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Abstract: In this paper, we highlight the various ways computational quantum mechanics
(QM) can be used in applied thermodynamics. We start with the most rigorous procedures of
calculating the interactions between molecules that can then be used in simulation and
progress, in steps, to less rigorous but easily used methods, including the very successful con-
tinuum solvation models.
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INTRODUCTION

Chemists, physicists, and many engineers are exposed, in varying degrees, to quantum mechanics (QM)
in their education; however, few use it. The use of QM has a long history in the area of thermophysical
properties, though initially restricted to the calculation of heats of formation, heat capacities, heats of
reaction, likely molecular conformations, reaction pathways, and transition states, and most such cal-
culations were restricted to a single molecule or in an ideal gas [1]. Since, in a sense, this is old tech-
nology, not much will be said about these here, except to put the accuracy of QM calculations in con-
text. What is mainly considered here is recent work on the use of QM for the prediction of
thermophysical properties and phase behavior, that is, properties of fluids and mixtures that are not ideal
gases. The review starts with a discussion of rigorous and very time-consuming, first-principles ab ini-
tio calculations and follows a path to recent easier-to-use and more user-friendly rapid calculational
methods that are somewhat less rigorous.

However, before proceeding, an important point needs to be made. Since the Schrödinger equa-
tion cannot be solved exactly for multi-electron systems, approximations must be made, and deciding
upon the method and level is not a trivial task. There are a number of software packages, such as
Gaussian [2], Schrödinger [3], Turbomole [4], and Gamess [5], that are available for QM calculations,
and many different calculational procedures, including ab initio and density functional methods within
these packages. Further, decisions about the level of those calculations must be made [1]. These ap-
proximations are of two types, the level of theory used (the extent to which the correlation between the
electrons is considered) and the accuracy with which the electron density is represented (that is, the size
of the basis set used). The problem one encounters is that for accurate results, one needs to use a rea-
sonably high level of theory and a reasonably accurate representation of the electron densities (that is,
the basis sets). At a high level of theory, such as the coupled cluster method, the calculations are very
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computer-intensive and scale approximately as n7, where n is the number of (typically Gaussian) func-
tions in the basis set, which will be considerably greater than the number of electrons. This sets signif-
icant limits on the calculation, including the size of the molecules that can be considered.

It is common in calculating properties of an isolated molecule, such as the enthalpy (or heat) of
formation, to use an extrapolation method, such as G3 [6], in which there is a strict recipe involving cal-
culations at a lower level of theory with a large basis set, and a high level of theory with a moderate size
basis set, and from this, with some empirical corrections, to extrapolate the results to a high level of the-
ory and a large basis set or the so-called basis set limit. The results of using such extrapolation meth-
ods for the prediction of thermodynamic properties, such as heats of formation, can be quite good, in-
deed frequently at about what is referred to as chemical accuracy of 1 kcal/mol in heats of formation of
hydrocarbons and organic chemicals [6]. However, “chemical accuracy” is not sufficient for phase be-
havior calculations. For example, a 1 kcal/mol error in a partial molar excess Gibbs energy results in a
greater than factor of 5 error in an activity coefficient and a 2 kcal/mol error results in almost a factor
of 30 error, either of which is unacceptable for accurate phase equilibrium calculations.

Of special interest in the biological, pharmacological, and environmental literature is the compu-
tation of binding energies, especially of ions to DNA (biologic and pharmaceutical literature) and to
humic components (environmental literature). The results are generally accurate to within several
kcal/mol, which is useful in quantifying binding sites and in the study of chemical kinetics where one
is interested in examining kinetic pathways (transition states) that generally differ by considerably more
than 2 kcal/mol [7,8]. 

The conclusion is that the present accuracy of QM calculations does not allow the direct calcula-
tion of phase behavior from first principles. Therefore, other methods must be used. The following clas-
sification of these indirect methods will be considered here:

1) QM calculation of the intermolecular potential followed by computer simulation;
2) on-the-fly QM calculation during simulation;
3) QM calculations to determine parameters in existing thermodynamic models; and
4) continuum solvation models.

