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Abstract - The Gram-positive bacterium B. cereus produces both -lactamase
I, a class A serine enzyme, and -lactamase II, a zinc dependent enzyme of
class B. Crystallographic studies of these two enzymes have shown that
-lactamase I is homologous with the penicillin-sensitive D-ala- D-ala
carboxypeptidase-transpeptidase of Streptomyces R61 while -lactamase II
has a hitherto unknown structure. New methods of studying enzyme activity
crystallographically promise to illuminate the mechanisms of action of

these enzymes.

INTRODUCTION

Alexander Fleming discovered both lysozyme and penicillin (ref. 1,2) and it is intriguing and
significant that the sites of action of these two discoveries can be identified on a single
diagram showing the chemical structure of a bacterial cell wall.
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Fig. 1. Chemical structure of cell wall of B. aureus (ref. 3) with sites of action of lyso-
zyme and penicillin indicated respectively by arrows and circles (cf. Ivanov, this

Symposium).

Lysozyme promotes the hydrolysis of the (1-4) glycosidic linkage between N-actyl muraniyl and
N-acetyl-glucosaminyl sugar residues in the oligosaccharide component of the cell wall. Peni-
cillin inhibits enzymes involved in the final stages of cell-wall synthesis - in particular
the transpeptidases that promote the formation of peptide links between the N terminal
glycine and C terminal D-Alanyl-D-Alanine residues of oligopeptide chains, with the release
of D-Alanine. The activity of penicillin is believed to be based upon its structural and
chemical resemblance to the intermediate formed in this reaction (ref. 4).

eo
L.Ala L-Ala

(z) (3)

D-G1U.GONH2 D-Glu-CONH2



280 D. C. PHILLIPS et a!.

The mode of action of penicillin was, of course, unknown to Fleming and to the Oxford workers
led by Florey who developed a promising observation into a useful antibiotic. Indeed peni-
cillin must be included as an outstanding example among discoveries that have been useful
before they have been understood and have presented a challenge to scientific research that
has led to an advance in fundamental understanding.

Even as the susceptibility of micro-organisms to the action of penicillin was being studied
in Oxford in 1940 (ref. 5), Abraham and Chain observed that bacteria developed resistance to
the antibiotic and they attributed this resistance to the production of a bacterial enzyme
that promoted its inactivation (ref. 6). They named this enzyme penicillinase: it was the
first observation of what is now known to be a heterogeneous group of enzymes that promote
the hydrolysis of a wide range of -lactam antibiotics, the -lactamases.

3-LACTAMASES

The -lactamases catalyse the hydrolysis of the four-membered -lactam ring in penicillins,
cephalosporins and related compounds to give products that are antibiotically inactive.
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penicillin penicilloic acid

Fig. 2. The hydrolysis of a -lactam that is catalysed by -lactamases.

They are produced by a wide range of bacteria, both Gram-positive and Gram-negative, and are
expressed both as membrane-bound and as exocellular enzymes. Various methods of classifying
them have been proposed (ref. 7) of which the most appropriate here is that based on chemical
analysis suggested by Ambler (ref. 8). Three classes have been identified.

Class A enzymes have been characterized from the Gram-positive species B. cereus, B. iicheni-

formls and S. aureus and from the Gram-negative E. Coil. They have clearly homologous amino-
acid sequences and include a conserved serine residue that is involved in the catalytic
mechani sm.

Class C -lactamases have been identified in a variety of Gram-negative organisms. They are

also serine enzymes but sequence comparisons suggest that they are onl' very distantly, if
at all, related to Class A.

B. cereus also produces a zinc-dependent -lactamase II (ref. 9) that has been assigned, as
the only member yet identified, to class B.

Tipper and Strominger (ref. 10) suggested the 6-lactamases might have evolved from penicillin
target proteins and this idea was reinforced by the discovery that many proteins of both type
include active serine residues. Detailed sequence comparisons, however, have failed to find
convincing evidence for homology (ref. 11) though there are some similarities of sequen'e
especially on the N-terminal side of the active serine. Sequences are compared in Table

TABLE 1. Amino-acid sequences near the active serine in -lactamases and

penicillin-target proteins.

