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Abstract: This paper describes the convergent and stereocontrolled asymmetric total synthe-
sis of (+)-crocacins C and D, potent inhibitors of animal cell cultures and several yeasts and
fungi, and (–)-callystatin A, a potent antitumor polyketide.
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INTRODUCTION

Described herein are some examples of recent work from our laboratory that have led to the synthesis
of bioactive molecules. In this paper, we will discuss our approaches to the total synthesis of (+)-cro-
cacin D (1) [1], (+)-crocacin C (2) [2], and (–)–callystatin A (3) [3] (Fig. 1). We were attracted by their
fascinating biological activities, molecular architectures, and low natural abundance, which makes their
total synthesis extremely important. The synthetic routes were developed in order to be practical enough
to allow the isolation of the desired targets in useful amounts as well as to provide access to new analogs
with potential pharmacological activities. 

*Paper based on a presentation at the 16th International Conference on Organic Synthesis (ICOS-16), 11–15 June 2006, Mérida,
Yucatán, México. Other presentations are published in this issue, pp. 153–291.
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Fig. 1 



TOTAL SYNTHESIS OF (+)-CROCACINS C AND D

The crocacins D (1) and C (2) (Fig. 1) were isolated from Chondromyces crocatus and Chondromyces
pediculatus strains as a second novel group of modified peptides [4,5]. These molecules inhibit the
growth of a few gram-positive bacteria and are potent inhibitors of animal cell cultures and several
yeasts and fungi. Among the compounds of this series, (+)-crocacin D (1) shows higher biological ac-
tivity against Saccharomyces cerevisiae as well as higher toxicity in L929 mouse fibroblast cell cul-
tures, when compared to other crocacins. The relative configurations of crocacins were proposed by
Jansen and coworkers by means of molecular modeling studies and nuclear Overhauser effect (NOE)
experiments [4,5] and further confirmed by total synthesis [6–9]. The promising pharmacological ac-
tivities of the crocacins, together with their structural complexity, have attracted the interest of synthetic
organic chemists and the following groups have completed the total synthesis of these fascinating nat-
ural products: Rizzacasa [6–8], Chakraborty [6–8], and Dias [1,2]. In addition, there are several frag-
ment syntheses and two formal total syntheses recently described by the research groups of Fürstner
and Yadav [9c,9d]. 

To provide material for more extensive biological evaluation, along with access to novel analogs,
we have undertaken the total synthesis of the polyketide (+)-crocacin D (1), the most active compound
in this series. Crocacin D (1) is a dipeptide of glycine and 6-aminohexenoic acid showing four consec-
utive stereocenters, three (E)-double bonds, and a (Z)-enamide moiety, which represents the major syn-
thetic challenge. In a retrosynthetic approach (Scheme 1), we could envisage the C9–Ν10 bond as being
constructed from (Z)-vinyl iodide fragment (3) and crocacin C (2) using a Cu(I)-mediated cross-cou-
pling. Fragment C1–C9, corresponding to (Z)-vinyl iodide fragment (3), is viewed as arising from
methyl ester 4 and carboxylic acid 5. Fragments C11–C13 (E-vinyl stannane 6) and C14–C21 (E-vinyl
iodide 7) in crocacin C could be joined employing a Stille cross-coupling reaction. Fragment C14–C21
(E-vinyl iodide 7) could be derived from epoxide 8.

L. C. DIAS et al.

© 2007 IUPAC, Pure and Applied Chemistry 79, 163–172

164

Scheme 1 Retrosynthetic analysis.



For the synthesis of (E)-vinyl iodide 7, we started from aldol adduct 9, easily prepared from a
syn-aldol reaction (Scheme 2) [1,2]. Aldol 9 was converted to α,β-unsaturated ester 10 in good overall
yields (Scheme 2). Reduction of ester 10 to the allylic alcohol and treatment with m-CPBA provided
epoxide 8 [10]. The stereochemical outcome of this epoxidation reaction is well documented and is con-
sistent with approach of m-CPBA from the side opposite to the OTBS at C19 [10]. The next steps in-
volved epoxide opening and a sequence of deprotection and selective protection to provide diol 11.
Methylation of the hydroxyl groups in 11 and removal of the t-butyldiphyenylsilyl (TBDPS) group gave
alcohol 12. The last steps involved oxidation to the aldehyde and Takai olefination reaction to give
(E)-vinyl iodide 7.