CALCULATION OF INTERMOLECULAR POTENTIALS

The first method of calculating thermodynamic properties and phase behavior from QM is a serial one
in that one first calculates point-by-point a reasonably complete two-body interaction energy landscape,
which is then fitted to an analytic function and used in a computer simulation method, such as Gibbs
ensemble Monte Carlo (MC) [9], to obtain vapor–liquid phase behavior and the properties of the co-
existing phases. This method contains pairwise additivity assumption that the interaction energy of an
assembly of molecules can be obtained by summing the energies of interacting pairs.

The interaction energies among electrically neutral molecules, except for the hard-core repul-
sions, are classified as being weak and are the result of permanent and induced multipole moments, that
is, interactions among the electron clouds, for which very accurate and time-consuming QM calcula-
tions are needed. Further, to obtain the force field between a pair of molecules, a large number of cen-
ter-of-mass separations and relative orientations must be considered, so many thousands of computer
hours may be required, which is why parallel calculations on Beowulf clusters are frequently employed,
since the proper calculation of the interaction between a pair of relatively simple molecules, for exam-
ple, methyl chloride, at a high level of theory can take hundreds of hours on a single computer node
[10]. As a result of the already mentioned high degree of scaling of QM calculations, there is an inher-
ent trade-off that must made between the degree of accuracy of the QM calculation, the complexity of
the molecule, and the available computer time. Some experience is required to make that choice. 

Once an appropriately large collection of points on the energy landscape have been obtained, the
next step is to develop an analytical representation that will allow interpolation between the calculated
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points, and perhaps extrapolation. (As the long-range interactions between neutral molecules decay at
approximately r–6, where r is the site–site separation distance, extrapolation is generally not a serious
problem.) The most commonly used force fields are of the site–site form, in which the sites can be sin-
gle atoms (all atom potentials) or groups of atoms such as a methyl CH3 group (united atom potentials),
and may include intermediate sites placed along bonds to represent electrostatic charges, dipole mo-
ments or just to better represent the quantum mechanically calculated energies. The site–site interaction
potentials are usually the combination of an electrostatic repulsion including the site charges (which
have also been calculated from QM), a hard-core repulsion, and a van der Waals dispersion contribu-
tion. The models used may be as simple as a Lennard–Jones 6-12 potential plus a Coulomb-like inter-
action, though much more sophisticated force fields are frequently used.

There are some tricks-of-the-trade needed here. For example, to calculate the interaction energy
between two molecules, one first calculates the energy of each of the separated molecules, and then of
the pair of interacting molecules. However, the accuracy of a QM calculation depends on the size of
basis set used. Therefore, if the interaction energy was computed by calculating the energy of each mol-
ecule separately with its own basis set, and then of the pair of molecules with the basis sets for both
molecules, a less accurate result is obtained than if the energy of each separated molecule had also been
calculated with the basis sets for both molecules. In this way, the so-called basis set superposition error
[11] is minimized using a counterpoise correction [12]. Also, an extrapolation method has been devel-
oped to allow the interaction energies calculated at moderate levels of electron correlation and moder-
ate-size basis sets to be extrapolated to more accurate values than would be obtained with a larger basis
set [13].

A question that arises is whether the points chosen for the energy landscape calculations are the
appropriate ones; that is, have the attractive and repulsive regions been adequately sampled? Generally,
we do not know this in advance. A procedure that we have found works reasonably well is to choose a
collection of points (center-to-center separations and relative orientations of the molecules), fit a trial
site–site interaction potential to those points, which is then used in a short simulation to obtain a cen-
ter-of-mass radial distribution function (RDF), and see whether the center-of-mass separations chosen
for the QM calculations have adequately sampled the RDF in the region up to and somewhat beyond
the first minimum [14]. If not, additional center-of-mass separations (and orientations at these separa-
tions) are added, especially in the regions of the initial rise from zero of the RDF, its first maximum and
in the region where the RDF is unity, additional QM calculations are done and an improved potential is
obtained by refitting. Generally, we have needed only one such iteration. Also, if simulation software
is not available, almost as good results can be obtained using the angle-averaged Boltzmann factor in-
stead of the RDF to determine whether the energy landscape had been properly sampled. 

