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Abstract - The development of non-shear thinning elastic liquids and their
impact in bridging the gap between predictions from continuum theory and
practical reality in problems of interest in polymer processing is
described. It is shown that the highly elastic, constant viscosity fluids
represent a class of fluid behaviour consistent with molecular theory,
which can be described at low shear rates by a constitutive equation
developed by Oldroyd in 1950. Experimental observation with these
materials has allowed elastic effects to be observed in flow fields for the
first time in the absence of any effects due to a varying viscosity, and
has also allowed direct comparison to be made with predictions from
continuum theory in these flows. In squeeze film flows good agreement
between observation and prediction is obtained. In exit flows (extrudate
swell) significant elastic effects are observed and predicted but the
agreement between observation and numerical simulation is poor at high

levels of elasticity. In tubular entry flows (die entry flows) large
vortex enhancement due to elasticity is observed which is not predicted by
the appropriate continuum analysis. It is not clear why continuum theory
is adequate in some flow and inadequate in others. Nevertheless great
strides have been made in the solution of flow problems of importance in

polymer processing.

INTRODUCTION

For those contemplating working on the experimental investigation and quantitative observation
of the kinematics of viscoelastic fluid flows of relevance in polymer processing, difficulties
arise at the outset in the choice of appropriate test fluids. Since a major practical and
economic interest in these flows involves molten polymers, it would seem logical and
appropriate to choose a molten polymer for the investigation. Such is not the general case.
In addition to the difficulties of generating an isothermal flow at elevated temperatures and
the lack of optical clarity of some polymers for visual study, even the simplest elastic
property measurements, like the first normal stress difference, can rarely be obtained at
shear rates exceeding 10 51 - a level usually too low to be of interest in the practical
processing situation. Hence with a few exceptions, one being the work of White and Kondo on
entry flows (ref. 1), most workers concerned with observing the kinematics of polymer melt
flows have not attempted or have not been able to accompany their observations with any
fundamental elastic property measurement at appropriate shear rates. By necessity then less
understood empirical indications of fluid elasticity such as the end correction in a
capillary rheometer (ref. 2), the exit pressure (ref. 3), and die swell (ref. 4) have been
used. Although much has been learned in regard to the behaviour of specific polymers in
certain complex flows of practical interest, little of this information has been helpful
in developing and using constitutive equations for the solution of fluid mechanics problems
for viscoelastic fluids in polymer processing flows. This is in contrast to inelastic
Newtonian fluids where the Newtonian fluid constitutive equation with the equations of motion
is sufficient to solve (in principle) any Newtonian fluid mechanics problem.

Therefore, many investigations, concerned with the more general problem of bridging the gap
between experiment and theory and developing a fluid mechanics for viscoelastic fluids, have
turned their attention to an examination of the behaviour of viscoelastic polymer solutions in
flow fields of interest. These solutions can be used at room temperature and it is possible
and relatively simple to measure at least the viscosity and first normal stress difference
at shear rates ranging up to 1000 51• Hence a minimal, although perhaps inadequate,
characterization of these materials can be obtained. Polyacrylamide in water solutions have
been the most popular choice. They are optically clear in solution at room temperature, are
significantly elastic in so far as the ratio of the first normal stress difference to the
shear stress is in the range expected for many molten polymers (ref. 1 and 5), and they are
highly shear thinning (ref. 6) like most polymer melts. In addition there is evidence to
suggest that they exhibit strain thickening in extension (ref. 7) which is typical of low
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density polyethylenes and polystyrenes (ref. 8) . However, their shear viscosities can be
orders of magnitude lower than typical molten polymers as are their relaxation times
calculated in the basis of a Maxwell constitutive equation (Eq. 1). The earlier experimental
observations for solutions have therefore been made for shear thinning, low viscosity elastic
liquids under conditions where fluid inertia (a variable not present in polymer processing
flows) may be introduced in addition to the shear thinning and elastic characteristics of
the fluid.

