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Abstract: We employ the reference interaction-site model (RISM) theory for solvation dy-
namics of simple ions in acetonitrile. For the description of time evolution of solvent relax-
ation, we apply the mode-coupling theory recently developed by Yamaguchi and coworkers
[Mol. Phys. 101, 1211 (2003)]. The combination of the RISM/mode-coupling theory is used
for the calculation of the dynamic response function, SS(t), which measures the relaxation of
average energy of the solute–solvent system. SS(t) decays with the Gaussian plus under-
damped curves in the time duration of first 1 ps, followed by slow, long-tailed components
down to tens of picoseconds. We show that the RISM/mode-coupling framework is applica-
ble rather well for the detailed description of solvation dynamics at the molecular level. 

INTRODUCTION 

The time-dependent response of solvent molecules owing to instantaneous changes of the electronic
structure of solute has been a target of intensive research, because of their tight connection with chem-
ical reaction dynamics in solution. This type of solvent response, usually referred to as solvation dy-
namics, has been understood in relation to the solvent fluctuation. The time duration of solvent fluctu-
ation that is responsible for solvation dynamics varies from tens of femtoseconds to some hundreds of
picoseconds at room temperature. Time-resolved methodologies, covering the time domain mentioned
above, have thus been utilized to reveal molecularity of the solvent fluctuation. In particular, femto-
second–picosecond laser spectroscopy [1–10], molecular dynamics simulations [11–15], and various
series of theories [16–27] have been regarded as useful devices to make us accessible to such ultrafast
phenomena. In this sense, we have performed transient hole-burning (THB) and time-resolved fluores-
cence (TRF) spectroscopy of dye molecules in various polar solvents [7,8,10]. On the basis of the spec-
tra observed, we can define the dynamic response function of the average-energy relaxation of the
solute–solvent system: 
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where v~(t) denotes the first moment of the spectral function at time t when the solute is excited at t = 0.
In a conventional analysis, the maximum of the THB or TRF spectra is chosen as v~(t). 

By virtue of studies particularly targeting at the ultrafast time domain reported elsewhere
[1,2,6,11], we may accept a general scenario concerned with relaxation processes as follows: Within
100 fs after the excitation, some solvent molecules in the vicinity of solute fluctuate with small angles,
which we call the librational motion. This fast relaxation process is responsible for the essential com-
ponent (>70 %) for Se(t). The other part followed by the fast process explained above has slow compo-
nents up to picoseconds, which is commonly ascribed to diffusive motions. Our interests are how chem-
ical and physical properties of solute and solvent characterize the entire relaxation picture. 

For this purpose, some of the present authors have developed the theoretical approach by means
of the reference interaction-site model (RISM) theory as published elsewhere [19,23,27]. Relying on
the RISM theory, one can especially obtain molecular view regarding the static description of solute and
solvent. In our previous handling, we have coupled the RISM theory with the site–site
Smoluchowski–Vlasov (SSSV) equation proposed by Hirata [28], for the sake of description of time
evolution of solvent relaxation. In the scheme of the RISM/SSSV theory, we solve a Smoluchowski-
type equation for atoms with a Vlasov-type mean-field term, incorporated with the RISM representa-
tion. Hirata and coworkers [19] have applied the RISM/SSSV framework to the solvation dynamics of
simple ions in polar solvents, and have found that the theory is applicable to capture essential view of
solvation processes. Nishiyama and coworkers [22,23,27] have extended this treatment toward more re-
alistic solute–solvent systems employed in actual laser experiments. Even though the RISM/SSSV han-
dling works suitably for solvation dynamics, however, we indeed need a more authentic procedure cov-
ering the non-Markovian region of solvent motions, which has not been accessible very well by the
previous works. Such an update of the theory can help us discuss more practical snapshots concerning
the solvation profile. 

In the present contribution, we use a mode-coupling theory for the purpose of more realistic de-
scription of time evolution of solvent relaxation. Chong and Hirata [29,30] have developed the mode-
coupling theory incorporated with the RISM theory, and they have proven that the combination of the
two theories can be applicable well for the description of dynamics of molecular liquids. Followed by
their reports [29,30], two of the present authors, Yamaguchi and coworkers have recently applied the
mode-coupling theory to more realistic mechanisms of chemical phenomena; the shear molecular vis-
cosity coefficient [31], reorientation of molecular liquids [32], or the dielectric relaxation spectrum
[33]. Hereafter, we call the last publication [33] “Paper I”. In particular, in Paper I they have presented
that the combination of the site–site generalized Langevin equation and mode-coupling theory is appli-
cable fairly well. In this report, we employ the mode-coupling theory for the solvent dynamics under
the framework presented by Paper I, whereas for the static part we keep relying on the RISM theory
used in our previous works [19,22,23,27]. 