A question that arises is what part of the potential energy surface is most important, and therefore
must be fit accurately, for good physical properties predictions. While this can be more difficult to dis-
cern for complicated polyatomic molecules, one can obtain some insight from simulation results for
spherical molecules. From a study [15] in which we perturbed a Lennard–Jones potential separately in
the short-range repulsive, the well, and the long-range attractive regions, we found that perturbations in
the short-range (repulsive) part of the potential do not result in significant changes to the calculated
phase behavior, so that this region does not need to be over-weighted when fitting intermolecular po-
tentials to ab initio energies. Decreasing the depth of the well (that is, decreasing the attraction) in-
creases the vapor pressure, and results in a smaller phase envelope with a reduction in the critical tem-
perature, an increase in the saturated vapor densities, and a decrease in the saturated liquid densities.
While changes in the long-range portion of the potential produce the largest changes in the critical tem-
perature, saturated vapor densities, and vapor pressures. Overall, the repulsive energies play a limited
role in determining the phase behavior and critical properties, while the attractive energies strongly af-
fect these properties, as would be expected. We presume that similar conclusions will apply to fitting
the energy landscapes of more complicated molecules, but we have not made a systematic study. 
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Once points on the energy landscape have been computed and then fit, the next step is to test the
accuracy of the potential obtained. The simplest test is to compare the calculated second virial coeffi-
cient, a strictly two-body property, with experimental data. Some results are shown in Figs. 1–3. We see
in these figures that for systems without strong associative forces, such as hydrogen bonding, these
“first-principles” predictions of the second virial coefficients can be quite accurate as for acetylene and
methanethiol [14,16]; other examples have been given elsewhere. However, for methanol the predic-
tions are less satisfactory [17]. The lower accuracy of these latter predictions was expected since
methanol is a hydrogen-bonding fluid, and in such cases higher-level QM calculations with larger basis
sets are required for the accurate calculation of interaction energies. It is, however, interesting to note
that by introducing a single adjustable scaling parameter as a multiplicative factor to the total energy,
quantitative agreement with the second virial coefficient can be obtained. There are other examples of
second virial coefficient calculations from ab initio potentials in the literature. For example, the work
of Meredith et al. [18] and Hermida-Ramon et al. [19] on HCl led to second virial coefficients that were
in qualitative agreement with experiment, though better agreement was later obtained by Naicker et al.
[20] .

While there has been a large number of studies on water, Guillot [21] concluded that no ab initio
model has been able to predict water properties with high accuracy. Even the recent POL5 model of
Stern et al. [22] that combines fluctuating charges and polarizable dipoles gives large deviations from
experimental values of virial coefficients. Wick and Schenter [23] found that when used in simulation,
models based on quantum calculations under-predict the normal boiling point of water by more than
30 K. 

Using the interaction models discussed above in Gibbs ensemble MC simulation, one can obtain
vapor–liquid phase behavior and the thermodynamic properties of the coexisting phases. However, such
simulations contain the assumption of pairwise additivity, that is, that the interaction energy of an as-
sembly of molecules can be obtained by summing the energies of interacting pairs. Figures 1–3 also
contain the results of using Gibbs ensemble MC simulation to predict the vapor pressure and vapor–liq-
uid phase boundaries for the systems discussed earlier. What we see is that for acetylene and
methanethiol the predictions are remarkably good. The vapor pressures are reasonably accurate, indeed
very good for a completely first-principles prediction that is based on knowing nothing more than the
structure of the molecules. From these results we conclude that, unless there has been a fortuitous can-
cellation of errors, the level of QM we have used to calculate the interaction energies and the fitting of
those interaction energies has been satisfactory, and that for these fluids that do not hydrogen-bond,
multibody effects (i.e., pairwise nonadditivity) are not important. 