With the revolution in computation and our ability now to solve numerically very complex
fluid mechanics problems, a considerable gap has developed between those who use constitutive
equations for viscoelastic fluids with the general flow equations in an attempt to solve
practical polymer processing problems and those who are attempting to experimentally verify
the predictions from these very sophisticated numerical solutions. The major reason for the
gap is that most of the numerical solutions examine elastic effects in the absence of shear
thinning and fluid inertia, while the experimental observations are made for real fluids
that are not only elastic but also shear thinning under conditions for polymer solution
flows where fluid inertia may also be an important variable (ref. 9) . In recent years
however highly elastic non—shear thinning fluids (the so called Boger fluids (ref. 10-12))
have been developed and used by a number of researchers to study the effect of elasticity in
flow fields in the absence of any significant shear thinning and fluid inertia (ref. 13-27).
Much of this work has been motivated by a need to verify the results being generated from
numerical solutions for polymer processing flow fields (ref. 28) . Commercial software

packagesfor polymer processing flow fields, like the Polyflow package developed by Professor
M. Crochet in Belgium, are now available and used by many of the major chemical companies.

Other workers (ref. 29-33) are now concerned with gaining a better understanding of the flow
properties of these fluid systems. The works of Gupta et al (ref. 30,31) and our own
(ref. 29,34-36) have clearly shown that non-shear thinning elastic fluids represent a class
of fluid behaviour entirely consistent with molecular and continuum theory and that such
ideal elastic fluid systems can be constructed by dissolving a number of different high
molecular weight polymers in a number of different viscous Newtonian fluid solvents. Possibly
the most interesting fluid to emerge from these works is the organic Boger fluid composed of
a high molecular weight polyisobutylene in a Newtonian solvent of kerosene and polybutene.
The features of this fluid will be discussed in some detail. Constant viscosity elastic
fluid behaviour is not confined to dilute solutions of polymers in a viscous Newtonian solvent,
but has also been observed in low molecular weight polymethysiloxanes (ref. 37), in poly-
carbonates (ref. 38) and recently in suspensions of glass fibres in viscous Newtonian fluids
(ref. 39).

The purposes of this paper are similar to those in References 29 and 34:

(i) to reinforce the conclusion that a general class of real materials exist which
exhibit both high elasticity and non-shear thinning characteristics

(ii) to demonstrate once again that such behaviour is consistent with dilute solution
theory and that this class of fluid behaviour does not violate simple fluid theory,

(iii) to clearly show that a three constant Oldroyd B constitutive equation is more
appropriate to model the behaviour of this class of material than the convected
Maxwell model, but to stress that the Oldroyd B equation is only applicable at low
shear rates for these dilute solutions,

(iv) to demonstrate that direct comparison between theoretical prediction and experimental
observation is now possible in a Weissenberg number region where significant elastic
effects as observed in a non-viscometric flow,

and finally

(v) to stress that understanding this class of fluid behaviour is essential for future
prediction of the behaviour of more complex polymers in processing flows.

NON-SHEAR THINNING ELASTIC LIQUIDS

Figure 1 shows dynamic and steady shear properties typical of the non-shear thinning elastic
fluids constructed from polyacrylamide dissolved in corn syrup (ref. 10,34). The fluid
(0.02% Separan AP 30, 4% water, 95.98% corn syrup) was prepared in our laboratory where
shear stress, 'r12, and first normal stress difference, N1, measurements were made with an
R-l9 Weissenberg Rheogoniometer. The shear stress, T12, and the storage modulus, G', and
the loss modulus, G", were also measured in the laboratories of Professor Böhme and Professor
Spurk at the Hochschule der Brundeswehr Hamburg and the University of Darmstadt respectively.
Note that the shear stress data from the two laboratories agree and that the viscosity is
essentially constant with shear rate. Also note that at shear rates less than 8 s_i the
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first normal stress difference varies

T12
= G" and G' = ½i'T (for I < 8s)

(ref. 34) and indeed there is nothing
behaviour of these fluid systems.

