structure of the CB states
and optical modes. The lower-energy VB states that support holes have fewer nodes than the CB states
that support electrons; similarly, RBMs and other acoustic phonons have fewer nodes than LO phonons.
As a result, acoustic phonons couple better to the VB states. The stronger coupling in CNTs to the
lower-frequency modes explains why the hole relaxation is slower than the electron relaxation in CNTs,
even though holes have a higher DOS. In QDs, however, the VB and CB are more symmetric, thus, the
higher DOS for holes is more important. Further, in QDs the energy difference between acoustic and
optical phonons is only about 100 cm–1. In CNTs, however, the energy difference is an order of mag-
nitude larger at around 1000 cm–1.

The computational expense limits the simulations to a small 32-atom PbSe QD and a 112-atom,
small-diameter CNT. The small QD deviates from the bulk geometry, yet, gives a good representation
of larger QDs. The 32-atom cluster preserves the bulk topology and is not an amorphous collection of
atoms. Therefore, it belongs to the same type of material as the larger dots. Although the surface re-
laxation and the shape asymmetry should be less pronounced in larger QDs, the high-state degeneracy
of an ideal spherical potential is still lifted in larger dots due to disorder generated by thermally acti-
vated phonon modes. The (7,0) CNT does suffer from strain induced by its small diameter. This is
shown via a shift in the G-mode from larger-diameter tubes. Still, the general trends in coupling the
DOS are preserved in the carbon lattice and should be transferable to larger CNTs.

In summary, the time-domain ab initio simulations generate valuable insights into the properties
of these nanostructures. In the CNT, the key observations include the slower, Gaussian, and exponen-
tial time-scale hole relaxation and the faster single-component electron dynamics. Despite the smaller-
electronic DOS, the electrons relax faster due to the coupling with high-frequency modes. This differ-
ence in relaxation between electrons and holes may increase the efficiency of Auger-type relaxation
pathways. We further demonstrate that the relaxation rate increases with excitation energy, highlight the
importance of the high-frequency LO phonons, and show the substantial contribution of RBM to hole,
but not electron relaxation. In QDs, we reconcile the seemingly contradicting observations of wide op-
tical line spacing and no phonon bottleneck to the relaxation, and rationalize why the highly efficient
carrier multiplication is possible in PbSe nanocrystals despite the absence of the phonon bottleneck.
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