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Abstract: The Evans–Searles fluctuation theorem (ESFT) has been shown to be applicable in
the near- and far-from-equilibrium regimes for systems with both constant and time-depend-
ent external fields. The derivations of the ESFT have assumed that the external field has a
definite parity under a time-reversal mapping. In the present paper, we confirm that the time-
reversibility of the system dynamics is a necessary condition for the ESFT to hold. The man-
ner in which the ESFT fails for systems that are not time-reversible is presented, and results
are shown which demonstrate that systems which fail to satisfy the ESFT may still satisfy the
Crooks relation (CR).
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In 1876, Joseph Loschmidt was one of the first to observe that since mechanics is time-reversible,
events that happen in one direction should be equally likely to occur in the opposite direction, given the
application of a time-reversal mapping to the velocities of the particles in the system [1]. In order to try
to reconcile this view with that of Boltzmann’s and the second law of thermodynamics, much discus-
sion ensued [2]. It was more than 100 years later that this paradox was finally resolved mathematically
with the discovery of the fluctuation theorem, which was first demonstrated numerically by Evans,
Cohen, and Morriss in 1993 [3] and proved by Evans and Searles in 1994 [4].

The Evans–Searles fluctuation theorem (ESFT) is a mathematical expression that gives the prob-
ability that second-law violating events may be observed for small systems at short time-scales. The
mathematical form of the ESFT is

(1)

where

(2)

is the general dissipation function [5,6], pF(x) is the probability of observing an event x, f[�(0),0] is the
phase-space distribution function at a point [q1(0),..., pN(0)] ≡ �(0) in phase space at time zero, f[�(t),0]
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is the distribution about a point �(t), also at time zero. Λ is the phase-space compression factor [7].
Close to equilibrium, the average of the dissipation function is to leading order in the external field,
equal to the irreversible entropy production calculated using linear irreversible thermodynamics.

The ESFT is important for several reasons: it is one of the few mathematical expressions that is
valid arbitrarily far from equilibrium; its validity has been confirmed in several laboratory experiments
[8–11]; it can be used to derive the Green–Kubo relations; it can be used to derive the second law in-
equality [12]; it is closely related to another important mathematical relation in nonequilibrium statis-
tical mechanics, the Jarzynski equality [13]; and it is valid in many ensembles [14]. Since it was first
proved, much work has been done to extend the ESFT. Both steady-state and transient versions of the
theorem have been studied [6]. Other work done with the ESFT has shown it to be valid for stochastic
systems [15,18–20], and a quantum version of the theorem has been derived [16,17].

A similar relation derived by Crooks [19,20] allows us to relate the probability, pF, of the dissi-
pation function taking on a positive value, A, for a trajectory under the influence of an external field in
the forward direction Fe(t), 0 < t < τ, where τ is the maximum averaging time, to the probability, pR, of
the dissipation function taking on a value, –A, for a trajectory in the reverse direction with the wave-
form of the field reversed, Fe(τ – t), 0 < t < τ. For systems in which the relaxed initial and final states
have the same free energy, the Crooks relation (CR) states [21]

(3)

In this case, the Crooks work function is equal to the general dissipation function and the CR
takes the form shown in eq. 3. For a more detailed discussion on the CR, the interested reader is referred
to refs. [19,20].

It has been shown that the ESFT is valid for nonequilibrium systems with constant [5] and time-
dependent external fields [22,23] when the system is time-reversible. The primary difference between
the ESFT, eq. 1, and the CR is that for the CR a time-reversal mapping of the external field takes place,
while for the ESFT no such mapping is applied.

In this paper, we confirm that the time-reversibility requirement is a necessary condition for the
ESFT to hold. Using a test system, we show that if the system is not time-reversible, and therefore not
ergodically consistent, the ESFT is not satisfied. We also show that the CR is still verified for systems
that are not time-reversible, as expected.

TIME REVERSIBILITY

The time-reversibility requirement is intrinsic to the ESFT derivation [6] since time averages of the gen-
eral dissipation function are calculated from pairs of conjugate trajectories in phase space that are re-
lated to one another via a time-reversal mapping, i.e., a time-reversal symmetry for the system exists.