$—lactariases class A
50 60 70

B. cereus 569/H DARLGVYAID TGTNQT-ISY RPNERFAFAS TYKAL
B. iicheniformis DAKLGIFALD TGTNRT-VAY RPDERFAFAS TIKAL
S. aureus NAHIGVYALD TKSGKE-VKF NSDKRFAYAS TSKAI
E. coil RTEM GARVGYIELD LNSGKILESF RPEERFPMMS TFKVL

8-lactamase class C

E. coil AmpC QGKPYYFTWG YADIAKKQPV TQQTLFELGS VSKTF

Penicillin target proteins

E. coil PBP5 DAE-SYILID YNSGKVLAEQ NADVRRDPAS LTKMM
B. subtiiis CPase NAS-AAIFIIE ASSGKILYSK NADKRLPIAS MTKMII

Streptornyces R61 CPase VGS VTK
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Fig. 4. Hypothetical outline mechanism for -lactamase II (ref. 15)

Detailed studies of the activity and inactivation of -lactamase II are not yet well devel-
oped but Waley and his colleagues have recently (ref. 15) shown that reaction with a water-
soluble carbodi-imide and a nucleophile inactivated the enzyme and labelled glutamic acid
residue 37. They concluded that this residue is catalytically essential and proposed the
outline mechanism indicated in Figure 5 where it is suggested that a water molecule bound to
the catalytic Zn2 attacks the -lactam carbonyl group, with glutamate 37 acting as a general
base deprotonating the water molecule. Subsequently the proton may be donated to the nitrogen
atom of the -lactam ring.

Preliminary interpretation of the latest electron-density map provides some support for this
hypothesis. Figure 5 shows the arrangement of the polypeptide chain in the vicinity of Cd2,
as seen at 3.5 resolution. Glutamate 37 appears to lie in a shallow depression at some
distance from the metal as suggested by Waley and his colleagues.

H/tHis

Fig. 5. Arrangement of protein chain in
the vicinity of the metal site
in -lactamase II as determined
from the electron-density map
at 3.5 resolution.

Further details must await full interpretation of the electron-density map and refinement
of the structure. At that stage it will also be possible to study the association of enzyme
and substrates in the crystal, by methods discussed below. Happily preliminary experiments
on the hydrolysis of nitrocefin, a chromophoric substrate that changes colour from yellow to
red on hydrolysis, have shown already that the enzyme is active in the crystals.

The overall arrangement of the polypeptide chain in -lactamase II is not yet fully defined
but it appears to include two short ct-hel ices together with some s-pleated sheet. The initial
impression is that the proportion of regular secondary structure is low. There is no marked
similarity to any other known structure and, in particular, no clear resemblance to the

zinc-containing D-alanyl-D-alanine cleaving carboxypeptidase from Streptomyces aZbus, the
structure of which is known (ref. 16). This is not entirely surprising since the carboxy-
peptidase is known not to be penicillin sensitive. The zinc of carbonic anhydrase also has
three histidine ligands, two of which are next nearest neighbours in the protein chain, but
any other resemblance to -lactamase II seems slight. At present, therefore, the three di-
mensional structure of -lactamase II appears to be providing no indication of its evolution-

ary origin.

3-LACTAMASE I FROM B. CEREUS

Crystallographic studies of the class A -lactamases have been in progress for many years
with sinçiularly little result until this year. Crystallographic data have been published on
the enzymes from the four bacterial species listed in Table 1 (ref. 7) and preliminary
descriptions of the homologous enzymes from B. cereus 569/H (ref. 17) and B. licheniformis
(ref. 18) have now been published.

Crystals of -lactamase I from B. cereus are very small thin plates (ref. 19). The analysis
of their structure has depended upon the availability of synchrotron radiation at the Dares-
bury Laboratory of the SERC, UK and at Le laboratoire pour l'utilisation du Rayonnement

Tetrahedra' intermedsate

Cys
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(a) *) *;
(b)

Fig. 6. (a) the secondary structure elements of -1actamase I. Thosein faint line
do not correspond to features in the R61 CPase.
(b) a stereo view of part of the electron-density map of -lactamase I at
6 resolution with secondary structure elements of the R61 CPase super-
imposed. There is no density in the map which corresponds to helices E, F,
G of the R61 CPase but helix H is present.

