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ABSTRACT

The conflict between classical and modern theories of criticality is resolved
by recognising that both theories work with approximate models, whose relative
merits can be assessed by their response to efforts to refine them. Contrary
to many claims, critical exponents are not tools fitted to discriminate
between different models. True, Riemannian theory which characterises analy-
tic functions in terms of their singularities, can be mapped into experiment-
ally measured functions, that have finite ranges, finite errors, and replace
singularities by rounded corners. Under the mapping, the uniqueness of

series expansions is not preserved. Weierstrassian theory shows that a single
infinite series is mapped into a non-denumerable set of series, each with a
finite number of terms, which are equivalent in fitting experimental functions
uniformly within any € however small, and whose leading exponents X range over
-w<x<+o, From the statistical viewpoint this means that tests for or against
a theory, by a null-hypothesis based on the critical exponent, fail because
this parameter is not identifiable, or (in other variants of the test) incon-
sistently estimated, or lacking in robustness.

We illustrate these principles by reference to gelation data in the literat-
ure, and exemplify the refinement processes envisaged by classical and modern
theories. Modern theories aim to discover universal features, working out-
ward from the critical point by addition of successively larger corrections
to the Hamiltonian or free energy. Classical theory works inward towards the
critical point by adding successively smaller corrections, and with due regard
to system-specific features. The classical gelation theory of Flory and
Stockmayer has long since been refined in this way in respect of cycle form-
ation and substituent effects and fits some good data almost within experim-
ental error. The parameters of the refined theories, used in such fittings,
are available from measurements independent of gelation.

1. INTRODUCTION

A theory may be wrong, in a weak sense, like Newtonian mechanics, in that it
requires refinement to eliminate hidden or overt approximations. A theory
may be wrong, in a strong sense, like Phlogiston, by starting from wrong con-
cepts. The founders of our classical mean field theories for gelation

(Refs. 1,2), phase equilibrium (Refs. 3,4), swelling (Ref. 5), etc. emphasised
from the beginning the overt simplifying approximations they had made. For
more than thirty years, they and their followers have laboured to secure
progressive refinements by the interplay of theory with experiment. Thus the
classical mean field theories have been known to be wrong in the weak sense
from their inception.

The rise of a new paradigm, the critical exponent (Ref. 6), has been instrum-
ental in suggesting that the mean field theories are, for important purposes,
wrong in the strong sense, namely beyond redemption by any process of refine-
ment.

The resulting strong divergence of opinions on a purely scientific topic,
between protagonists for the modern paradigm and the 'classicists' adhering
to the mean-field-approximation paradigm, may seem surprising. 1In an earlier
generation, outstanding theoreticians made outstanding contributions to both
paradigms. In particular, Landau (7) formulated a general mean-field approach
to criticality, while Onsager (8) gavé great impetus to modern theory by his
solution, which still provides the main reference point, of the Ising model
for a two-dimensional lattice graph. These fore-runners cannot be held
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responsible for whatever confusion now exists.

The discord between classicists and modernists conceals different conceptions
of the criteria for testing and refining a model. Such methodology may appear
to be a meta-scientific subject, in which exercise of opposing options is per-
haps not surprising and even has heuristic value. Nevertheless,.a review of
the controversial field of gelation in network-forming polymers, including
some principles of mathematical analysis, statistical lnference, and physical
model-building, may be helpful. The main conclusion we reach is that critical
exponents cannot be suitable instruments for discriminating absolutely between
rival physical models, however large the difference in the exponents which
characterise these models mathematically. Classical and modern theories are both
useful as approximations. They are testable, not by exponents, but by their
response to refinement. Classical gelation theory has a long history, and has
proved its power of refinability to accommodate highly system-specific effects,
especially ring-formation. Such effects can cause deviations from the crude
initial approximation theory of the 1940's, and <can be made large or almost
vanishingly small, in accordance with gquantitative prediction, by varying the
chemical structure of the system. The modern theories of Ising or lattice
percolation models, of the phenomenological scaling theories (Ref. 9) or the
more microscopic renormalisation group approach (Ref. 10), can also be refined
as we exemplify in figs. 2 and 8. If this turns out to be more convenient or
more powerful than the classical approach via refinement of the model of per-
colation on a Caley tree, then the classical theories will fall into disuse.

