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Abstract: New chiral cationic ruthenium complexes have been used for the industrial synthe-
sis of (+)-dihydrojasmonate. A new class of electron-rich C2-symmetric 2,4-disubstituted
phosphetanes (CnrPHOS) was developed. Preliminary evaluation of their catalytic properties
revealed high efficiency in rhodium and ruthenium-catalyzed asymmetric hydrogenations. A
new stereochemical model is presented in which the phosphetane Rh-catalyzed hydrogena-
tion follows an apparent stability-controlled mechanism.

INTRODUCTION

Among the various approaches by which chirality can be created, the catalytic asymmetric synthesis
from prochiral compounds is a method of choice. For instance, the highly effective asymmetric hydro-
genations with Binap-ruthenium catalysts have been extensively used since the pioneering work of
Noyori [1]. Our contribution to this field has been the development of general synthetic approaches to
chiral ruthenium(II) catalysts for hydrogenation reactions [2].

PREPARATION OF THE CATALYSTS

During the last few years, we have considered several approaches to ruthenium/chiral phosphine com-
plexes to be used in catalytic hydrogenation reactions. These include the use of the polymeric
[RuCl2(COD)]n complex [3] and of the (diphosphine)Ru(2-methylallyl)2 [4] complexes as the catalyst
precursors. In the most general approach, ruthenium complexes bearing chiral diphosphines have been
prepared from a 1:1 mixture of (COD)Ru(2-methylallyl)2 1 and the appropriate chiral phosphine, by
treatment with 1.5 to 2 equiv of HX (X = Br, Cl, BF4, PF6) in acetone or dichloro methane (Fig. 1). This
in situpreparation [4] affords ruthenium complexes defined by the empirical formula RuP*PX2, which
are excellent catalysts for the asymmetric hydrogenation of ketones and olefins [5]. 
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†Corresponding author: Fax: 33 1 44 07 10 62; E-mail: genet@ext.jussieu.fr

Fig. 1 Some examples of in situpreparation of chiral Ru(II) catalysts.



Among the major advantages of the established route, the rapid screening of ligands must be
emphasized. 

ENANTIOSELECTIVE HYDROGENATIONS

C=C bonds hydrogenations

Catalysts generated in situaccording to Fig. 1, have been used in the large-scale preparation [6] of com-
pound 3, a key intermediate in the synthesis of candoxatril, an inhibitor of neutral endopeptidase.

Recently, we have found a new and highly efficient procedure for the hydrogenation of tetra-
sustituted olefins, by means of the cationic ruthenium complex Ru[(R,R)-Me-DuPHOS](H)(η6-
COT)BF4. The efficiency of the method has been established by the commercial production of paradis-
one [7] via asymmetric hydrogenation of the cyclopentenone derivative 4.

C=O bonds hydrogenations

Catalysts 2 are also extremely efficient for the asymmetric hydrogenation of a wide range of function-
alized ketones. We have established that ruthenium catalysts bearing chiral ligands are effective for the
low-pressure (1 bar H2) hydrogenation of β-keto esters [8]. Interestingly, 1,3 anti diols (Fig. 2) are pro-
duced through asymmetric hydrogenation of 1,3-diketones by using Me-DuPHOS, BINAP, or MeO-
BIPHEP ruthenium-catalysts [9].

Synthesis of phosphetane ligands

The optically pure 1,3-diols were used for the preparation of C2-symmetric 2,4 disubstituted
phosphetanes, a new class of electron-rich diphosphines (CnrPHOS) [10]. A wide range of
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Fig. 2 Chiral 1,3-diols produced through asymmetric hydrogenation of 1,3-ketones.



phosphetanes are available through the cyclization reaction between 1,3-diol cyclic sulfates and lithiat-
ed diphosphines as shown in Fig. 3.

Phosphetane ligands in asymmetric catalysis

The new phosphatene ligands 6a–cligands (Fig. 4) proved to be efficient in asymmetric hydrogenation.
A preliminary evaluation of the catalytic properties is established through a survey of the ruthenium-
catalyzed hydrogenations of functionalized carbonyl derivatives and rhodium-catalyzed hydrogenations
of olefins (Fig. 5). 

The electron-rich nature of phosphetanes 6a–cand the ring strain associated with the cyclic moi-
ety, induce peculiar behaviors in their coordination chemistry and catalytic properties. Thus, for
instance, the stereochemical issue of the rhodium-catalyzed hydrogenations of dehydroaminoacid
derivatives is opposite to that anticipated by the generally accepted models: the (S,S)-1,2-bis(2,4-diiso-
propylphosphetano)benzene 6a (R=i-Pr) which hinders the upper-left and bottom-right quadrants
around the rhodium atom should afford S-configurated amino acid derivatives. Instead, the R-configu-
rated species are obtained (Fig. 6) [11].

Accordingly, an unusual effect of the H2 pressure on the enantioselectivity is noticed, since
increased ee are obtained at higher hydrogen pressure. The results above may suggest that the
phosphetane-catalyzed hydrogenations follow either a stability-controlled “olefin mechanism” or a
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Fig. 3 Synthesis of chiral phosphetanes.

Fig. 4 Chiral phosphetanes ligands prepared from chiral 1,3-diols.

Fig. 5 Rhodium(I) and ruthenium(II) asymmetric hydrogenation with phosphetanes ligands.



“hydride mechanism”. This seems to be the case for other electron-rich diphosphines, including
DuPHOS, which affords stability-controlled hydrogenation products, in opposition to the initial claims
[12]. Detailed mechanistic studies on these hydrogenation reactions are in progress.

Synthetic applications of the Ru-catalyzed hydrogenation via dynamic kinetic 
resolution (DKR) [13]

A racemic starting material such as α-substituted β-keto esters bearing a configurationally labile stere-
ogenic center and a prochiral unsaturated moiety can be converted to one major synor anti stereoiso-
mer (Fig. 7), among the four possible stereoisomers. An efficient synthesis of 3-hydroxylysine deriva-
tives, key intermediates for the synthesis of (-)balanol [14], was achieved using this technology.
Interestingly, we have found that the hydrogenation of racemic α-chloro-β-keto esters under optimized
conditions gave α-chloro β-hydroxy esters with anti diastereoselectivity and enantioselectivity up to
99% [15].
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Fig. 6 Stereochemical model for the Rh-catalyzed hydrogenation.

Fig. 7 Asymmetric hydrogenation of 2-substituted β-keto esters.
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