Electromagnetique, CNRS, France, a splendid example of the way in which crystallography and
chemistry are becoming 'big" sciences dependent upon the provision of major facilities and
international cooperation.

The crystals have unit cell dimensions a = 143.0, b = 35.8, c = 57.2 and = 97.8° in space
group C2 and their structure has been analysed at 6 and at 2.5 resolution by the method of
multiple isomorphous replacement. At 6 resolution the boundary of the molecule was clear
and rod-like features within it suggested the presence of some eight et-helices (Figure 6).
The map at 2.5 resolution, when improved by Wang's method of solvent-density modification
(ref. 19), revealed the greater part of the structure of the molecule, and provided the basis
for the iterative process of map interpretation, restrained least-squares refinement, phase
calculation and map recalculation that is now being used to refine the description of the
molecule.

The initial interpretation of the modified electron density map showed immediately that the
arrangement of secondary-structure elements in -lactamase I closely resembles that in the
penicillin sensitive D-Ala-D-Ala carboxypeptidase from Streptomyces R—61 (R-61 CPase) which
has been described by Kelly et al. (ref. 20).

In 8-lactamase I, there is a five stranded 8-pleated sheet with three helices on one side
and five on the other (Figure 6a). Five of these helices have counterparts in the R61 CPase
(Figure 6b) which also has three helices not present in 8-lactamase I. These three helices
(E, F and G in the current description of the structure of R61 enzyme) are close to the
carboxyl end of the molecule so that this result is in accord with the prediction of Kelly
et al. (ref. 20) that 8-lactamases of class A would lack a part of the carboxy-terminal
domain of the R61-CPase. Curiously, however, the carboxy-terminal helix H of the R61 enzyme
is present in 8-lactamase I.

This discovery, which is confirmed by the parallel studies of the class A 8-lactamase from
B. licheniformis (ref. 18), that a class A 8-lactamase and a penicillin-sensitive D-Ala-D-Ala
carboxypeptidase-transpeptidase have an extensive region of common tertiary structure suggests
very strongly that the two groups of enzymes have evolved by divergence from a common ances-
tor. As we have seen, this idea was mooted earlier but, apart from the fact that the R61
GPase and 8-lactamases I are both serine enzymes, the available sequence data appear to show
no strong relationship between them. The resemblance between their tertiary structures may
therefore provide a further example of the persistence of similarities between three dimen-
sional structures when the similarity between primary structures has disappeared (ref. 12).
More detailed comparison must await the availability of refined structures but it is interest-
ing to note the further speculation of Kelly et al. (ref. 20) that the carboxyl terminal
domain of the R61 CPase may be concerned with binding of the enzyme to the cell wall peptid-
oglycan (Figure 1). It would be remarkable if this part of the R61 CPase resembled lysozyme.

'rJ —
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Crystallographic studies of the activity of 6-lactamase I are still at an early staae but
experiments with nitrocefin have indicated that the enzyme is active in the crystals and
experiments with the inactivator 6--bromo-penicillanic acid (ref. 21) have located the
active site of the enzyme and point the way to more detailed studies.

The exciting feature of inactivators such as 6--bromo-penicillanic acid is that their inter-
action with the class A -lactamases is complex, involving not only specific binding to the
enzyme and the formation of an acyl intermediate at the active serine but also additional

chemical reactions that may be catalysed by the enzyme (Fig. 7). 6--Bromo-penicillanic
acid undergoes reactions which lead to the formation of a product, possibly a dihydrothiazine
(ref. 22), which is resistant to deacylation.

Oo;

0

—
Ser

Ii co;

Fig. 7. Interaction of 6--bromo-penicillanic acid with -lactamase I with proposed
dehydrothiazine product, resistant to deacylation (ref. 22).

A crystallographic study of this interaction shows clearly an increase in electron density
corresponding to the bound product. Its location is shown in Figure 8 in relation to the
latest model of the polypeptide chain. This result shows that the active site of -lactamase
I lies in a pocket that has helix A (Figure 6) on one side and helix H at its base.

Fig. 8. Course of the polypeptide chain in

8-lactamase I with location of
active site indicated by van der Waals
envelope of inactivator derived from

6--bromo-penicillanic acid.

