Pure Appl. Chem., Vol. 80, No. 4, pp. 695–706, 2008. doi:10.1351/pac200880040695 © 2008 IUPAC

Heterocycles based on the chemistry of alkylidenecyclopropanes and (aza)cyclopropenes*

Shengming Ma

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

Abstract: Alkylidenecyclopropyl, cyclopropenyl, or azacyclocyclopropenyl ketones or carboxylates have been demonstrated to be versatile starting materials for the synthesis of oxygen- and/or nitrogen-containing heterocycles. The reactivities and regioselectivities may be nicely controlled by subtle choice of the catalysts and reaction condition parameters.

Keywords: heterocycles; ring-opening cyclization; alkylidenecyclopropanes; cyclopropenes; catalysis.

Due to the demonstrated synthetic power of allenes [1], we started to show interest in the reactivity of alkylidenecyclopropanes and cyclopropenes [2], which may be considered as analogs of allenes. Due to the strain of the three-membered ring in alkylidenecyclopropanes, their reactivity should be quite high. In principle, there should be two possible cleavages of the C–C single bonds of the three-membered ring: proximal and distal cleavages (Scheme 1). In addition, the C=C double bond may also be involved in triggering the ring-opening reaction. For example, oxidative addition of the C–C single bond to a low-valent metallic species and hydro- or carbometallation-induced C–C bond cleavage have been demonstrated by many chemists [3,4].

Scheme 1

In 2002, we started to study the reaction initiated by halometallation of the C=C bonds of alkylidenecyclopropanes with a carbonyl group connected to the three-membered ring. After some screening, it was observed that the $PdCl_2(MeCN)_2$ -catalyzed sequence of ring-opening and cyclization

^{*}Paper based on a presentation at the 21st International Congress for Heterocyclic Chemistry (ICHC 21), 15–20 July 2007, Sydney, Australia. Other presentations are published in this issue, pp. 669–805.

of 2-alkylidenecyclopropanyl ketones **1** in acetone at room temperature afforded 4*H*-pyran derivatives **2** (Scheme 2) [5].

Scheme 2

With R^2 being an electron-withdrawing group, the relatively more electron-rich C=C bond in such products may be hydroborated followed by oxidation or hydrogenated to afford hydroxy-substituted 4*H*-pyrans **3** and 2,3-dihydro-4*H*-pyrans **4**, respectively (Scheme 3) [6].

Scheme 3

According to mechanistic studies, it was believed that the reaction may be triggered by the regioselective chloropalladation forming intermediate **M1**, which was followed by the cleavage of the relatively electron-deficient proximal C–C single bond to afford intermediate **M2**. Subsequent isomerization may produce palladium enolate intermediate **M3**. Insertion of the C=C bond bearing the chlorine atom into the O–Pd bond in **M3** would produce six-membered intermediate **M4**, which upon β -dehydropalladation would afford 3-chloro-4*H*-pyran **M5**. The insertion reaction of the newly formed C=C bond with the in situ generated HPdCl species with a reversed regioselectivity would afford the 1-metallated intermediate **M6**, which may easily undergo β -dehalopalladation to form the final products 4*H*-pyran **2** with the regeneration of the catalyst PdCl₂. Of course, the α -dehalopalladation [7] of **M4** forming a carbene intermediate **M7** may also afford **2** by a regioselective 1,2-H shift (Scheme 4). Oxypalladation of the **1**-PdCl₂ coordination complex may also be a possible pathway to rationalize this conversion.

In all these reactions, the formation of 2*H*-pyrans was not observed. However, for a substrate with a fully substituted C=C bond, for example, **5**, its $PdCl_2(MeCN)_2$ -catalyzed reaction in benzene afforded 2*H*-pyran **6** in 96 % yield (Scheme 5) [6].

Scheme 5

Further studies indicated that in the presence of 5 mol % NaI in refluxing acetone, the distal C–C bond of the three-membered ring may be cleaved highly selectively to afford 3-alkylidene-2,3-dihydro-furans 7 obviously along a different reaction pathway (Scheme 6) [6].

Scheme 6

With 1 equiv of NaI, prolonged reaction time, or treatment of the crude reaction products with 3N HCl, 2,3,4-trisubstituted furans 8 may be formed by the aromatization of 3-alkylidene-2,3-dihydrofurans 7 (Scheme 7) [6].

