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Abstract: Some seven years have passed since the U.S. legislature mandated the
Environmental Protection Agency (EPA) to develop and implement a screening and testing
program for chemicals that may disrupt the delicate endocrine system. The envisioned EPA
program has evolved to incorporate a tiered scheme of in vitro and in vivo assays, and con-
sidered QSAR as a viable method to set testing priorities. At the U.S. Food and Drug
Administration's (FDA) National Center for Toxicological Research (NCTR), the Endocrine
Disruptor Knowledge Base Project has developed models to predict estrogen and androgen
receptor binding. Our approach rationally integrates various QSAR models into a sequential
“Four-Phase” scheme according to the strength of each type of model. In four hierarchical
phases, models predict the inactive chemicals that are then eliminated from the pool of chem-
icals to which increasingly precise but more time-consuming models are subsequently ap-
plied. Each phase employs different models selected to work complementarily in represent-
ing key activity-determining structure features in order to absolutely minimize the rate of
false negatives, an outcome we view as paramount for regulatory use. In this paper, the
QSAR models developed at NCTR, and particularly how we integrated these models into the
“Four-Phase” system will be discussed for a number of datasets, including 58 000 chemicals
identified by the U.S. EPA.

INTRODUCTION

A large number of environmental chemicals are suspected of disrupting endocrine function by mim-
icking or antagonizing natural hormones in experimental animals, wildlife, and humans. There is grow-
ing concern among the scientific community, government regulators, and the public that these en-
docrine-disrupting chemicals (EDCs) in the environment are adversely affecting human and wildlife
health [1,2]. Adverse outcomes have been observed in experimental animals and wildlife; potential ef-
fects on humans include reproductive and developmental toxicity, carcinogenesis, immunotoxicity, and
neurotoxicity, among others [3]. EDCs may exert adverse effects through a variety of mechanisms, such
as estrogen receptor (ER)-mediated mechanisms of toxicity. 

The scientific debate surrounding EDCs has grown contentiously, in part owing to the fact that
some suspected EDCs are produced in high volume, and many chemicals are economically important.
These public and regulatory concerns led to government regulatory actions [4] and expanded research
across Europe, Japan, and North America. The U.S. Congress in 1996 mandated that the Environmental
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Protection Agency (EPA) should develop a strategy for screening and testing a large number of chem-
icals found in drinking water and food additives [4] for their endocrine disruption potential. In response
to Congressional action, the EPA established the Endocrine Disruptor Screening and Testing Advisory
Committee (EDSTAC), which includes scientific expertise from government, academia, and industry.
EDSTAC recommended a two-tier (Tier 1: screening and Tier 2: testing) strategy to screen and test es-
trogenic, androgenic, and thyroidal activities for a large number of chemicals. To accomplish this,
chemicals will be screened (Tier 1) using a multiple endpoint strategy that includes more than 20 dif-
ferent in vitro and in vivo assays recommended by EDSTAC [5]. Although more than ~87 000 chemi-
cals were initially selected for evaluation, many are polymers, leaving about ~58000 chemicals for eval-
uation in Tier 1. The number that will progress to the testing step (Tier 2) [6], is not known. Processing
chemicals through both tiers will require many years and extensive resources. Hence, the EPA has
adopted an approach requiring priority setting before Tier 1 (<www.epa.gov/scipoly/oscpendo/>). 

Among the types of hormonal activities, estrogenic activities have been most widely studied.
Estrogenic endocrine disruption can result from a variety of biological mechanisms. We found a strong
linear correlation among a diverse group of chemicals between binding affinities with the ER from the
rat uterine cytosol and those with the human ER of the α-subtype [7]. Furthermore, the rat ER binding
data also correlates strongly with the results from assays measuring estrogenicity using downstream
events, i.e., the yeast-based reporter gene and the MCF-7 cell proliferation assays. Importantly, chemi-
cals positive in uterotrophic responses (in vivo estrogenic activity) are also positive in the ER binding
assay, indicating that binding affinity is a good predictor of in vivo activity with few false negatives ob-
served [8]. These findings demonstrate that ER binding is the major determinant for estrogenic EDCs,
and therefore the prediction of the rat ER binding affinity provides an important piece of information
for priority setting. 