Fig. 1. Dynamic and steady shear property
data illustrating that constant viscosity
elastic liquids do not violate simple
fluid theory.

It is now quite clear that non-shear thinning and highly elastic fluids can be constructed
by dissolving a high molecular weight polymer in a very viscous Newtonian solvent and that
this ideal behaviour is not unique to the polyacrylamide corn syrup system where the
behaviour was first observed (ref. 10,11,13). Such behaviour has also been observed for
polyisobutylenes dissolved in polybutenes (ref. 29,30) and adequately explained within the
framework of dilute solution theory (ref. 30), i.e., with the elastic dumbbell model.

Typical steady and dynamic shear properties for a polyisobutylene-polybutene fluid are shown
in Figs. 2 and 3 (ref. 35). For this fluid the steady shear viscosity of the solution, n,
and of the solvent, n5, were both measured as was the first normal stress difference N1, with

an R-19 Weissenberg Rheogoniometer. The dynamic viscosity, n', and the storage modulus, G',
were measured at the same temperature as the steady shear properties with a Mechanical
Spectrometer in the Department of Chemical Engineering at the University of Minnesota. The
fluid was constructed from 0.2% Vistanex MML-120 (Exxon Chemicals, M.W. 1.2 x 106) in 96%
Hyvis 30 (BP Chemicals, M.W. 1300). 3.8% kerosene was used to dissolve the polyisobutylene
before adding the polybutene. Also shown in Figs. 2 and 3 are the dynamic viscosity and
storage modulus predicted from the steady shear property measurement using the Maxwell and
Oldroyd B constitutive equations. X and A1 are the Maxwell and Oldroyd B relaxation times,
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defined from the steady shear properties by

N1

x=-;- , (1)

and
N

xl = 2 ' (2)
2' flp

where i' is the shear rate and is the polymer contribution to the viscosity, i.e.,

T1=ns+np . (3)

Also shown in Figs. 2 and 3 are the dynamic viscosity and storage modulus predicted from the
steady shear property measurements for a Maxwell fluid, where

2
— Aw'

G — 22'l+A w'

and
11= 2 2 ' (5)

l+X w'

and for an Oldroyd B fluid, where

G' =
(X1-A2)w'2

(6)
l÷A1 W1

and

fl(l+A112W' 2)
=

2 2 (7)
l+A1 to'

The retardation time, A2, is defined in terms of the solvent and polymer contributions to the

viscosity by

X2 =
[_Tis )

. (8)

As has also been shown for the polyacrylamide corn syrup fluids (ref. 29,34), the Maxwell
model is only applicable at very low shear rates while the Oldroyd B model does predict the
observed deviation in quadratic behaviour in G' at the higher shear rates. However at shear
rates greater than 1 s the Oldroyd B model also fails even through N1 is still quadratic
with shear rate at these conditions.

The conclusion that must be reached from the literature in general, from the papers of Gupta
et al (ref. 30,31), Jackson et al (ref. 33) and our own work is that constant viscosity
elastic fluids represent a real class of fluid behaviour. This behaviour can be explained
(qualitatively) by elastic dumbbell theory (ref. 30). Effectively the materials are dilute
solutions, constructed by dissolving small amounts of high molecular weight polymer in a very
viscous Newtonian solvent. There is no magic recipe and many combinations are possible. In
such systems possible shear thinning effects are masked by the presence of the high viscosity
solvent. Furthermore, for the first time real materials exist where the measured continuum
properties are consistent with both molecular and continuum theory. The constant viscosity
elastic fluids are not true Oldroyd B fluids, but their steady and dynamic properties can be
effectively predicted at low shear rates by this model. There is additional evidence that
the second normal stress difference, N2, may be zero for these fluids (ref. 33,41) which is
also consistent with the dumbbell interpretation andthe Oldroyd B model. However the
available information on extensional behaviour (ref. 19,32) suggests that the Oldroyd B model
may be far from adequate to represent the flow when there is a significant extensional
contribution.