Fig. 9. Course of the polypeptide chain in
R61 CPase, showing location of

-lactam binding site (from ref. 20).

Comparison with Figure 9 again shows the clear relationship in overall structure and active-
site location between -lactamase I and the R61 carboxypeptidase-transpeptidase.

PROSPECTS FOR CRYSTALLOGRAPHIC STUDIES OF 3-LACTAMASE ACTIVITY

The difficulty with crystallographic studies of enzyme activity is that the X-ray observa-
tions required to synthesize the image of a structure take a long time while catalysed reac-
tions take a relatively short time. Clearly there are two approaches to closing the gap: the
reactions can be slowed down and the measurements speeded up. Both of these approaches are
being followed with increasing success and a brief description of two different studies will
serve to show what can be done.
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First, it is very well known that enzyme catalysed reactions can be slowed down very signifi-

cantly by relatively modest reduction in temperature. Douzou and his colleagues (ref. 23)
have pioneered the use of this approach and have described cryosolvents, especially methanol-
water mixtures, that can be used to study reactions in enzyme crystals. Some ten years ago,
Petsko and his colleagues (ref. 24) used this method to observe the acyl-enzyme intermediate
in the hydrolysis of N-carbobenzoxy-L-alanyl-p-nitrophenol ester that is catalysed by porcine
pancreatic elastase. The acyl-enzyme intermediate was stabilized at -55°C in a mixture of
70% methanol - 30% water and deacylation was observed to take place when the temperature was
raised.

This experiment, which has yet to be extended to high resolution, indicated clearly the
potential of low-temperature methods in crystallographic studies of enzyme activity. It is
also amusing to note its new-found relevance to studies of -lactam sensitive enzymes.
Modified cephalosporins have been shown recently (ref. 25) to inhibit human leukocyte elas-
tase and crystallographic studies (ref. 26) have shown the detailed structure of porcine

pancreatic elastase inactivated by a cephalosporin sulphone.

The second approach to observing intermediates in enzyme-catalysed reactions is to speed up
the measurements and this is being facilitated by the use of synchrotron radiation. Current
methods of data collection permit the recording of diffraction data in less than one hour
from crystals of large proteins and this has been exploited by Louise Johnson and her col-
leagues in Oxford (ref. 27) in a study of the phosphorylation of heptenitol to form heptu-
lose-2-phosphate that is catalysed by rabbit muscle phosphorylase. By judicious selection of
reaction conditions it was possible to observe the build up of heptulose-2-phosphate as the
reaction progressed.

The prospects for this kind of experiment are very much improved by the latest developments
in rapid data collection by means of synchrotron radiation. The current method employs highly
monochromatic X-rays that are isolated from the continuous spectrum by the use of a crystal

monochromater. Recording the complete diffraction pattern characteristically requires some
50 photographs taken with the crystal in a variety of orientations and with exposure times of
many minutes. Use of polychromatic X-rays, with wavelengths ranging from 0.5 to 2.5 ,
however, permits the recording of a large proportion of the diffraction pattern on a single
photograph. Such Laue photographs of phosphorylase crystals (ref. 28) record some 70% of the
diffraction data, quite enough for a clear image of the structure at 2 resolution, in
exposure times of 250 mseconds.

Clearly, the use of this Laue method of recording diffraction data combined with modestly low
temperatures opens the way to direct crystallographic observation of a wide range of enzyme
complexes with substrates, intermediates and products. In studies of -lactamase complexes
with inactivators such as penicillanic acid sulphone (ref. 29), for example, (Figure 10) it
might well be possible to observe the initial complex, the initial acyl-enzyme intermediate,
the contribution of the more stable acyl enzyme produced by tautomerization to the s-amino
acrylate ester, and the relatively slow development of permanent inactivation.

04,0

0 CO2H

1

® 0
CO2H

Fig. 10. Inactivation of -lactamase by penicillanic acid sulphone (ref. 29),
with acyl enzyme complex leading to hydrolysis products (A); tautomeriza-
tion to a stable acyl enzyme (B); and irreversible inactivation through
reaction with second functional group on the enzyme (C).

CO2H
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