Fragment C11–C13 (E-vinylstannane 6) was obtained from ethyl-2-butynoate in three steps
(50 % overall yield and E/Z > 95:5) [1,2]. Finally, a Stille cross-coupling was the reaction of choice to
connect fragments C11–C13 (6) and C14–C21 (7) providing (+)-crocacin C (2) in 84 % yield
(Scheme 3). The route to crocacin C (2) involved 15 steps from N-propionyloxazolidinone in 21 % over-
all yield [1,2].
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Scheme 2 Synthesis of (E)-vinyl iodide 7.

Scheme 3 Total synthesis of (+)-crocacin C (2).



Our strategy to promote (Z)-enamide moiety formation in crocacin D is based on the elegant
methodologies recently described by Buchwald [11] and Ma [12] and uses Cu(I) to mediate a cross-
coupling between vinyl iodides and amides or carbamates. This methodology allowed us to obtain cro-
cacin D (1) in a convergent way using an efficient copper-catalyzed cross-coupling reaction between
crocacin C (2) and (Z)-vinyl iodide (3) to establish the challenging (Z)-enamide function (Scheme 4).
It is interesting to point out that we were able to isolate small amounts of enecarbamate 13 as a by-prod-
uct, originated from an intramolecular cyclization of 3. 

Our approach required required 16-steps from N-propionyl oxazolidinone and produced crocacin
D in 14 % overall yield [1,2]. We believe the synthetic route described here to crocacin D should afford
access to promising novel analogs with potential relevance to biological studies.

TOTAL SYNTHESIS OF (–)-CALLYSTATIN A

The potent antitumor polyketide (–)-callystatin A (3) was isolated in very small amounts (1 mg from
100 kg of sponge) by Kobayashi and coworkers in 1997 from the marine sponge Callyspongia truncata
(Fig. 1) [13–15]. (–)-Callystatin A (3) shows remarkable high activity (IC50 = 10 pg/mL) against KB
tumor cell lines and 20 pg/mL against L1210 cells [13–15]. This fact, in addition to its structural com-
plexity, has attracted the interest of synthetic organic chemists. The first total synthesis of (–)-callystatin
A was reported in 1998 by the Kobayashi group [16a,17,18]. So far, the following groups have com-
pleted the total synthesis of this fascinating natural product: Kobayashi [16a], Crimmins [16b], Smith
[16c], Kalesse [16d,h], Enders [16e], Marshall [16f], Lautens [16g], Panek [16i], and Dias [3].

Attracted by its potent cytotoxicity, and to provide material for more extensive biological evalu-
ation, along with access to promising novel analogs, we have undertaken the total synthesis of
callystatin A.

Our retrosynthetic analysis is illustrated in Scheme 5. A Suzuki-type coupling approach is viewed
as being applied to join fragments C1–C11 (14) and C12–C22 (15) [19]. Fragment C1–C11 (14) arises
from aldehyde 16 (C1–C6 fragment) and phosphonium salt 17 (C7–C11 fragment). Fragment C12–C22
(15) is viewed as being prepared from epoxide 18, available from Weinreb amide 19 [19]. This Weinreb
amide could be derived from an Evans-type aldol reaction.
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Scheme 4 Total synthesis of crocacin D (1). 



Our starting point was the synthesis of aldehyde 16, which was easily prepared in few steps from
L-malic acid in high yields [19]. The carbonyl group at C1 in aldehyde 16 needs to be masked as an ac-
etal, which can be hydrolyzed under mild acidic conditions and oxidized to yield the α,β-unsaturated
lactone at a later stage in the synthesis. Phosphonium salt 17 was prepared in excellent overall yield
after a few steps from methyl 3-hydroxy-(R)-2-methyl propanoate [19].