Scheme 7

The formation of the products may be explained by the attack of I^- at the terminal position of the C=C bond or the non-substituted carbon atom of the three-membered ring to afford a metal enolate intermediate **M9** or **M10** bearing an allylic halide moiety, which may undergo intramolecular nucleophilic substitution to afford 3-alkylidene-2,3-dihydrofurans **7**. Upon isomerization of the exo-cyclic double bond, 2,3,4-trisubstituted furans **8** would be formed (Scheme 8).

Scheme 8

Heterocycles

However, a catalyst with a combination of $Pd_2(dba)_3 \cdot CHCl_3$ and a phosphine ligand may promote the formation of the new tetrasubstituted furan **9**a, along with the trisubstituted furan **8a** from **1a** in MeCN after subsequent treatment with 3N HCl. The formation of **8a** may be caused by the nucleophilic attack of the phosphine added in the way as NaI did. After screening, it was observed that $Pd(PPh_3)_4$ is the best catalyst, with which the reaction of **1a** afforded **9a** highly selectively with a ratio of **9a/8a** as high as 50:1 (Scheme 9) [6].

Scheme 9

This new type of $Pd(PPh_3)_4$ -catalyzed sequence of ring-opening and cyclization is quite general affording differently tetrasubstituted furans **9** in 62–84 % yield (Scheme 10) [6].

Scheme 10

However, the reaction may also be stopped at the stage of 3-methylene-2,3-dihydrofurans **10**, revealing the intermediacy of this type of new transformation (Scheme 11) [6].

Scheme 11

The formation of tetrasubstituted furans 9 can be rationalized via the oxidative addition of distal C–C single bond in 1 onto Pd(0) to form intermediate M11, which may isomerize to yield π -allylic paladium enolate intermediate M12. Subsequent regioselective reductive elimination or intramolecular nucleophilic allylation affords 3-methylene-2,3-dihydrofurans 10, which would further isomerize to yield tetrasubstituted furans 9. A minor pathway with the reaction occurring at the non-substituted ter-

minal in M12 would also form 1,2,3-trisubstituted furans via the intermediacy of 3-alkylidene-2,3-dihydrofurans (Scheme 12) [6].

Based on the results of the NaI-triggered ring-opening cyclization sequence, we then started to screen a variety of different nucleophiles, which may open the three-membered ring by nucleophilic attack. After some study, amines were found to be effective reagents, which reacted with 2-alkylidene-cyclopropyl ketones **11** to afford 2,3,4-trisubstituted pyrroles **12** (Scheme 13) [7]. The addition of 0.5 equiv of MgSO₄ improved the yield of this reaction by removing the in situ formed water.

Scheme 13

Mechanistically speaking, 2,3,4-trisubstituted pyrroles may be formed from the condensation of the carbonyl group in **11** with amines to form 2-alkylidenecyclopropyl ketimines **M13**, which may undergo Cloke rearrangement to afford 3-alkylidene-2,3-dihydropyrroles **M14**. Of course, this type of intermediate products may also be formed via the nucleophilic attack of the amine at the non-substituted carbon atom in the three-membered ring of **11**, intramolecular nucleophilic attack of the nitrogen at the carbonyl group, and elimination of H₂O (Scheme 14) [7].

On the other hand, 2-alkylidenecyclopropanecaboxylates 13 may react with I_2 or NIS to induce a halocyclization forming the bicyclic lactones 14 highly diastereoselectively via the electrophilic interaction of the C=C bond with I⁺ and the subsequent intramolecular nucleophilic attack of the carbonyl oxygen atom (Scheme 15) [9].

Scheme 15

In products 14, R^2 and I are *cis*-oriented. Through control experiment of 15, it was observed that the relative configuration for the chiral centers at 4,5-position in 16 depends on the relative steric effect of R and R^1 with the bulkier group being *trans* to the iodine atom (Scheme 16) [9].

Based on the chemistry we observed with 2-alkylidenecyclopropyl ketones or 2-alkylidenecyclopropane carboxylates, we started to look into the chemistry of their close analogs cyclopropenyl ketones or cyclopropenecarboxylates. After some screening it was observed that $PdCl_2(MeCN)_2$ may catalyze the ring-opening cyclization sequence of cyclopropenyl ketones **17** in $CHCl_3$ under reflux to afford 2,3,5-trisubstituted furans **18A** while CuI transformed the same starting compounds into 2,3,4-trisubstituted furans **18B** (Scheme 17) [10]. The selectivity is general and practical. The formation of different products may be determined by the different regioselectivity of the initiating halometallation of the C=C bonds forming intermediates **M17** and **M20**, respectively, which induced the cleavage of different C-C single bond in the three-membered ring (Scheme 18) [10]. The regioselectivity of the halometallation may be caused by the relative steric hindrance of M and X.

