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IN SITU STUDIES OF THE HIGH TEMPERATURE OXIDATION OF METALS AND ALLOYS
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Department of Metallurgical Engineering, The Ohio State University,
Columbus, Ohio, 43210, USA

Abstract - In situ observations of the oxidation of pure metals which
form cation-dTlTiThThg scales have been made in a hot-stage environmental
scanning electron microscope (HSESEM). Some common features and many
differences were observed for the growth of oxide scales on pure copper,
iron, nickel and chromium. The formation of non-planar scale morpholo-
gies (whiskers, pyramids and pits) originates from the role of screw
dislocations in providing ledges for lattice extension at the scale/gas
interface. Questions remain concerning the exact nature and origin of
these dislocations and the atomistic steps occurring at the metal/scale
interface.

I NTRODUCTION

The study of scale growth on pure metals has been a popular research topic for fifty years
since the publication of Wagner's classic theoretical paper describing parabolic scale
growth (1). Investigations of the high temperature oxidation of metals such as copper,
iron, nickel and chromium which grow cation-diffusing scales, and which form the bases for
many important engineering alloys, have received particular attention. At sufficiently high
temperatures (T O•75Tme1t for the scale), parabolic scaling constants for the oxidation or

sulfidation of metals forming cation-diffusing scales generally agree with those calculated
from Wagner's theory (1,2) using electrical conductivity or self-diffusion data for the
scale compound. This agreement supports the validity of the principal assumptions of the
theory: local equilibrium at both the gas/scale and metal/scale interfaces, and independent
rate-limiting migration of ions and electrons (holes) through the lattice of the single-
phase scale layer which is not affected by morphological imperfections such as grain bounda-
res, dislocations, fissures, or voids.

At intermediate scaling temperatures (OSTm T < O7STm) scale growth on metals deviates

from Wagner's ideal parabolic behavior. Single crystal spheres of iron (3), copper and
nickel (4) exhibit different scale textures and morphologies resulting in differing scaling
rates on the various crystallographic faces. Herchl, Khoi, Homnia and Smeltzer (5) oxidized
nickel single crystals with (100), (111), and (110) faces at 500 to 800°C and reported dif-
fering "effective" (best fit) parabolic scaling rate constants. These rate constants and
those for polycrystalline nickel (6) are higher and their activation energies are lower than
those values extrapolated from higher temperatures where lattice diffusion is rate limiting.
In fact, Herchl et al. (5) show that scale growth on nickel single—crystal faces is not
really parabolic, but rather the instantaneous parabolic constant generally decreases with
time, correlating to an increase in scale grain size resulting from grain growth. For the
oxidation at 500°C in P0 = 0.5 torr of three copper single crystals with differing minor
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deviations from the (001) face, Matsunaga and Homma (7) reported differing oxidation kinet-
ics resulting from a shift in the frequency of four equivalent epitaxial grains, and there-
fore the corresponding grain boundaries.

In a series of self—diffusion and scaling kinetics measurements for nickel and iron at in-
termediate temperatures, Atkinson et al. (8-12) showed that the growth of NiO and Fe304 is

consistent with scale growth rate control by grain boundary diffusion. This conclusion—-rate
control by grain boundary diffusion at intermediate scaling temperatures—is generally ac-
cepted in the literature today, and semi-empirical theories (7,13) have found reasonable
correspondence to the experimental results.

Tentatively accepting this model for cation transport, one must still inquire about the
mechanism for lattice extension during scale growth at the scale/gas interface. The
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traditional kink-ledge-terrace (KLT) model for crystalline surface structure shown in Fig. 1
is familiar to many other areas of surface science, but has found little application in

Fig. 1. Schematic idealized atomic model for structure of surface close to
low-index plane.

rationalizing the evolution of surface morphology for scaling reactions. With this intended
goal, and realizing the interesting complication that the cation flux may arrive to the
surface by predominant grain boundary diffusion, we have studied the evolution of scale
morphology in the growth of cation-diffusing scales in a hot-stage environmental scanning
electron microscope (HSESEM).

1.!! U! STUDIES OF OXIDE SCALE GROWTH

The details of the HSESEM have been reported previously (14) and some results have been
published (15-18). The oxidizing gas is introduced to the SEM vacuum through a 1mm ID Pt
tube, and an equivalent pressure is reported as that pressure providing the same collision
frequency with the surface. A few example results will be presented here to illustrate
commonalty and differences in the scaling behavior of the pure metals Cu, Fe, Ni and Cr.