Dilute solutions of constant viscosity and high elasticity are available. It is now necessary
to re-examine both molecular and continuum theories to establish a better constitutive
equation for these simple fluids. The major requirement for this investigation is some good
extensional viscosity measurements coupled with steady and dynamic shear property measurement
on carefully prepared samples. This conclusion will be confirmed in the next section where
we compare experimental observation to numerical simulation in flow fields of interest.



Fig. 4. Schematic diagram of the
constant velocity squeeze film
flow.
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COMPARISON BETWEEN NUMERICAL SIMULATION AND EXPERIMENTAL OBSERVATIONS

Worldwide, there is now a great deal of interest in developing software packages for predict-
ing the kinematics of flow fields of interest in polymer processing. In fact, the Fourth
International Workshop on Numerical Methods in Non-Newtonian Fluid Mechanics, will be held
in Belgium in June, 1985. The objective of these workshops has been to develop appropriate
numerical methods for solution of the complex flow problems of interest in polymer
processing, and to establish which constitutive equations are suitable to represent the flow
behaviour of real polymer fluid systems. Experimental observations with non-shear thinning
elastic fluids in flow fields of interest have allowed direct comparison between numerical
prediction and experimental observation. Without this comparison little progress could
have been made in applying the numerical methods to more complex polymer systems. Some of
the results of the numerical and experimental interactions are summarized here.

Squeeze film fiws

Possibly the first successful prediction of a significant observed elastic effect in a non-
viscometric flow was in a squeeze film flow. The mechanics of a thin film being squeezed
between two parallel plates is of considerable interest in that it models the action of a
lubricant in a bearing under unsteady load. It is relevant in the interpretation of various
plastometers and as Lee et al (ref. 42) point out the flow is of importance in polymer
processing operations such as compression moulding:

The results of squeeze film flow measurements for a constant viscosity elastic fluid are
presented in Fig. 5 where the dimensionless load

=

nVR/4h (9)

is shown as a function of dimensionless time

(10)

An Instron testing machine was used for the constant velocity, V, squeeze film measurements.
A schematic diagram is shown in Fig. 4 where the appropriate symbols are also defined. The
experimental technique was confirmed by measuring the load, F, as a function of time, t, for
the Newtonian fluid solvent. The results agree well with the Stefan prediction (ref. 43).
Futher details, additional data, and a comparison of the solutions of the constant velocity
squeeze film flow problem for Maxwell and Oldroyd B fluids can be found elsewhere (ref. 44).
As might be expected from the results shown in Figs. 2 and 3, the Maxwell constitutive
equation prediction for the squeeze film flow are poor relative to the Oldroyd B predictions
(ref. 44).

ft

I v= (t)

Iz

1r
h(t)

a

Basically the prediction for an Oldroyd B fluid demonstrates that the load lies between two
asymptotic limits: a Newtonian upper limit which corresponds to the squeezing flow of a
Newtonian fluid of viscosity ii = + n, and a lower limit which corresponds to squeezing
flow of a Newtonian fluid of viscosity, i. The upper limit is reached in an asymptotic
process when We - 0. The lower one is reached when We -' =. The Weissenberg number for the
squeeze film flow of an Oldroyd B fluid is defined by

X1VWe = —
(11)h0

The experimental results shown in Fig. 5 are in agreement with the theoretical prediction.
The load is reduced as a result of fluid elasticity, the reduction seems to increase with

increasing We as predicted by the theory, and for the range of Weissenberg numbers examined
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w

Fig. 5. Experimental observation of load as a function of time for a
constant viscosity elastic liquid. Data obtained for We of 0 = 0.026,

= 0.066, R 0.052, 0= 0.132 and A = 0.121.