In eq. 1, we see that the denominator considers the probability of observing time-averaged values
of the general dissipation function that have a sign opposite to that predicted by the second law. In order
for this to be possible, there must be a finite probability of finding trajectories in phase space whose re-
sponse averaged over the length of the trajectory have such values. From the derivation of the ESFT [6],
we know that phase trajectories must exist in pairs (i.e., be time-reversal maps of one another) if the
system is time-reversible. We emphasize that the ESFT is a mathematical expression involving the av-
eraging of the general dissipation function over trajectories where the external field has a definite par-
ity under a time-reversal mapping, while the CR involves the explicit mapping of the external field [i.e.,
Fe(t) = Fe(τ – t), 0 < t < τ] when computing the denominator as compared to the numerator of eq. 3.

Consider a trajectory that is propagated from a point �(0) in phase space for a time t, which ends
at a phase point �(t). At the endpoint of the trajectory we can apply a time-reversal mapping, such that
MT[�(t)] = �*(0), where MT is a time-reversal mapping that changes the signs of all of the system mo-
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menta, i.e., MT[�(p,q)] = �(–p,q). In eq. 2, we see that the distribution functions about the starting and
ending points of a trajectory in phase space are used to define the general dissipation function. It is
therefore imperative that there be a finite probability that one can find the ending points of phase tra-
jectories at time zero in order to be able to find starting points for trajectories that are time-mapped
equivalents of trajectories that would generate time averages of the general dissipation function in the
numerator of eq. 1.

Systems that satisfy the relation f[�(t),0] ≠ 0, which indicates that there must be a finite proba-
bility of finding trajectory endpoints in phase space at time zero, are referred to as ergodically consis-
tent [6].

NUMERICAL SIMULATIONS

In order to ensure that the test system is not time-reversible, we use a waveform as shown in Fig. 1. This
waveform is not symmetric over the length of the transient trajectory, which results in the dynamics
being non-time-reversible, since upon application of the time-reversal mapping at the end of the trajec-
tory of length τ, MT[Fe(t)] ≠ ±Fe(τ – t), where Fe(t) is the time-dependent external field. The external
field for the waveform shown has the mathematical form

(4)

The phase-space distribution function of our system at time t = 0 (the equilibrium distribution) is
f(�, 0) ~ exp(–β[H0 + 1–

2 Qζ2]), where Q is the effective mass of the heat bath, β = 1–––
kBT = 2K––––

dN – 1, ζ is the
Nosé–Hoover thermostat multiplier, kB is Boltzmann’s constant, K is the kinetic energy, d is the system
dimension, and N is the number of particles.
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Fig. 1 The waveform of a time-dependent external field that has no parity. The system to which this field is applied
is therefore non-time-reversible.



Color diffusion is used for the nonequilibrium dynamics of our system. The time derivative of the
Hamiltonian is H(�) = H0(�) + Fc(t) Σ

N
i=1cixi, where ci = (–1)i is the color field coupling constant, Fc(t)

is the time-dependent color field of the system, and H0(�) = p2
i /2m + Φ(q) is the system’s internal en-

ergy. Here,  Φ(q) is the potential that models the potential energy of the inter-particle interactions. We
use the WCA potential [24] to model these interactions, i.e., Φ(q) = Σ N–1

i=1  Σ
N
j>i φ(|qi – qj|), φ(q) =

4ε(q–12 – q–6) if q < 21/6 or zero otherwise.
The equations of motion for the system are

(5)

where Fi = – ∂Φ(q)––––∂qi
, γ (t + P) = γ (t), g + 1 = d(N – 1), and ω is the frequency of the external time-de-

pendent field. 
The system Hamiltonian is H

·ad
0 ≡ –JVFe [7], where the superscript “ad” denotes that the time de-

rivative is taken in the absence of a thermostat. Here, the dissipative flux, J, is given by J = V–1

ΣN
i=1cipxi. We substitute the distribution function for the system into eq. 2 to get the form of the general

dissipation function for this system, Ω– t = –β 1–t ∫ t
0 ds J(s)Fe(s)V = –β[J(t)

—
Fe
—

(t)
—

]tV.

RESULTS AND DISCUSSION

Figure 2 shows a histogram of the frequency of observing values for the dissipation function, as defined
in eq. 1. We note that the distribution is far from Gaussian. If we take points on this graph that are equi-
distant from the y-axis, they correspond to conjugate values of the general dissipation function (i.e., A
and –A from eq. 1). Clearly, the histogram bins to the far right side of the plot have more samples than
they would if the curve were Gaussian. In ref. [23], it was shown that for time-reversible systems, the
current traces for histogram bins that are equidistant from the y-axis and of equal width are time-rever-
sal maps of one another. For the system tested in this work, we plot the current traces of the two histo-
gram bins immediately adjacent to the y-axis of the histogram. Figure 3 shows these curves. Clearly,
the responses measured in the two bins are not related to one another via a time-reversal mapping, thus
confirming that the system is not time-reversible.
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Fig. 2 Histogram of the results of a test of the ESFT for a system with an external field of no parity, which is thus
not time-reversible.