Structure–activity relationship (SAR) and/or quantitative structure–activity relationship (QSAR)
models have proven their utility, from both the pharmaceutical and toxicological perspectives, for iden-
tification of chemicals that might interact with ER. While QSAR models (QSAR is used hereafter to
encompass models that predict activity on either an ordinal or categorical scale rather than only on a
quantitative scale) in pharmaceuticals identify high-affinity ligands, they are particularly effective in
toxicology in separating active and inactive chemicals, and in rank-ordering chemicals according to po-
tency. Developing a useful QSAR model heavily depends on many factors, particularly, including the
quality of biological data, the descriptor selection, and the choice of statistical approaches. Since any
QSAR approach has strengths and weaknesses, the careful selection of a specific model or a combina-
tion of models needs to be done in accordance with the intended application.

This review first summarizes our motives and efforts to set up a robust training set (the NCTR
dataset) for developing ER QSAR models. The development and validation of the QSAR models to
predict ER binding is then described, as well as the rationale for integrating models into a hierarchical
scheme for use in priority setting of potential estrogenic EDCs. The review will conclude with a dis-
cussion of some key issues for applying QSAR models for regulatory purposes.  

NCTR ER DATASET: A ROBUST TRAINING SET FOR QSAR DEVELOPMENT

Although an effective QSAR model depends on a number of factors, the most critical is a training set
with high-quality biological data. It is desirable that the training set has the biological data coming from
the same assay protocol, and contains a sufficiently large number of chemicals with diverse structure.
Most importantly, both the biological activity/potency data and structural characteristics in terms of var-
ious descriptors are evenly distributed as far as possible in a range reflecting the domain in which chem-
icals to be predicted are located. 

A number of QSAR models for ER binding developed several years ago [9–13], including some
of our early works [14–17], were based on datasets available in the literature. These datasets were too
small and/or lacked structural diversity [11,12,14]. Although these models yield good statistical results
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in the training and cross-validation steps and explain some structural determinants for ER binding, they
had limited applicability in predicting the ER-ligand binding affinity of chemicals that, in fact, cover a
wide range of structural diversity.

In order to obtain an adequate training set to develop more robust QSAR models, we developed
and validated a rat ER binding assay and assayed 232 chemicals [18,19]. The ER binding activity is rep-
resented by relative binding affinity (RBA), where the RBA value for the endogenous ER ligand,
17β-estradiol (E2), was set to 100. This NCTR dataset contains chemicals that were selected to cover
the structural diversity that bind to ER with an activity distribution ranging over six orders of magni-
tude. Figure 1 compares the chemistry space/domain of the NCTR dataset with other literature datasets
used for early ER QSAR models. 

DEVELOPMENT OF QSAR MODELS FOR ER BINDING

We evaluated a number of QSAR approaches useful for predicting ER binding affinity ranging from
simple rejection filters often used for drug-like chemical identification to more sophisticated QSAR
models often used in the lead optimization. The methods selected for the four-phase approach are dis-
cussed below.

Rejection filters

Rejection filters are useful to quickly exclude chemicals from further evaluation. We investigated vari-
ous physicochemical parameters to use as rejection filters. The ideal filter to be used in the earliest stage
of modeling should (1) not generate any false negatives and (2) be able to significantly reduce the num-
ber of chemicals for further evaluation. Two rejection filters, molecular weight range and lack of a ring
motif, were found to satisfy the two criteria. Chemicals matching any one of these two filters were ex-
cluded from subsequent models. The first rejection filter is a molecular weight range, set to <94 and
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Fig. 1 Comparison of structural diversity of NCTR, Waller, and Kuiper datasets in a chemistry space defined by
three principal components (PC) of structural descriptors. 



>1000. The molecular weight of phenol, 94, was considered as the lowest limit for a chemical to bind
to ER, whereas a molecular weight of 1000 was considered as the upper limit. The second rejection fil-
ter requires that an ER ligand contains at least one ring structure of any size based on the finding from
a large literature survey that no known estrogens were found to lack a ring [20].

Structural alerts

Structural alerts are key 2D structural fragments associated with ER binding. Figure 2 depicts the three
structural alerts, i.e., the steroid, DES, and phenolic skeletons, selected to identify potential ER binders.
Each alert independently characterizes a unique structural feature important for the ER binding. Any
chemicals containing any one of these structural alerts are considered to be a potential ER binder.