Copper Oxidation (16)
The oxidation of OHFC, electropolished copper heated to 930°C in vacuum resulted in the
morphology sequence shown in Fig. 2. The heating of copper in vacuum provided a tenacious
initial oxide film which resulted in a retarded nucleation rate but an exaggerated rapid
cuprous oxide grain growth at later times. This rapid growth of flat featureless grains
seen in Fig. 2 was driven by growth stresses, as capillarity effects could not be important.
At sufficiently high temperatures (T > 850°C) the micrographs show an illuminated phase at
the oxide grain boundaries in the HSESEM. As explained recently (16,17), this effect re-
sults from a slight surface coverage by a Cu20 fume which is formed by gas-phase collisions

between evaporated copper atoms and the incident 02 flux. Thus, fume formation in oxidation

occurs only when the vapor pressure of copper is significant, and the effect is also some-
what specific to the environment of the HSESEM.

On certain rather rare occasions, the growth of Cu20 at high temperatures would result in

the generation of an obvious fissure (surface void) in an oxide grain boundary after several
hours oxidation; such a fissure would quickly fill with oxide fume. This phenomenon is
consistent with the dissociation model for the formation of a porous internal scale (19)

whereby the vacancy annihilation required for cation diffusion occurs preferentially along
scale boundaries. While the observation of grain boundary fissures is not unexpected, and
is especially well documented for metal sulfidation (20), the relatively rare incidence of
obvious fissures is perplexing. Grain boundary fissures have been observed for relatively
stationary boundaries, but not those experiencing rapid grain growth.

Pure copper heated in hydrogen and oxidized at 900°C in P0 = lO4atm formed small prismatic
2

(pyramidal) Cu20 grains. The rapid nucleation and impingement of these Cu20 grains, which

did not rapidly coarsen or flatten, minimized fume formation. Cold working the initial
surface by shot peening increased the nucleation frequency and decreased the oxide grain
size (16).

At lower intermediate temperatures (500°C) small pyramidal grains with relatively flat sur-
faces were formed, and occasionally a spiral macroledge was seen on the surface. In the
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of the wustite surface with the oxygen, and thereby permits enhanced surface migration for
cations required to maintain pits. As seen in Fig. 3, the pits exhibit active (sharp nadir)!
inactive (flattening of the base) cycles which is consistent with the model suggested in
Fig. 4 where edge jogs are shown in the screw dislocation responsible for pit growth. The
climb of the edge jog to intersect the surface would offset the intersection such that the
pit would flatten out for some period until the base of the pit was again intersected by the
screw dislocation. Then the pit would be reactivated off-center, and a macroledge would
transverse the face of the pit and contribute to scale growth. These specific features are
consistent with the active/inactive/active pit behavior seen in Fig. 3 and in similar
experiments.

The exact nature and origin of the dislocation responsible for pit growth are subjects of
continuing research. From an experiment similar to that shown in Fig. 3, a wustite scale of
about 100 pm thickness with wustite grain diameter of about 100-200 im was tightly adherent
to the iron substrate, but was spalled upon immersion in liquid nitrogen. Figure 5 shows
montages of the external surface and the oxide at the scale/metal surface. A heavily pitted

columnar wustite grain exhibited about 3x105 pits/cm2, and the corresponding oxide surface

at the metal/scale interface exhibited protruding oxide nodules of density about 7x105 nod-

ules/cm2. For the case of tightly adherent columnar scales, the origin of the dislocations
in the oxide may be the underlying metal substrate. Hexagonal growth pits have been observed
when a columnar Cr5S6 scale is grown on pure Cr or Fe-66Cr alloy at a very reduced P and

2
and high temperature (22). Although these scales were detached from the metal, again a rea-
sonable correspondence in density between surface pits and nodules (pyramids) at the scale!
metal interface was found.

At low temperatures (450-500°C) x-Fe203 blades or platelets are grown, especially in the
presence of water vapor. The metal transport required for whisker growth has been ascribed
to cation diffusion along either a planar twin interface (23) or a hollow central core or
pipe in the whisker (24) consistent with the presence of a screw dislocation with large
Burgers vector (25).

Nickel Oxidation (26)
The growth of NiO scale on pure Ni has also been observed in the HSESEM. At very high tem-
peratures (1350°C), pits or slotted pits are observed as shown in Fig. 6. The explanation
for pit formation would parallel that suggested previously for wustite growth, but because
of the slow cation diffusion in NiO, higher temperatures are required to avoid local equi-
librium at the oxide/gas interface.