However, the results for methanol in Fig. 3 with the QM-based potential are less than satisfactory.
There are two reasons for this. First, it is known that the accurate calculation of the interaction energies
for hydrogen-bonding systems requires a higher level of QM calculations than systems that do not hy-
drogen-bond. Second, for systems that hydrogen-bond or otherwise associate, the pairwise additivity as-
sumption is inaccurate. Snapshots taken during the simulation showed significant hydrogen bonding.
Note that the results with a scaled potential are somewhat better, but still not satisfactory.

There are several ways to improve upon the pairwise additivity assumption, or at least try to com-
pensate for it. One way, used by Leonhard and Dieters [24], is to calculate from QM the interactions
between configurations of three molecules, from those results obtain a three-body potential, and use this
in simulation. Another method is to use two-body potentials with a polarization correction [25]. In its
simplest implementation, the permanent or instantaneous dipole in a central molecule is considered to
affect the dipoles (or induce dipoles) in nearby molecules which then affect the dipole of the central
molecule. By iteration, the interaction energy of the assembly of molecules is computed. Such an iter-
ative procedure results in a computational penalty of almost an order of magnitude in MC simulations,
but only about 20 to 30 % in a molecular dynamics (MD) simulation. This difference arises because all
the molecules are moved in a single time step on MD so that the polarization calculation is implemented
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Fig. 1 Acetylene [14]: (a) second virial coefficients: the triangles and squares are two sets of experimental data,
and the line is the results calculated using a QM-based potential; (b) vapor–liquid phase envelope: the line is the
experimental results, the open squares are the results with the initial potential, and the open circles are the results
with the final potential after adding additional interaction energy points as described in the text; (c) vapor pressures.
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Fig. 2 Methanethiol [16]: (a) second virial coefficients; (b) phase envelope; and (c) vapor pressure. The lines are
the experimental results, and the circles are the results using the QM-based potential. Filled symbols in (b) and (c)
are the (estimated) critical points. 



once on moving all the molecules, while molecules are moved one at a time in MC and the polarization
calculation is done on the move of each molecule. 

The results of using the polarization correction in the simulation of methanol are also shown in
Fig. 3. There we see that while the agreement with experiment is still not as good as we would like, the
relatively simple point polarization correction does improve the agreement with experiment, and pre-
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Fig. 3 Methanol [17]: (a) second virial coefficients. The circles are compilation from experimental values. Lines
are calculated second virial coefficients using the QM potential calculated with the different values of the scale
factors η; (b) vapor pressures and (c) vapor–liquid phase envelope. The solid line and the filled diamond are the
experimental data. The symbols denote simulation results using the QM-based pair potential with the following
modifications: circles, no scaling and no polarization; triangles up, polarization and no scaling; squares, scaling
(η = 1.20) and no polarization; and triangles down, scaling (η = 1.20) and polarization. Filled symbols in (b) and
(c) are estimated critical points.



sumably partially corrects for pairwise nonadditivity. The main conclusion is that pairwise nonadditiv-
ity is important for this and other hydrogen-bonding fluids. The addition of polarization and scaling,
which introduces a single parameter fitted to the second virial coefficient, further improves the predic-
tions of the vapor pressure and phase boundary. 

Hydrogen fluoride (HF), because of its strong hydrogen bonding, results in complications in the
QM calculations and in simulation due to nonadditivity effects, is a particularly difficult fluid for which
to make accurate first-principles-based predictions. Recent work on HF has included that of
Wierzchowski et al. [26,27] 

QUANTUM MECHANICS ON-THE-FLY: THE CAR–PARRINELLO METHOD

The most rigorous simulation method, in principle, for eliminating the pairwise additivity assumption
is that pioneered by Car and Parrinello [28], and is sometimes referred to as QM on-the-fly. In this sim-
ulation method, the interaction energy for the whole assembly molecules and the force on each mole-
cule in the system is calculated from QM at each step in the simulation (time step in MD or a move in
MC simulation). The important advantage of this method is that since the whole assembly of molecules
is considered in the QM calculation, it does not contain the assumption of pairwise additivity. However,
it is limited by the fact that accurate QM calculations for a large number of molecules is computation-
ally extremely demanding, and such a calculation must be repeated at each simulation step.
Consequently, presently low-level QM methods, such as density functional theory, which may not pro-
vide an accurate representation of the van der Waals or dispersion forces, and a limited number of mol-
ecules are used in the simulations. These limitations will disappear as computing power increases,
which suggests that this will be the preferred method of simulation in the future. 