These three substructures were selected as structural alerts because the length and width of both
steroid and DES skeletons conform well to the dimension of the ER binding pocket. In addition, while
most endogenous hormones contain the steroid skeleton, most strong estrogens have two benzene rings
separated by two carbon atoms [20]. It has been long understood that the phenolic ring is often associ-
ated with estrogenic activity [21]. In fact, the contribution of the phenolic ring in ER binding is much
more significant than any other structural feature [20]. By overlaying the crystal structure of ER com-
plexes of E2, 4-hydroxytamoxifen, raloxifene, and DES based on their common protein residues at the
binding site, we found that the phenolic rings of all four of these ligands are closely positioned at the
same location as shown in Fig. 3, allowing hydrogen bond interactions with Glu 353 and Arg 394 of
the receptor and a water molecule [22].

Pharmacophore queries

The pharmacophore is represented as a 3D arrangement, in which such molecular features as H-donor,
H-acceptor, and hydrophobic center are positioned and combined with a certain geometry, that is sup-
posedly needed for a molecule to exhibit a certain type of biological activity [23]. The pharmacophoric
arrangements are used as the queries. A query-matched chemical is considered positive and segregated
for further evaluation. One of the advantages of the 3D pharmacophore searching is that it can identify
chemicals whose 3D structures are similar to the template structure (normally, a highly active chemi-
cal) that may not be discernable by chemists in 2D. 

The bound ligand-ER crystal structures [24,25] guided our selection of pharmacophore queries.
Using 3D structures of E2, raloxifene, 4-hydroxytamoxifen, and DES in the ER-bound conformation as
templates, all possible molecular features as well as molecular shapes were delineated. For each tem-
plate, any of three to six features were combined to form pharmacophore queries. These queries were
sorted according to their discriminatory power to separate active from inactive chemicals in the NCTR
dataset. A chemical with any of multiple 3D conformations (up to 100) [26–28] matching the query was
considered to be active. Queries with high discriminatory power were further evaluated for their bio-
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Fig. 2 Three structural alerts defined by 2D substructural features commonly observed for ER ligands.



logical relevance based on careful SAR examinations of a large number of chemicals for their binding
affinities to ER [20] in conjunction with analysis of the ligand-ER crystal structures [24,25]. Finally, the
Tanimoto similarity score was used to determine the uniqueness of each query. Through this process,
we identified seven queries that provide unique pharmacophoric signatures for the ER binding (Fig. 4).
A chemical could match none, a few, or many of the seven separate queries. We generally found that
the number of matches increased in direct proportion to measured activity among the training-set chem-
icals. Thus, the number of pharmacophore matches could be used to rank-order chemicals in accordance
with the potential activity. 

CLASSIFICATION MODELS 

Classification is a supervised learning technique that provides categorical prediction (e.g., active/inac-
tive). A number of classification methods were evaluated to categorize chemicals as ER binders or non-
binders. While the methods differ in a number of ways, they generally produce similar results [29]. We
found that the nature of the descriptors used, and more specifically the effectiveness in which descrip-
tors encode the structural features of the molecules related to the ER binding activity, is far more im-
portant than the specific method employed. The selection of biologically relevant descriptors is the crit-
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Fig. 3 Relative positions of estradiol (E2), DES, raloxifene, and 4-hydroxytamoxifen (OHT) in the complex with
ER.

Fig. 4 Seven pharmacophore queries where green mesh balls represent H-bond acceptor sites, blue mesh balls
represent hydrophobic centers and yellow mesh balls represent aromatic centers. Solid white surfaces represent
shape constraint.



ical step to develop a robust model. We found the Genetic Algorithm to be the preferred method to iden-
tify the most biologically relevant descriptors from a large set of descriptors. 

For example, using the best 10 descriptors selected by the Genetic Function Approximation ap-
proach [30,31] from among 153 descriptors, we were able to construct a Decision Tree model for the
classification. The model displays a series of YES/NO rules to classify chemicals into active and inac-
tive categories based on five meaningful descriptors: the Phenolic Ring Index (0 or 1), log P, two types
of parameters related to the charged partial molecular surface area, and a geometric descriptor con-
nected with the breadth of the molecule. The model identified the Phenolic Ring Index as the most im-
portant descriptor for ER binding. If chemicals contained a phenolic moiety but also had log P values
larger than 1.49, they were more likely to be ER binders. In contrast, chemicals without a phenolic moi-
ety were less likely to be ER binders unless they had relatively large hydrophobicity and charged sur-
face area, and breadth of the structure. 