The aldehyde 16 was then coupled with phosphonium salt 17 in the presence of LiCH2S(O)CH3
in toluene at –78 °C, leading to diene 20 in 82 % yield (Scheme 6). After removal of the silyl protect-
ing group, the resulting primary alcohol was treated with I2, PPh3, and imidazole in CH2Cl2 to give
alkyl iodide 14 (C1–C11 fragment of (–)-callystatin A) in 90 % yield (Scheme 6). This reaction se-
quence completed the synthesis of alkyl iodide 14 in 12 steps and 25 % overall yield [19].
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Scheme 5 Retrosynthetic analysis.



With efficient access to alkyl iodide 14, construction of the vinyl iodide 15 was initiated
(Scheme 7). For the synthesis of vinyl iodide 15, an asymmetric aldol addition of the boron enolate de-
rived from oxazolidinone 21 with 2-(S)-methylbutanal 22 gave aldol adduct 23 (89 %, ds > 95:5)
(Scheme 7) [19,20]. This aldol adduct was transformed to allylic alcohol 24 in good overall yields.
Epoxidation of allylic alcohol 24 with m-CPBA in CH2Cl2 at 0 °C gave epoxy alcohol 18 (96 % yield,
>95:5 ds) [10].

Treatment of epoxide 18 with Me2CuCNLi2 in THF at –20 °C gave diol 25 (90 % yield)
(Scheme 8) [21].

Treatment of the 1,3-diol 25 under Swern conditions promoted a selective oxidation of the pri-
mary alcohol to provide a β-hydroxy aldehyde, which after coupling with carboethoxyethylidene-tri-
phenylphosphorane gave α,β-unsaturated ester 26 (89 %, E:Z > 95:5) (Scheme 8). Reduction of ester
26 to the allylic alcohol followed by oxidation with activated MnO2 gave an intermediate aldehyde. At
this point, it became necessary to protect the OH-function at C17 in the aldehyde as its TMS ether, in
order to promote the Takai olefination reaction [22]. Under standard conditions, (E)-vinyl iodide 27 was
obtained in 45 % overall yield after 4 steps (E:Z > 95:05). The TMS group was then easily removed by
treatment of vinyl iodide 27 with EtOH in the presence of catalytic amounts of CSA (96 % yield) giv-
ing vinyl iodide 15.
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Scheme 6 Coupling between aldehyde 16 and phosphonium salt 17. 

Scheme 7 Preparation of epoxide 18.



With the two fragments in hand, we were now poised to assemble the target molecule (Scheme 9).
Gratifyingly, the coupling of fragments C1–C11 and C12–C22 was achieved through the use of a
Pd-catalyzed coupling of an intermediate boronate derived from 14 with vinyl iodide 15 [16f,23].
Treatment of the boronate intermediate derived from alkyl iodide 14 with vinyl iodide 15 in the pres-
ence of Pd(dppf)Cl2, AsPh3, Cs2CO3, and water in dimethylformamide (DMF) gave lactol 28 in 67 %
yield, together with α,β-unsaturated aldehyde 30 [16f,23]. 
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Scheme 8 Synthesis of vinyl iodide (15). 

Scheme 9 Suzuki coupling.



The last steps in the synthesis proved to be challenging. Fortunately, it was found that when 28
was treated with AcOH:THF:H2O (1:5:1) at ambient temperature for 72 h, hydrolysis of the C1 acetal
took place smoothly to provide lactol 29 in 38 % overall yield, along with α,β-unsaturated aldehyde 30
(25 % yield) [3,16g].

The last steps in the synthesis involved oxidation of lactol 29 to hydroxy lactone 31 with MnO2
in CH2Cl2 at ambient temperature (72 % yield), Dess–Martin [24] periodinane oxidation of the
C17–hydroxyl function to the keto-lactone 32 (81 % yield), and TBS removal at C19 with HF-pyridine
in THF/pyridine to provide (–)-callystatin A (77 %) (Scheme 10) [3]. 

In summary, a convergent total synthesis of the marine natural product, (–)-callystatin A, was
completed. The synthesis was accomplished in 19 steps over the longest linear sequence and provided
the desired target in 3.5 % overall yield starting from readily available N-propionyl oxazolidinone 21.
We believe the methodology described here to (–)-callystatin A should afford access to promising novel
analogs with potential relevance to biological evaluation.
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Scheme 10 Total synthesis of (–)-callystatin A.
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