RISM/MODE-COUPLING THEORY 

We just outline the theoretical formulation for solvation dynamics employed in the present work. For
the details regarding the general description of solvation dynamics by the RISM theory, the reader is re-
ferred to our previous publication [19,27] and the references therein. 

As a common practice for theories and simulations, the corresponding quantity of eq. 1, which is
measured by experiments can be defined as: 

(2)

where δε(t) stands for the solvation-energy change at time t = t, and the overbars denote an average con-
cerning solutes under the experimental observation. The physical meaning of SS(t) is identical to Se(t)
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in eq. 1, which indicates the time-dependent relaxation of average energy of the solute–solvent system.
We replace the subscript only for the sake of clarifying the method used to obtain these functions.
Within the linear response approximation, we reduce eq. 2 to: 

(3)

where <•> expresses an ensemble average over the solvent configuration around solute in the electronic
ground state. By means of the surrogate approximation, a site–site description of eq. 3 is given as [18]: 

(4)

where k is the wave vector. F(k,t) means the intermediate scattering function of neat solvent, from which
the entire dynamic response of solvent can be characterized. The crucial point of the present paper is
that we employ the generalized Lengevin equation/mode-coupling theory to obtain F(k,t) as reported in
Paper I. Here, let us step onto the explanation of Bjj’(k) concerned with the solute–solvent coupling: 

(5)

where λλ’ represents the intramolecular correlation function with the solute-sites λ and λ′. ∆ (k) =
E

λj(k) - G
λj(k) where D

λj(k) (D = G or E) means the solute–solvent coupling. Regarding the photo-
excited states of solute, the labels G and E specify the ground and excited states, respectively. The sub-
script j denotes the solvent site. For the sake of simplicity, we can replace the vertical energy gap of the
ground and excited states of solute with the solute–solvent direct correlation function, cλj(k), which
leads to [18,19]: 

(6)

with kB and T the Boltzmann constant and temperature, respectively. We employ the extended RISM
theory to define cλj(k) [34]: 

(7)

where hλj and hjj ′ are the pair correlation functions labeled by the solute and solvent sites λ and j, re-
spectively. In eq. 7, we use asterisks to express the convolution integrals. ρ stands for the bulk density
of solvent. As a closure relation for eq. 7, we employ the hypernetted-chain (HNC) approximation. 

RESULTS AND DISCUSSION

We first describe our system investigated in this study. We employ acetonitrile as a representative of
polar aprotic solvent, employing a model description proposed by Edwards and coworkers [35]. We use
two types of solutes: one is a chloride ion “Cl–”, keeping neutral in electronic charge before t < 0 and
put –1.0 e at t = 0. Another is a model solute “S+” using for the sake of comparison with the results by
molecular dynamics simulation reported by Maroncelli [11], where we change the charge as S → S+1.0

at t = 0. As the intermolecular site–site interaction, we choose an additive pairwise potential function
of the Lennard–Jones plus Coulomb term, uαβ: 

(8) 
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where α and β represent the interaction-site of either solute or solvent. qγ (γ = α or β ) stands for the
charge put on the corresponding site. ε and σ have usual meaning. T = 298 K is chosen throughout the
calculation. Precisely, we use the Lorentz–Berthelot combination rule for interaction between the dif-
ferent species. On the other hand, the parameters for interactions between the same species are chosen
as listed in Table 1. 

Table 1 Solute and solvent models used for the RISM theory.

(εαβ / kB)/K σαβ/Å Charge/e

Solutes Cl → Cl– 60 4.41 0 → –1.0
“S” → “S+” 38 3.1 0 → +1.0

Solvent Me 191 3.6 0.269
(acetonitrile) C 50 3.4 0.129

N 50 3.3 –0.398

Figure 1 depicts SS(t) obtained by the mode-coupling theory in the present work, associated with
Cl → Cl– in acetonitrile. With the mode-coupling theory, SS(t) starts to decay with the Gaussian-like
curve, which is responsible for >80 % of the relaxation achieved in 150 fs. Followed by the fast relax-
ation, the underdamping component emerges with the period around 300 fs, decreasing the amplitude
with time evolution. Within 1 ps, 90 % of the decay is achieved, but this is not the very end of the re-
laxation process. We also find the slower curve with the lifetime in a couple of picoseconds. Such a time
profile of SS(t), in particular in the earlier stage up to 1 ps, agrees with a conventional view of solvation
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Fig. 1 The relaxation processes of SS(t) for Cl → Cl– in acetonitrile. The solid and dashed lines indicate the mode-
coupling theory (this work) and SSSV equation [23], respectively, which are used along with the RISM theory. The
identical data-sets obtained by both theories are illustrated, changing the time domain focused as: (a) from 0 ps
down to 1 ps, and (b) to 10 ps. 



processes. The Gaussian plus underdamping decays are attributed to libration of solvent, as discussed
elsewhere [1,2,6,11]. The slower component for the duration of picoseconds is assigned to be a diffu-
sive origin. 