3D-QSAR/CoMFA model 

We evaluated three different techniques for the QSAR modeling—CoMFA, CODESSA
(COmprehensive DEscriptors for Structural and Statistical Analysis), and HQSAR (Hologram
QSAR)—for their utility (predictivity, speed, accuracy, and reproducibility) to quantitatively predict the
ER binding activity [16,22]. For three relatively small datasets under investigation, the CoMFA and
HQSAR procedures were of a comparable high performance [16]. These two procedures were further
investigated and compared, particularly for their predictivity, by using the NCTR dataset and two other
test sets [22]. We found that CoMFA performed better for the training set as well as for predicting two
different test sets. 

To develop a CoMFA model, the molecules of interest must first be aligned to maximize super-
position of their steric and electrostatic fields in 3D. The critical and difficult aspect of the CoMFA pro-
cedure is choosing the most appropriate set of alignment rules for a structurally diverse training set.
Fortunately, crystal structures of the ER complex of four ligands were published [24,25] that aided the
derivation of rational CoMFA alignment rules. The CoMFA model based on the crystal structure-guided
alignment is statistically robust. With the conventional r2 = 0.91 (r: the correlation coefficient) and the
cross-validated q2 (leave-one-out) = 0.66, (q: the predictive correlation coefficient) indicating that it is
both internally consistent and highly predictive. 

Model validation 

Concordance, specificity, and sensitivity [32] are commonly used to assess the quality of a classifica-
tion model, while a quantitative regression model is assessed using r2 [14]. The current challenge in
QSARs is no longer in constructing a model that is statistically sound to predict the activity within the
training set, but in developing a model with the capability to accurately predict the activity of untested
chemicals. Most experts in the QSAR field, as well as the present authors, assert that a model’s predic-
tive capability at least needs to be demonstrated using some sort of cross-validation procedure. All mod-
els developed in our laboratory are validated using the leave-one-out technique for quantitative models
and leave-10-out for qualitative models. It is worthwhile to point out that cross-validation methods only
assess the interpolation within the training set, and have a limited ability to validate the prediction of
untested chemicals that are structurally different from the training-set chemicals. 

When additional data are available, the models are validated by predicting chemicals, not used in
the training set but with the known activity data (the test set). The major difference between the cross-
validation and external validation is that the chemicals selected in the latter case are in a sense of ran-
domness, providing a more rigorous evaluation of the model’s predictive capability for untested chem-
icals. We strongly believe that the confidence in a model’s predictive capability can be tested and
validated when predictability has been demonstrated on an external test set.
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It is usual that the QSAR training set barely contains enough chemicals to develop a statistically
robust model such that setting aside chemicals for use in external validation (10~20 % of the dataset is
recommended) is not possible. One approach for selecting a test set is to identify datasets in the litera-
ture with the same type of activity. In such cases, care must be taken to avoid interlaboratory and assay
variability among different data sources. It is desirable that the potential test set has activity data meas-
ured in an assay protocol as similar as possible to that for the training set to keep the variability at min-
imum. Another important consideration in selecting the test set is to ensure that chemicals in the dataset
relate to the real problem in question. Based on these considerations, the datasets reported by Kuiper et
al. [33], Waller et al. [10], and Nishihara et al. [34] were selected as test sets. In Kuiper’s study, the pure
human ERα was used, whereas the mouse uterine cytosol that primarily contains ERα was used in
Waller’s data. The Nishihara dataset contains 517 chemicals tested with the yeast two-hybrid assay, of
which over 86 % are pesticides and industrial chemicals.

NCTR “FOUR-PHASE” SYSTEM AS A PRIORITY SETTING TOOL FOR REGULATORY
APPLICATION 

The objective of priority setting is to rank order, from most to least importance, a large number of chem-
icals to undergo more resource-intensive experimental evaluations. The strategy of QSAR is highly de-
pendent on the application domain and goals. The QSAR used in drug discovery is to increase the
chance of finding active chemicals or “hits” that may become “lead” chemicals, and false positives are
of great concern. In contrast, a good priority setting method for the regulatory application should have
minimal false negatives. False negatives constitute a crucial error, because they will be assigned a lower
priority for subsequent evaluation. In addition, the methods should provide reasonable quantitative ac-
curacy for true positives, as those with higher affinities will generally be of higher priority.