Figure 7 shows the faceted, pyramidal NiO grains formed upon the oxidation of H2-heated

(cold worked) Ni wire at 1000°C. Although NiO growth is believed to be supported by grain
boundary diffusion at 1000°C, oxide growth clearly does not occur at these boundaries which
exhibit deep crevices and incomplete closure at the surface. Indeed, transport by cation
surface diffusion from the metal along oxide grain surfaces would seem more consistent with
the scale morphology. For such NiO scales and those grown at lower temperatures, the nucle-
ation of new grains can be observed in situ at the scale/gas interface. Any coarsening of
the scale morphology is extremely slow. Figure 8 shows that stubby NiO whiskers are grown
in dried 02 at 1000°C, but the introduction of water vapor results in an immediate rapid

growth of hair-like NiO whiskers. For all of the metals studied, filamentary whisker growth
is tied to the presence of H20 vapor.

The in situ observation of scale morphologies for Cu, Fe and Ni have led to the qualitative
model for scale growth illustrated schematically in Fig. 9. At relatively low temperatures,
surface cation diffusion up the hollow core (pipe) of a whisker can provide a relatively
high cation flux to the whisker tip. With rate-limiting 02 arrival or dissociation at the
whisker tip for oxidation in pure 02, the cations would percolate out the tip and down the

outside surface before they are incorporated into the lattice to thicken the whisker.
However, in the presence of H20 vapor, the H20 dissociation step should be much faster than

that for 02 such that the cations would contribute to lattice extension locally near the

tip, and thin filamentary whiskers would be grown. For intermediate temperatures, a similar

screw dislocation may provide the ledges required for lattice growth, but grain boundary
diffusion for cations in series with surface diffusion should provide the cation flux, so
that pyramidal crystals are grown. At very high temperatures, at least when the oxidant
arrival rate is limited so that significant cation surface diffusion is possible, the screw
dislocation intersections stabilize growth pits; the cation flux would be provided by lat-
tice diffusion.
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Chromium Oxidation (27)
Previous studies (28,29) of the oxidation of pure Cr have shown special morphological fea-
tures different from those for Cu, Fe and Ni. Figure 10 shows the evolution of Cr203 scale

morphology upon the oxidation of arc-melted pure Cr heated in H2 to 1100°C and exposed to

P : 3xlO4atm in the HSESEM. Even in the H0 beam, the initial oxidation of Cr and formation
02
of the familiar scale convolutions could not be avoided (Fig. ha). During exposure to oxy-
gen in the special HSESEM environment of reduced total pressure, the convolutions are seen
to shrink by evaporation and finally disappear. It is well known that the cation transport
for scale growth is supplied for grain boundary diffusion via Cr evaporation across the gap
separating the convolution from the underlying metal. In Figs. lOc—h, Cr203 whiskers are

seen to grow between the convolutions where attachment to the metal is maintained, but not
on the convolutions. After some extended period of oxidation, the convolutions have evapo-
rated (Fig. lOh), and the surface is covered with whiskers. Thus, the formation of convolu-
tions is not necessarily a steady-state feature of Cr203 growth, and can be avoided in 5ev-

eral ways, including the use of dispersed oxides or reactive additions in the alloy (18).

Upon post-oxidation spallation of the Cr203 scale shown in Fig. 10, large prismatic crystals

(presumably Cr203) are found in the Cr/Cr203 interface as the only points of attachment.

Because the density of these crystals (Fig. llb) approximates that for the Cr203 whiskers at

the scale/gas interface, again a causal relationship is suggested (18).

Oxide convolutions are also found in the growth of Al203 on Al-containing alloys, where

again the Al vapor pressure is sufficient to provide the metal flux across the boundary.
However, A12O3 scales are thought to grow inward by oxygen grain boundary diffusion. For

A12O3 scales, tightly adherent areas do not develop whiskers, but thv are grown on the de-

tached, convoluted scale (30). This behavior is opposite to that for Cr203 growth and is

not understood. Also for poorly adherent A1203 scales, large prismatic A1203 crystals serve

as attachment points across the scale/gas interface (31). These observations must ultimately
provide a better understanding for the growth mechanisms for Cr203 and A1203 scales.

CONCLUSI ONS

In situ observations of oxide scale growth at the scale/gas interface in the HSESEM have
provided some insights concerning mechanisms for lattice extension. However, the particular
HSESEM environment also introduces certain features (fume formation, scale evaporation)
which are specific to the experimental conditions (intermediate oxidant and total pres-
sures). Such studies are ideally suited to examine the effects of sudden changes in the gas
composition or temperature, and such studies are in progress. As known from the literature,
many of the morphological and transport characteristics of scaling reactions depend upon
many factors: specimen purity and preparation, oxidation procedure, temperature and the
environment. Thus, scaling models must include qualifying and restrictive limitations.
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