A recent example of using the Car–Parrinello method is that of McGrath et al. [29], who per-
formed MC simulations of saturated water at 473 K. The predicted liquid density was 29.4 % lower, the
vapor density 26.6 % was greater than the experimental values, and the predicted enthalpy of vaporiza-
tion was 8.3 % lower than the experimental value. This work has been extended to other temperatures
[30], and the results show qualitative agreement with, but quantitative deviation from, the experimental
data for all the properties studied. For example, the critical temperature of water, extrapolated from the
simulation results, is 550 K, about 15 % lower than the experimental value. 

An interesting recent suggestion [31] has been to use the Car–Parrinello method (with its limita-
tions on number of molecules and level of quantum chemistry that can be used) for a short simulation,
and then adjust a classical, effective two-body potential to produce approximately the same behavior.
This pairwise additive potential is then used in simulations with a larger number of molecules and over
a greater number of time steps.

USE OF QUANTUM MECHANICS FOR BIG MOLECULES

Molecular orbital (MO) QM calculations for large molecules at a high level of theory are demanding
and may not be feasible with current computer technology. Consequently, hybrid methods are used to
deal with this situation. The basic idea of all such methods is to split the molecule in regions. The prop-
erties of the “active” region believed to be responsible for a given phenomenon, such as the active site
of an enzyme, are computed with a high level of theory, and the “non-active” region, the rest of the mol-
ecule, is treated at a lower level of theory. Though it is difficult to properly handle the transition from
one region to the other. In the IMOMM method of Maseras and Morokuma [32], MO calculations are
used for the “active” region and molecular mechanics (MM) for the “non-active” region. In the IMOMO
method [33], MO calculations are used for both regions, but with different levels of theory. Further sub-
division is possible, as in the ONIOM method by Svensson et al. [34] , in which additional regions are
defined and calculated at different levels of theory. A newer method, ONIOM-XS by Kerdcharoen and
Morokuma [35] in which XS denotes exchange of solvents, has been recently proposed that is poten-
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tially useful for MC simulations of condensed phases. This method provides a way to account for par-
ticle exchange between the QM and MM regions of the model. A review with applications of these
types of methods is provided by Morokuma [36].

USE OF QUANTUM MECHANICS TO DETERMINE PARAMETERS IN EXISTING
THERMODYNAMIC MODELS

The first use in my research group [37,38] of QM methods in applied thermodynamic calculations was
an attempt to improve group contribution methods, such as UNIFAC [39,40]. The general observation
was that group contribution methods became less accurate when there was more than a single strong or
polar functional group on a molecule. From relatively simple single-molecule, ideal gas QM calcula-
tions, we could see that the electrostatic charge on a functional group could change significantly de-
pending on its neighboring groups in the same molecule, especially if the neighboring groups were
polar, and this would affect its interactions with other functional groups. This violates the fundamental
group contribution assumption that the interaction of a functional group with others should be the same
in all molecules in which the group appears. This led us to suggest that instead of the usual empirical
approach of identifying functional groups, one should choose functional groups so that they have no net
charge. In general, this led to larger functional groups, for example, –CH2OH rather than –OH. This
suggestion has never been exploited, though there has been considerable effort devoted to different ap-
proaches, for example, that of Kang et al. [41], that corrects group contribution methods for (at least)
first-neighbor groups.