The QSAR procedures described in the previous section have strengths as well as weaknesses,
and they all have a degree of prediction error. All procedures and particularly those that only provide
active/inactive predictions can be optimized to minimize either the overall prediction error or the false
negative or positive rate. Decreasing false negatives is achieved at a cost of increasing false positives
and vice versa. Because selecting a single procedure is problematic, we adopted an approach of ration-
ally combining different QSAR procedures into a sequential “Four-Phase” scheme according to the
strength of each type of procedures. A progressive phase paradigm is used to screen out chemicals and
thus reduce the number of chemicals to be considered in each subsequent phase. The four phases work
in a hierarchical manner, incrementally reducing the size of the dataset while increasing precision of the
prediction during each phase. Within each phase, different models are selected to work complementar-
ily in representing key activity-determining structure features in order to minimize the rate of false neg-
atives. The overall architecture of the NCTR “Four-Phase” system for identification of ER ligands is il-
lustrated below and in Fig. 5.
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Phase I: Filtering – Two filters, the molecular weight range and ring-structure indicator described
above, were selected to efficiently eliminate chemicals very unlikely to have ER binding activity.
As shown in Table 1, the two rejection filters correctly eliminated 6 and 98 inactive chemicals
from the NCTR and Nishihara datasets, respectively. No false negative was introduced with these
two rejection filters. For the Nishihara dataset, the data size was reduced by some 21 %. This sug-
gests that, for real-world applications, the rejection filters significantly reduce the number of
chemicals for further evaluation with minimum risk of introducing false negatives.

Table 1 Results of two rejection filters for the NCTR, Nishihara and Walker datasets*. 

Eliminated by
Datasets MW range Number (%)

MW Ring of eliminated
Sets Size Active Inactive Active Inactive chemicals

NCTR 232 0 0 0 6 6 (2.6 %)
Nishihara 463 0 28 0 89 98 (21.2 %)
Walker 558 230 16 048 1495 16 689 (28.7 %)

*Table lists the number of chemicals eliminated by either MW range or lack of ring criteria as well
as their combination. No active chemical was rejected by these two filters.

Phase II: Active/Inactive Assignment – This phase categorizes chemicals from Phase I as either active
or inactive. The three structural alerts, seven pharmacophore queries, and the Decision Tree clas-
sification model (11 models in total) discussed above were used in parallel to discriminate be-
tween active and inactive chemicals. To ensure the lowest possible false negative rate in Phase II,
a chemical predicted to be active by any of the 11 models is presumed active and subsequently
evaluated in Phase III, while only those predicted to be inactive by all these models are deemed
inactive and eliminated from further evaluation. Since structural alert, pharmacophore, and
Decision Tree methods incorporate and weigh differently the various structural features that
endow a chemical with the ability to bind the ER, the combined outputs derived from the three
approaches are complementary in minimizing false negatives. 

All active chemicals in the NCTR, Waller [10], Kuiper [33], and Nishihara [35] datasets
were identified by combining the 11 models.

Phase III: Quantitative Predictions – In Phase III, the CoMFA model described above [22] was used
to make a quantitative activity prediction for chemicals categorized as active in Phase II.
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Fig. 5 NCTR “Four-Phase” system as a priority-setting tool. 



Chemicals with higher predicted binding affinity are ranked at higher priority for further evalua-
tion in Phase IV. 

Phase IV: Rule-Based Decision-Making – In this final stage of the integrated system, we believe that
a set of rules needs to be developed as a knowledge-based or expert system to make a priority set-
ting decision. The system is useful only after incorporating accumulated human knowledge and
expertise (i.e., rules). This system can make decisions on individual chemicals based on the rules
in its knowledge base. Computational chemists, toxicologists, and regulatory reviewers should
jointly develop and define the rules. The following are suggestions for such rules: 

1. Special attention needs to be placed on the following chemicals, which may need to be reeval-
uated by assaying or modeling according to the “IF-THEN” scheme depicted in Fig. 6 [20]:

1) The chemical is predicted to be inactive, but its structure information has been mod-
ified during structural preprocessing, e.g., by “correcting” such chemicals as mixtures
and organic salts into separate entities.

2) The chemical whose structure is dissimilar to all those that have been used to train
and test the models.