Fig. 3 Current response in two histogram bins of equal width immediately to the left (black circles) and right (gray
squares) of the y-axis of Fig. 2. If the system were time-reversible, the current traces in these two bins would be
related to one another via the time-reversal mapping, which is not the case for this system.



Figure 4 shows the results of a test of the ESFT. The figure plots the deviation of the numerical
results as circles and the associated standard error as a line. The simulation data were accumulated from
20 simulations, each of 20 million trajectories. The standard error was calculated from these 20 simu-
lations and used for the error bars shown in the figure. The standard error is defined by σ/√––

Nr, where σ
is the standard deviation and Nr is the number of simulation runs, which is 20 in this case. The results
indicate that within the error bars, the numerical results do not converge to the predicted one. The points
that do not fall exactly on what appears to be a regular curve are due to insufficient sampling. If the sim-
ulation is allowed to run for a longer period of time, such points gradually converge to the curve as more
samples are accumulated in the associated histogram bin of the histogram shown in Fig. 2.

Figure 5 shows a plot of the test of the CR. The figure depicts the deviation of the numerical test
of the CR from what is predicted (circles), along with the associated error bars by plotting the standard
error (line) calculated from 20 runs as described in the discussion of the ESFT results, above. Note that
the deviation is nearly zero in the x-axis range around zero, which corresponds to a location near the
center of the histogram shown in Fig. 2. Since this part of the histogram has the highest number of sam-
ples, the averages calculated in the histogram bins near the y-axis are approximately equal to the values
that are predicted by the CR. As one moves further away from the peak of the histogram, the histogram
bins have fewer samples, and this lack of statistics means that rare events can cause apparent deviations
in the numerical results from what is predicted. As more samples are accumulated, the numerical re-
sults will approach the predicted one, and the curve shown in Fig. 5 will approach the x-axis over its
entire range.
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Fig. 4 A test of the ESFT. The curve (circles) shows the difference between the numerically obtained results and
what is predicted by the ESFT. The line shows the standard error calculated from the simulations. It is clear that
the ESFT is not satisfied for this system.



CONCLUSIONS

The results of the numerical tests show that the ESFT is not satisfied by systems with external fields
with no parity, such as that used in the test system of this study. Figure 3 demonstrated that there is no
time-reversible relation between the currents for conjugate bins of the histogram shown in Fig. 2. It was
shown in ref. [23] that for systems with external fields of definite parity, such a relation between cur-
rents exists. Since there is no relation between the two responses of these bins, we can conclude that
there is a difficulty in sampling initial phase points that will lead to trajectories that are related to one
another via the time-reversal mapping. The inability to sample such starting points from our distribu-
tion indicates that the system is not ergodically consistent. Since the systems of our previous study in
ref. [23] were ergodically consistent, one can only conclude that this ergodic inconsistency of the test
system used in this work is due to the form of the external field, since the system dynamics of the two
studies are identical.

Figure 4 shows that the ESFT is not satisfied for the system we tested. The error bars in that fig-
ure indicate that no matter how long the simulation is allowed to run, the results will never converge to
the theoretical prediction. However, Fig. 5 clearly shows that the CR is satisfied by the numerical re-
sults obtained. The reason that the CR is satisfied, and the ESFT is not, lies in the derivation of the CR,
which entails the time-reversal mapping of the waveform of the external field. This has the effect that
with the time-reversal mapped field, the system is able to sample phase points that are unreachable with
the unmapped field. By combining the results from the forward- and reverse-field simulations, as re-
quired by the CR, one is able to verify the CR in a way similar to what would be the case if one had
performed a time-reversible simulation that is ergodically consistent and therefore able to sample all ini-
tial phase points that lead to trajectories that are conjugate pairs. We therefore conclude that systems
without time-reversal symmetry cannot satisfy the ESFT because they are not ergodically consistent.
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Fig. 5 A test of the CR. The curve (circles) shows the difference between the numerically obtained results and that
predicted by the CR. The line depicts the standard error as calculated from the simulations. There is almost no
difference between the predicted and numerically obtained curves, as expected. Clearly, the CR is satisfied for this
system.
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