Scheme 17

Heterocycles

Scheme 18

However, by using 3,3-bis(alkoxycarbonyl)cyclopropenes **19**, NaI may also open the three-membered ring, forming intermediate **M23**, which is followed by the reaction with alkyl iodide to form (E)-2-iodoalkenylmalonates **20** (Scheme 19) [11]. Furthermore, it is interesting to observe that when an

Scheme 19

S. MA

imine was added to capture the anion intermediate M23, *cis*-vinylic azridines 21 were formed highly diastereoselectively via anti-intramolecular nucleophilic substitution of the in situ formed intermediate M24 [12].

The Rh₂(OAc)₄-catalyzed cyclopropanation of terminal alkynes easily affords 3,3-bis(methoxycarbonyl)cyclopropenes **19** [13]. However, it may readily undergo ring-opening cyclization to yield 2-methoxy-3-methoxycarbonylfurans **22**. Under the catalysis of NaI, their reaction with RI such as allyl iodide, propargyl ioide, α -iodo ketones, etc. provides γ -substituted 2-(5H)-furanones **23** efficiently (Scheme 20) [14].

Scheme 20

A similar reaction was also observed with nitriles, which afforded 5-methoxyoxazoles 24 in good yields (Scheme 21) [15].

Scheme 21

Under the catalysis of 10 mol % of NaI, the reaction of **24** with R³I, such as allylic iodides, propargylic iodides, and α -iodo ketones, etc., in acetone would afford azalactones **25** with the alkylation occurred at the α -position (Scheme 22) [16].

According to mechanistic studies, it was believed that the reaction proceeded via the cleavage of the C–O bond in the methoxy group at the 2-position of 22 or 24 forming anionic intermediate M25 (Scheme 23). With different nature of the Z atom, alkylation would proceed at either α - or γ -position, highly selectively.

Scheme 23

In conclusion, due to the presence of the C=C bonds and the strained three-membered ring as well as the introduction of the carbonyl group, the reaction of 2-alkylidenecyclopropyl ketones and cyclopropenyl ketones or corresponding carboxylic acid esters provides a variety of different heterocycles with high efficiency. Further studies in this area are being conducted in our laboratory.

ACKNOWLEDGMENTS

Financial support from the National Natural Science Foundation of China (Grant Nos. 20121202, 20332060, and 20423001) and the Major State Basic Research & Development Program (Grant No. 2006CB806105) is greatly appreciated. I would also like to thank Mr. Hao Guo and Ms. Hua Gong in this group for the help they provided in the preparation of this manuscript.