There are a number of other examples in the chemical engineering literature of using QM to im-
prove applied thermodynamic predictions, or at least to determine the values of some parameters in
commonly used models. For example, Fermeglia and Pricl [42] used QM and MM with MD computer
simulations to estimate parameter values in the perturbed hard-sphere chain theory (PHSCT) equation
of state [43] for chloro-fluoro-hydrocarbons. Fermeglia et al. [44] have also developed ab initio-based
force fields for a number of alternative refrigerants. In a series of papers, Wolbach and Sandler [45,46]
used the results of MO calculations to determine the values of the association parameter in the statisti-
cal association fluid theory equation of state for mixtures containing water, methanol, and other sub-
stances. Also, Yarrison and Chapman [47] have used the results of QM calculations to determine pa-
rameter values in two other forms of the statistical association fluid theory equation of state. 

Another, very different approach was taken by Sum and Sandler [48]. In that work, the minimum
energy configuration for a cluster of 8 molecules, 4 of each species, was obtained, and then nearest-
neighbor interaction energies of those conformations were computed at a higher level of MO theory and
averaged. The interaction energies so obtained were then used to set parameter values in the Wilson [49]
and UNIQUAC [50] activity coefficient models to predict vapor–liquid equilibrium. It was found that
the predictions so obtained with the UNIQUAC equation were almost as accurate as a direct correlation
of experimental data using that model, while the predictions with the Wilson model were quite inaccu-
rate. This led the authors to conclude that the theoretical basis of the UNIQUAC model was superior to
that of the Wilson model, and also suggested that the methods they developed could be used to obtain
missing interaction parameters in the UNIFAC model [39], which is the group contribution version of
the UNIQUAC model.

CONTINUUM SOLVATION MODELS

The discussion so far has been of a completely atomistic description, both in the QM and in simulation.
A different way of proceeding is based on the prediction of the free energy of solvation, that is, the free
energy change on moving a molecule from an ideal gas into a liquid. In these calculations, the solvent
has generally been treated as a continuum characterized by macroscopic properties such as its dielec-
tric constant. If the liquid solvent is the same species as the molecule, the free energy change is related
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to its vapor pressure, while if the liquid is another component, the solvation free energy change is re-
lated to the Henry’s law constant of the solute in the solvent. Similarly, the difference in solvation free
energy for the solute in a mixture and in its own pure liquid is related to its activity coefficient at infi-
nite dilution, and the difference in solvation free energies of the species between water and octanol sat-
urated with water is proportional to its octanol–water partition coefficient. 

Until recently, the solvation process was generally modeled to occur in two steps: first, the
charges on the solute were turned off and the resulting hard, uncharged molecule particle was inserted
into the solvent; and then the charges were turned on. This form of the model was based on the work
of Tomasi and coworkers [53,54] and Truhlar and coworkers [53,54]. In this model, the first step re-
quires the calculation of the free energy of creating a cavity of the proper shape and volume in the sol-
vent to accept the solute, and is referred to as the cavity formation free energy. In our initial work, we
used the Guggenhein-Staverman expression, as in UNIQUAC and UNIFAC, for the cavity free energy.
The free energy change of the second step is referred to as the charging free energy and was calculated
from QM, for which we used density functional theory in the GAMESS program [5]. Also, in these cal-
culations, and others to be considered later, it is assumed that, except for large molecules, there is only
a negligible free energy change due to the fact that the rotational and vibrational motions of the solute
molecule may change when it is transferred from an ideal gas to a solution.

Without dwelling on the details, as a result of extensive QM calculations, we found that the charg-
ing free energies for a molecule type in a given solvent could be correlated to its surface area [55,56],
though, there needed to be a separate correlation for each solute type in each solvent. The results of
using these very simple correlations are surprisingly good for molecules with only a single polar func-
tional group as shown in Fig. 4a. This correlation has been extended to octanol–water partition coeffi-
cients. More recently, Nanu and de Loos [57] and Nanu et al. [58] have developed this method further,
for the use of infinite dilution activity coefficients, especially of aroma compounds in water.