(0.026 We 0.132) the load does not exceed the lower asymptote predicted by the theory.
The experiments were conducted at relatively low Weissenberg numbers, which corresponds to
the shear rate region where the Oldroyd B constitutive equation is expected to be applicable
for the fluid used in the experiments. For the results shown in Fig. 5 a polyisobutylene-
polybutene fluid characterized by: X = 1.11 s, n = 74 Ns/m2 and n = 34 Ns/m2 was used.

The agreement between numerical prediction and experimental observation for the constant
velocity squeeze film flow as observed in our work (ref. 44) and in the work of Lee et al
(ref. 42) for a constant load squeeze film flow is encouraging. However as the flow fields
became more complex this agreement becomes progressively worse.

Extrudate swell
Manyrecent papers have been devoted to the finite element calculation of extrudate swell for
viscoelastic fluids (ref. 45-51), a problem of considerable importance in polymer processing.
These works, generally completed for a Maxwell fluid, share the same convergence failure of
the numerical scheme above some critical dimensionless number, where X is the relaxation
time and is the shear rate at the wall of the exit flow configuration. Tuna and
Finlayson (ref. 51) reached the maximum value of = 1.6 for a convected Maxwell fluid
where they predicted a die swell of De/D = 1.386. Crochet and Keunings (ref. 49) were able to
extend the value of to 4.5 and generate a die swell of the order of 2 by use of a large
entry length in the numerical scheme together with a retardation time in the constitutive
equation. The addition of the retardation time in the constitutive equation was equivalent to
solving the problem for an Oldroyd B fluid. This was the first solution for a complex non-
viscometric flow which predicted a significant effect due to fluid elasticity. The die swell
predictions of Crochet and Keunings for the Oldroyd B fluid are shown in Fig. 6 in comparison
to the Tanner approximate theory (ref. 52), our experimental observations for a non-shear
thinning elastic fluid (ref. 20,29), and some die swell observations selected by Crochet and

Keunings for two polystyrenes (ref. 53,54).

At first glance one is tempted to conclude that the numerical solution for the Oldroyd B
fluid is adequate to predict the observations for polystyrenes, but as Crochet and Keunings
point out the polystyrenes are shear thinning elastic fluids which do not behave like Oldroyd
B fluids, and that the values of SR = N1/2Tu for a die swell experiment are normally not
available from direct property measurement fQr molten polymers and are usually inferred by
indirect methods. Therefore this good agreement may be fortuitous. Comparison of the
predictions for the Oldroyd B fluid to the experimental observations for a constant viscosity
elastic liquid (polyacrylamide in corn syrup) show a large discrepancy which increases as
A1 and 5R increases. Only at XL, < 1.25 does the data agree with the prediction. Unfortun-
ately, the die swell in this region is little different from the Newtonian value of 1.13.
The Crochet and Keunings calculations are for the Oldroyd B fluid with p/s = 8/9 while the
experimental data were obtained for a dilute solution where flp/fls was more on the order of

1/9 . The exact Oldroyd B parameters for the ideal elastic fluid used in the experiment,
unfortunately, are not available. To date there has not been a direct comparison between
numerical simulation and experimental observation. This is now possible by comparing die
swell observations obtained with well characterized ideal elastic fluids to results now
available or which can be generated with available numerical codes.

T
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the secondary flow vortex increases in size as the Weissenberg number increases until at
_w = 405_I in Fig. 7d the flow becomes asymmetric. Following the asymmetry the flow becomes
unstable and illustrates one of the forms of melt fracture as observed in low density
polyethylene and polystyrene. For shear rates at the wall of the downstream tube in the
quadratic region of behaviour of N1, the dimensionless reattachinent length of the secondary
cell (X = Lv/D, where Lv is the reattachment length of the secondary cell and Du is the
upstream tube diameter) is observed to be 0.18 in comparison to the Newtonian value of 0.177.
In this quadratic region of normal stress behaviour the cell size varies only slightly with
flow rate and is virtually identical to the predicted value for a Newtonian fluid and for a
Maxwell fluid in: circular 2 to 1 and 4 to 1 contractions (ref. 55-57). In fact the
theoretical results for a Maxwell fluid show that the shape (but not the intensity) of the
secondary flow vortex is virtually identical to the observed Newtonian behaviour. No
significant vortex growth has been predicted for the Maxwell fluid.