As a comparison, Fig. 1 also illustrates our previous result by means of the SSSV equation [23].
In this case, SS(t) misses the Gaussian decay and the underdamping profile in the very first stage of the
relaxation. In the RISM/SSSV framework we employed previously, we took a diffusion constant ma-
trix as an empirical parameter [19,22,23,27]. As most of nondiffusive origins are not reflected in the
SS(t) curve calculated by the SSSV equation, characteristic features for the decay regarding solvent li-
bration can be lost. This is a plausible explanation for the outstanding differences of the curves, by their
appearances, depending on the methods concerning the dynamics part we have used. 

Regarded as one of the benchmarking work of this research field, Maroncelli has performed mo-
lecular dynamics simulations of various simple solutes [11]. Figure 2 compares our present work with
the nonequilibrium simulation by Maroncelli [11], keeping the solute–solvent system identical. Our re-
sult using the mode-coupling theory reproduces the simulation well, especially in the time domain ear-
lier than 200 fs. From a quantitative point of view, general features of the rest part are similar to each
other, even though our curve emphasizes the amplitude of the damping. 

So far, we have revealed that the combination of the RISM and mode-coupling theory is appro-
priate for the description of solvation dynamics. Having in mind that the theoretical combination used
presently works well, we should revisit Fig. 1. Although the mode-coupling theory drastically upgrades
SS(t) in more realistic manner, the curve obtained by the RISM/SSSV theory captures essential charac-
ters of relaxation. Within the time region of first 200 fs, the SSSV-work decays quantitatively close to
the present result, irrespective of the Gaussian plus underdamping nature. Even more, the SSSV-work
has reproduced the slower relaxation with the lifetime in picoseconds, apart from the numerical dis-
crepancy in the amplitude [23]. At the present point of the investigation, we suggest that the memory
of solvent friction which is not incorporated in the RISM/SSSV theory causes the deviation between the
decays obtained by two different theories. 

In the present study we have used very simple solute–solvent systems, demonstrating the appli-
cability of the RISM/mode-coupling theory. Various investigations [14,27] have shown that the geo-
metrical shape and charge distribution of solute largely affect SS(t). Because experimentalists generally
do not choose simple ions as solutes, further studies using more realistic model solutes are indeed de-
sirable. Such a development in the RISM/mode-coupling scheme is really straightforward. On the other
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Fig. 2 SS(t) for the model solute “S” → “S+” in acetonitrile. The solid line stands for the result of the RISM/mode-
coupling theory. Also shown in the dotted line is the literature data obtained by nonequilibrium molecular dynamics
simulation, performed by Maroncelli [11]. 



hand, the chemical variety of solvent has been very much to the point in solvation dynamics. The ex-
tension of solvents toward water and alcohols, for example, is also in our concern [36]. 

CONCLUDING REMARKS

In this publication, we have applied the combination of the RISM and mode-coupling theories to sol-
vation dynamics. We have chosen acetonitrile as a representative of a polar aprotic solvent, and have
used simple model ions as solute. The RISM/mode-coupling theory turns out to be a powerful tool for
realistic descriptions of solvation dynamics in femtosecond-picosecond regions. The dynamic response
function SS(t), which gauges the relaxation of average energy of the solute–solvent system, has been
calculated. Within 1 ps, SS(t) decays by 90 % with the Gaussian type followed by underdamping curve.
The general profile of the decay is in agreement with other investigations published elsewhere
[1,2,6,11].

In the conventional context, the mode-coupling theory has been developed for investigation con-
cerned with “slow” phenomena, say, glass dynamics. Yamaguchi and Hirata [32] have recently applied
the RISM/mode-coupling theory for reorientational relaxation of molecular liquids, and in the present
paper we have further extended the use of this framework to solvation processes. 

As a perspective of our investigation, we are now extending the present theoretical formula to-
ward more realistic solute–solvent systems employed in laser experiments. By varying the chemical na-
ture of solute and solvent, we can obtain further molecular view concerning the decay profile of SS(t).
On the other hand, in our recent reports [22,27] we have decoupled SS(t) into the acoustic mode, or
translational motion of solvent, and the optical mode, or solvent rotation, respectively, under the
RISM/SSSV theory. This decomposition has made us access to detailed molecular origin of the solvent
dynamics. Powered by the theoretical formula we have developed in this work, we are also decoupling
SS(t) into each solvent mode. These efforts mentioned above will be published as our next report [36].
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