3) The chemical is active in Phase II, but inactive in Phase III. 
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Fig. 6 Identification of ER ligands using a set of “IF-THEN” rules: (a) IF non-cyclic structure, THEN it is unlikely
to be an ER ligand; (b) IF a chemical has non-aromatic ring structure, THEN unlikely to be an ER ligand if does
not contain an O, S, N or other heteroatoms for H-bonding. Otherwise, binding potential is dependent on the
occurrence of key structural features; (c) IF chemical has a non-OH aromatic structure, THEN binding potential is
dependent on the occurrence of the key structural features; and (d) IF chemical contains a phenolic ring, THEN it
tends to be an ER ligand if it contains any additional key structural features. For the chemicals containing a
phenolic ring separated from another benzene ring with the bridge atoms ranging from none to three, it will most
likely be an ER ligand.



2. Information on the level of human exposure and production, environmental fate, and other
public health related parameters can be used independently or jointly incorporated for pri-
ority setting.

The NCTR “Four-Phase” system has been validated using a number of existing datasets, includ-
ing the E-SCREEN assay data [36], the yeast two-hybrid reporter-gene assay data [35], and other
datasets [10,37–41]. The system has produced no false negative for these test datasets. The system was
recently applied to two environmental datasets recognized by EPA as important chemical subsets of po-
tential EDCs: 

1. HPV-Inerts dataset, containing 623 high-production-volume inerts (HPV-Inerts), which is a
subset of the Toxic Substances Control Act (TSCA) Inventory. The EPA is including HPV-Inerts in ver-
sion 2 of the Endocrine Disruption Priority Setting Database (EDPSD2), and there was a need to prior-
itize HPV-Inerts for further experimental evaluation [42]. Of 623 chemicals, 166 chemicals were either
mixtures or their structures were not available, leaving 457 chemicals for prediction. 

2. Walker dataset [43], containing a large and diverse collection of known pesticides and indus-
trial chemicals as well as some food additives and drugs. The database contains 92 964 chemicals, of
which the Chemical Abstract Service (CAS) Registry number is available, that will probably have to be
evaluated for their potential endocrine disruption. After eliminating chemicals for which structures were
not available [43] and/or 3D structures could not be generated [32], a final dataset of 58 391 chemicals
were predicted. 

Table 2 summarizes the priority setting results for these two datasets using the NCTR “Four-
Phase” system. Even when only the Phase I and II protocols are used, the system dramatically reduces
the number of potential estrogens by some 80~85 %, demonstrating effectiveness in eliminating the
most unlikely ER binders from further expensive experimentation. The Phase III CoMFA model further
reduces the data size by about 5~10 %. Importantly, the quantitative binding affinity prediction from
Phase III also provides an important rank-ordering value for priority setting. 

Table 2 Size reduction of two environmental datasets processed
by the NCTR “Four-Phase” system.

HPV-Inerts Walker

Original data size 457 58 391
After Phases I and II 15.7 % 12.0 %
After Phases III 9.8 % –

QSAR APPLICATION IN PERSPECTIVE

The QSAR procedures are applied extensively to a wide range of scientific disciplines including chem-
istry, biology, and toxicology [44,45]. In both drug discovery and environmental toxicology [46], QSAR
models are now regarded as a scientifically credible tool for predicting and classifying the biological
activities of untested chemicals. However, analogous to misinterpretation of experimental results,
QSAR results can also be misleading when limitations of the procedures are not well understood.
Presented below are our experientially based suggestions of the salient aspects in applying QSARs for
toxicology and regulation.

1. Limitation in the fundamental principle of the QSAR – Any QSAR model will produce some
degree of error. This is partially due to the inherent limitation to predict a biological activity solely
based on the chemical structure. One can argue from the principles of chemistry that the molec-
ular structure of a chemical is key to understanding its physicochemical properties and ultimately
its biological activity and the influence on organisms. Since both molecular structure and physico-
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chemical properties are associated with the chemical itself, the relationship between structure and
physicochemical properties should be apparent and, therefore, more accessible using the QSARs.
In contrast, the biological activity of a chemical is an induced response that is influenced by nu-
merous factors dictated by the levels of biological complexity of the system under investigation.
The relationship between structure and activity is thus more implicit and thereby poses a more
challenging problem in QSAR applications. 