The reattachment length of the secondary flow vortex as a function of Weissenberg number is
presented in Fig. 8 (ref. 11,14,22,29) for six non-shear thinning and elastic polyacrylamide
in corn syrup solutions, where the viscosity, ri, and Maxwell (low shear rate) relaxation times
ranged from 89 < < 750 poise and 0.1 < A < 0.9s. The Weissenberg number, Wet, is defined
by

Wet = (12)

where V is the average velocity in the downstream tube of diameter D and A is the relaxation
time determined from the steady shear flow properties at the shear rate at the wall in the
downstream tube. Also shown in Fig. 8 is the slight increase in cell size with Weissenberg
number which was predicted by Viriyayuthakorn and Caswell (ref. 56) and by Crochet and Bezy
(ref. 55), using finite element numerical simulation techniques, for a Maxwell fluid in a
circular 4 to 1 contraction.

x

Fig. 8. The reattachment length as a function of Weissenberg number for
creeping flow through circular contractions.

Note that the experimental and numerical results are in agreement only at the lower shear
rate limit for each ideal fluid experiment. This is to be expected as the Maxwell model can
only be expected to apply at extremely low shear rates (see Figs. 2 and 3 and ref. 29). At
higher shear rates the upper convected Maxwell model predictions completely fail to predict
(even qualitatively) the vortex enhancement observed, i.e. the flow field is hardly influenced
by elasticity of the flow. It was hoped that the failure of the Maxwell model was due to the
limited domain of elasticity where the calculations were completed. However the use of the
Oldroyd B fluid rather than the convected Maxwell model allowed Keunings and Crochet (ref. 57)
to reach relatively high values of elasticity where unfortunately no significant vortex
enhancement was predicted. The question as to why the Oldroyd B model will predict
observed elastic effects in squeeze film and die swell flows, but not in entry flows remains
unanswered. This observation for the Oldroyd B fluid in tubular entry flows led Keunings and
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Crochet to speculate that it is the constant viscosity and quadratic normal stress behaviour
which may be the cause of this lack of deviation from Newtonian behaviour; a conclusion which
hardly seems reasonable in light of the evidence available for squeeze film and die swell
flows. Keunings and Crochet have predicted significant vortex enhancement in tubular entry
flows with a Johnson and Segalman constitutive equation (ref. 58) which is a special case of
the molecular model developed by Phan Thien and Tanner (ref. 59) . In addition to elasticity
this model also allows shearthinning and there is no available experimental data for

comparison. However according to Keunings and Crochet this work (ref. 57) "reopens the acute
question of why the iterative procedure fails under some sets of circumstances related to the
mesh (used), the fluid and the problem".

CONCLUSION

Families of non-shear thinning elastic fluids are now available which allow elastic effects to
be observed in the absence of significant shear thinning and inertial effects in flow fields
of practical interest. The behaviour of these ideal fluid system is consistent with
molecular theory and their continuum properties are well fit by the Oldroyd B constitutive
equation at low shear rates. Observed elastic effects in a non-viscometric flow field
(squeeze film flow) have been predicted from continuum theory for the first time. However
the question remains as to why the finite element predictions are adequate in one flow field
and are inadequate in another. It is clear that a better constitutive equation is required
for this class of fluid behaviour. With such an equation and good experimental observations

the gap between continuum theory and practical reality in polymer processing will be bridged.
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