REFERENCES

- (a) H. F. Schuster, G. M. Coppola (Eds.). Allenes in Organic Synthesis, John Wiley, New York (1984); (b) S. Patai (Ed.). The Chemistry of Ketenes, Allenes, and Related Compounds, Part 1, John Wiley, New York (1980); (c) N. Krause, A. S. K. Hashmi (Eds.). Modern Allene Chemistry, Wiley-VCH, Weinheim (2004); for reviews, see: (d) R. Zimmer, C. Dinesh, E. Nandanan, F. A. Khan. Chem. Rev. 100, 3067 (2000); (e) J. Marshall. Chem. Rev. 100, 3163 (2000); (f) A. S. K. Hashmi. Angew. Chem., Int. Ed. 39, 3590 (2000); (g) R. Bates, V. Satcharoen. Chem. Soc. Rev. 31, 12 (2002); (h) S. Ma. In Handbook of Organopalladium Chemistry for Organic Synthesis, E. Negishi, A. de Meijere (Eds.), p. 1491, John Wiley, New York (2002); (i) L. K. Sydnes. Chem. Rev. 103, 1133 (2003); (j) S. Ma. Acc. Chem. Res. 36, 701 (2003); (k) L. Brandsma, N. A. Nedolya. Synthesis 735 (2004); (l) M. A. Tius. Acc. Chem. Res. 36, 284 (2003); (m) L. L. Wei, H. Xiong, R. P. Hsung. Acc. Chem. Res. 36, 773 (2003); (n) X. Lu, C. Zhang, Z. Xu. Acc. Chem. Res. 34, 535 (2001); (o) K. K. Wang. Chem. Rev. 96, 207 (1996); (p) F. Pan, C. Fu, S. Ma. Chin. J. Org. Chem. 24, 1168 (2004).
- 2. (a) A. de Meijere (Ed.). "Cyclopropanes and Related Rings", *Chem. Rev.* Vol. 103, Issue 4 (2003);
 (b) A. de Meijere, S. I. Kozhushkov, L. P. Hadjiarapoglou. *Top. Curr. Chem.* 207, 149 (2000).
- (a) R. Noyori, T. Odagi, H. Takaya. J. Am. Chem. Soc. 92, 5780 (1970); (b) R. Noyori,
 Y. Kumagai, I. Umeda, H. Takaya. J. Am. Chem. Soc. 94, 4018 (1972); (c) P. Binger,
 U. Schuchardt. Angew. Chem., Int. Ed. Engl. 16, 249 (1977); (d) M. Suginome, T. Matsuda, Y.
 Ito. J. Am. Chem. Soc. 122, 11015 (2000).
- (a) M. Lautens, C. Meyer, A. Lorenz. J. Am. Chem. Soc. 118, 10676 (1996); (b) A. G. Bessmerthykh, K. A. Blinov, Y. K. Grishin, N. A. Donskaya, E. V. Tveritinova, N. M. Yur'eva, I. P. Beletskaya. J. Org. Chem. 62, 6069 (1997); (c) N. Tsukada, A. Shibuya, I. Nakamura, Y. Yamamoto. J. Am. Chem. Soc. 119, 8123 (1997); (d) I. Nakamura, H. Itagaki, Y. Yamamoto. J. Org. Chem. 63, 6458 (1998); (e) D. H. Camacho, I. Nakamura, S. Saito, Y. Yamamoto. Angew. Chem., Int. Ed. 38, 3365 (1999); (f) I. Nakamura, S. Saito, Y. Yamamoto. J. Am. Chem. Soc. 122, 2661 (2000); (g) D. H. Camacho, I. Nakamura, S. Saito, Y. Yamamoto. J. Org. Chem. 66, 270 (2001); (h) G. Fournet, G. Balme, J. Gore. Tetrahedron 44, 5809 (1988); (i) S. Bräse, A. de Meijere. Angew. Chem., Int. Ed. Engl. 34, 2545 (1995); (j) R. Grigg, P. Kennewell, A. Teasdale, V. Sridharan. Tetrahedron Lett. 34, 153 (1993); (k) K. H. Ang, S. Bräse, A. G. Steinig, F. E. Meyer, A. Llebaria, K. Voigt, A. de Meijere. Tetrahedron 52, 11503 (1996).
- 5. S. Ma, J. Zhang. Angew. Chem., Int. Ed. 42, 183 (2003).
- (a) S. Ma, L. Lu, J. Zhang. J. Am. Chem. Soc. 126, 9645 (2004); for a recent report, see: (b) V. Bagutski, A. de Meijere. Adv. Synth. Catal. 349, 1247 (2007).
- 7. S. Ma, B. Xu, B. Ni. J. Org. Chem. 65, 8532 (2000).
- 8. L. Lu, G. Chen, S. Ma. Org. Lett. 8, 835 (2006).
- 9. S. Ma, L. Lu. J. Org. Chem. 70, 7629 (2005).
- 10. S. Ma, J. Zhang. J. Am. Chem. Soc. 125, 12386 (2003).
- 11. S. Ma. J. Zhang, Y. Cai, L. Lu. J. Am. Chem. Soc. 125, 13954 (2003).
- 12. S. Ma, J. Zhang, L, Lu, X. Jin, Y. Cai, H. Hou. Chem. Commun. 909 (2005).
- (a) A. Padwa, J. M. Kassir, S. L. Xu. J. Org. Chem. 56, 6971 (1991); (b) C. Batsila, G. Kostakis, L. P. Hadjiarapoglou. *Tetrahedron Lett.* 43, 5997 (2002).
- 14. S. Ma, L. Lu, P. Lu. J. Org. Chem. 70, 1063 (2005).
- 15. R. Connell, F. Scavo, P. Helquist, B. Åkermark. Tetrahedron Lett. 27, 5559 (1986).
- 16. L. Lu, P. Lu, S. Ma. Eur. J. Org. Chem. 676 (2007).