However, there were two problems with this method. First, it was not very accurate for com-
pounds with several strong, polar functional groups. We developed a correction for this using the QM
calculated charge and dipole moment on functional group [55,56] based on a model by Kirkwood [59].
The utility of this correction is shown in Fig. 4b, and also in Fig. 5 for the Henry’s law constants for
395 chemicals in water. However, the second, and more serious problem, with the method is that the
QM solvation free energy calculation has to be repeated for each new solvent, and for each composi-
tion in a mixed solvent.

These problems do not appear in the continuum solvation model developed recently by Klamt et
al. [60–62] referred to as COSMO-RS and the variants by others [63]. In this model, the solvation cal-
culation is a three-step process: first, the charges on the solute are turned off and the resulting hard, un-
charged molecule particle is inserted into a perfect conductor (i.e., a solvent with an infinite dielectric
constant); second, the charges are turned on (this is the QM COSMO calculation done using density
functional theory); and third, the result is corrected for the properties of the real solvent. An important
advantage of this method is that the time-consuming QM calculation for each molecule needs to be done
only once (in a perfect conductor), is independent of the solvent, and so can stored for use with any sol-
vent or solvent mixture in the quick third step of the calculation. In fact, once a library of QM COSMO
calculations has been established, the calculation of phase behavior is comparable in time to group con-
tribution methods such as UNIFAC and requires only a few universal parameters. Also, without modi-
fications, this model provides predictions of essentially equal accuracy for molecules with a single
strong functional group and for molecules with a multiple polar functional groups without any modifi-
cations. There are numerous examples in the literature of the use of this method to predict phase be-
havior; we show only two in Fig. 6. Interestingly, for the second system in that figure, water + n-methyl-
formamide, UNIFAC predictions could not be made because of the unavailability of group–group
interaction parameters. The recent book by Klamt [64] provides a nice description of the method that I
consider this to be the first fundamentally new thermodynamic model to be developed in more than a
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decade, and many examples of its use. As this model is further developed to improve its accuracy, it is
likely to be a replacement for group contribution models. 
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Fig. 4 Prediction from the GCSKOW model [55] with simple group contribution method for 177 monofunctional
and 145 multifunctional compounds. (a) Without multipole corrections, and (b) with multipole corrections. (Here,
by multifunctional compound, we mean a compound with more than a single non-alkyl group.)



SUMMARY

We have tried to give a brief overview of the uses of QM in chemical thermodynamics. The traditional
application to single-molecule ideal gas properties, when done properly, can be expected to result in
heats of formation accurate to about 1 kcal/mol. The ab initio prediction of thermodynamic properties
that result from the interactions between molecules require considerably greater effort and much greater
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Fig. 5 Comparison between calculated and experimental Henry’s law constants for 395 compounds in water at
298.15 K using a continuum solvation model with multipole corrections [56].

Fig. 6 Comparison of vapor–liquid equilibrium predictions from COSMO-SAC [63], UNIFAC [39], and modified
UNIFAC models for water (1)/1,4-dioxane (2) at temperatures 308.15 and 323.15 K. Vapor–liquid equilibrium
predictions from COSMO-SAC for benzene (1)/n-methylformamide (2) (UNIFAC parameters were unavailable for
n-methylformamide).



computational resources than a single-molecule, ideal gas calculation. One method is to use QM to cal-
culate points on the energy landscape between two interacting molecules, which is then fitted to a po-
tential function and can be used to calculate the second virial coefficient, an exact calculation, or in
computer simulation to calculate condensed-phase properties which typically involves the assumption
of pairwise additivity. An alternate, and in principle more rigorous, method is that of Car and Parrinello
in which the interaction energy among the whole assembly of molecules is computed at each step in the
simulation. However, at present, the accuracy of this method is limited as a result of the computer re-
sources needed so that applications have been only to small numbers of small molecules, and using den-
sity functional theory.

Another area in which QM has been used is to determine the values of some of the parameters in
existing thermodynamic models. In this way, parameters have been determined in activity coefficient
(UNIQUAC and Wilson) and equation of state (SAFT and PHCT) models. However, presently, the most
easy-to-use and in many ways most useful QM-based model for thermodynamicists is based on the con-
tinuum solvation model pioneered by Klamt.
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