2. Limitation in extrapolation of QSAR models – A chemical can be represented in three distinct,
but also related, structural representations such as 2D substructures, 3D pharmacophores, and
physicochemical properties. If a biological mechanism is mainly related to the chemical structure
(probably in the case for receptor binding), QSARs become meaningful using the aforementioned
structural features. However, we often find that, even for a simple mechanism such as ER-bind-
ing, some features may well represent binding dependencies for one structural class, whereas
other features will better represent binding dependencies for a different structural class [20]. In
such cases, caution is warranted in interpreting QSAR results for the chemical classes that are not
well represented in the training set. In other words, no matter how rigorous is the validation pro-
cedure used, the model may give incorrect predictions for some chemicals since the entire chem-
istry space of active chemicals is unknown. This realization is especially important when a QSAR
model is used for regulatory application since it could lead to false negatives.

3. Limitation in processing chemical structure – Most computational chemistry programs accept
only discrete organic chemicals for the descriptor calculation and QSAR modeling.
Unfortunately, most toxicological databases contain chemicals that are not necessarily discrete or-
ganic chemicals, but sometimes are mixtures. Thus, it is necessary to process molecular structures
of a toxicological dataset by “correcting” chemicals with separate entities (e.g., mixtures, organic
salts, the presence of H2O and HCl, etc.), and eliminating those chemicals whose descriptors can-
not be calculated. Such procedures might lead to a prediction that might not reflect the real ac-
tivity of the preprocessed chemical. 

4. Limitation in quality and transformation of biological data – Predictions from any model are
intrinsically no better than the experimental data employed to calibrate the model. Any limitations
of the assay used to generate the training data apply equally to the model’s predictions.
Furthermore, additional limitations could be introduced by transforming the biological data for
use in the QSAR modeling. When developing quantitative models, inactive chemicals are usually
either not used because their exact values cannot be determined or included by assigning an arbi-
trary value. Either case will tend to decrease the model sensitivity in prediction of chemicals with
low activity. For qualitative models, false negatives and false positives depend on the defined cut-
off value to distinguish active from inactive. As the cut-off value is lowered, it is likely that the
error will increase even for a well-designed and executed assay. The increased experimental error
in close proximity to the cut-off value will be transferred to the QSAR model, which in turn will
increase false prediction for chemicals with activity in this region. For example, as defined by
EPA, the cut-off log RBA value to distinguish ER binders from non-ER binders is set to –3.0. This
cut-off was used to develop the models in the NCTR “Four-Phase” system. There are 31 chemi-
cals exhibiting the binding affinity in our assay that were assigned to be inactive because their
RBA is below this cut-off value. Among these 31, 14 chemicals have the RBA within 0.3 log units
of the cut-off value (“within 0.5 log units” is expected for a good assay). Since the real activity
classification for these chemicals are unknown, assigning them arbitrarily as inactive to train
QSAR models introduces errors in prediction for chemicals with similar structures. Thus, caution
must be taken in interpreting QSAR prediction results for these chemicals. Apparently, a high
confidence in the prediction can only be expected for chemicals with the log RBA more positive
than –2.5. 
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While the results presented in this article clearly show both the feasibility and utility of using
QSARs for various applications, it is important to realize that any QSAR model has to be considered as
a living model that will be improved whenever new data is available. In other words, the model devel-
opment should be a recursive process that alternates between incorporating new data in the model and
using the model to choose new chemicals for assay [47,48]. As depicted in Fig. 7, the process starts with
an initial set of chemicals from the literature for QSAR modeling [14–16]. Next, the preliminary QSAR
models are used prospectively to define and rationalize a set of chemicals that may further improve the
model’s robustness and predictive capability. These new chemicals are assayed, and the data are then
used to challenge and refine the QSAR model. Thus, the process results in the iterative increase of the
chemistry space of the training set.

Several benefits accrue from the integration of the experimental and modeling efforts. Immediate
feedback can be given to the experimentalists so that suspected assay problems can be rapidly investi-
gated. Also, as the models evolve, the modelers can select the chemicals for subsequent testing, based
on considerations of structural diversity and activity range. Each new assay data point coming from the
lab becomes a challenge to the evolving model; the result is either further confirmation of its validity,
identification of a limitation, or an outlier prediction. Failure of the model also provides important in-
formation, such as identification of the need for new data based on a rational understanding of the de-
pendence of activity on structure. Regardless of the cause of model failure, a research hypothesis is
spawned during each iteration process that should lead to new data and/or an improved training set, and,
ultimately, an improvement to the living model.
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