1.1 The two directions of refining critical models

Classical theory aims at progressive refinements by moving 1nwards towards
criticality, while modern theories work outwards from a critical- singularity.
For theories which start from the classical Flory-Huggins model, this was
recently illustrated (Ref. 11). In rubber elasticity, early classical theory
was aimed at substantial degrees of cross-linking, but through chain-end
corrections at first (Ref. 12) and then through the definition.of elastically
active network chains (Refs. 13,14,15), applicability of the classical model
was extended towards the critical (gel) point. The present stage of this
process will be illustrated below in figs. 5 and 7. For modern theory, on the
other hand, the opposite direction of refinement is quite evident, since the
critical exponent is an asymptotic quantity, strictly valid for a mathematical
model at the critical point only, i.e. at minus infinity in a conventional
log-log plot. As_ Stanley (6) points out: "It is important to stress that the
relation f(e)~ Ae* does not imply the relation

£(e) = Ae¥, x=x, [3.3]

although of course the converse is true...in general we find that there are
correction terms, and eq. [3.3] is replaced by

f(e) = AeX(1+BeY + ...), y >0 _ (3.47

Stanley sums up the rationale of modern 'out-going' procedures thus: 'We may
rightly question why we should focus on a quantity such as the critical-point
exponent, which contains considerably less information than the complete
functional form. The answer seems to lie in the experimental fact that suff-
iciently near the critical point the behaviour of the leading term dominates.
Therefore log-log plots of experimental data..display straight-line behaviour
sufficiently near the critical point, and hence the critical point exponent is
easily determined as ‘the slope of the straight-line region’. " Hence critical
point exponents are measurable while the complete function may not be...".
This is a fair and cautious summary of views often accepted less questioningly.
Although we present an analysis which overturns these conclusions, and which
challenges the critical-exponent paradigm altogether, it leaves untouched the
role of the exponent in characterising an analytic function, and the basic
role of Ising-type and similar theories in physics. Indeed we present a case
for the claims that the exponent deduced from an expm%maﬁnl log-log plot

does not reflect the dominance of the leading term in series (1), and that

the whole function may be measurable while the cr1t1ca1 exponent in isolation
is not.

For the analysis of Stanley's eq. [3.4] just cited, we specialise the series
appropriately with minor change in notation: -
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f(e) = Aex(1+aley + azezy...), y>0 (1)

Before giving the more technical details, we summarise in section 2 qualit-
atively the obstacles which the analysis brings to light against the use of
measured exponents in refining theoretical models and discriminating between
their merits. The qualitative summary should enable experimentalists to skip
the technicalities in the subsequent section 3. Experimentalists are likely
to be familiar already with the vagaries of double-logarithmic plots, and in
any case we shall illustrate the obstacles to the application of exponents
with practical examples of data, taken from network theories of gelation, in
section 5.

2. QUALITATIVE CRITIQUE OF CRITICAL EXPONENTS AND OF THEIR ESTIMATION
FROM RELEVANT LOG-LOG PLOTS

The main argument emerges by looking in more detail at the series expan51on in
eq. 1. Classical and modern theories can describe the critical region by
series of this general form. Undoubtedly the critical exponent x is the most
important parameter of such an expansion about the critical .point from the
standpoint of the mathematics of the assumed model. Besides, x is often diff-
erent for classical and modern models. The idea of treating the expansion-as
test functions for comparison of different models has been widely canvassed.

Unfortunately, it has emerged that even when we give arbitrary values to x
(finite but arbitrarily large, positive or negative) the series (1) can still
fit with any desired precision, over any desired finite range of e, both any
given continuous curve and any finite set of data. And in practice, this means
that if such a series is used as test function, then all theories are comp-
atible with each other and with all data. The reader may object that in this
age of computers, a good theory may predict not only the exponent x but also
y and perhaps the first 101 coefficients A,aj,...a100, say.. Alas, the concl-
usions are totally unaffected: all theories are still compatlble with each
other and with all data, even if they differ in x and y and the first 101
coefficients (or any finite number of coefficients,however large!).

It is a simple corollary, that even if we fix, say, any 101 coefficients and

x and y, the adjustment of parameters in the remaining tail of the series
suffices to fit data in a log-log plot by a curve which, over as many decades
as desired, remains as close to a straight line as we wish to specify. These
difficulties remain until a bound can be found for the remainder of the series.

There are serious additional disadvantages for a series such as eq. 1 to be
used as a test function for discriminating between models by appeal to data.
Statisticians have technical terms for two of these snags: the parameter x,
i.e. the critical exponent on which so much hinges, is inconsistently
estimated, or not robust, or unidentifiable.

A word of reassurance is in order. Of course, theories can be compared and
refined, and test functions exist which have been shown to be suitable for
this purpose. Also, distinguished experimentalists have produced log-log
plots with their data which show impressive linearity over several decades.
These are valuable (though more useful plots are available). However,
conclusions drawn from them in the past need cautious reinterpretation, esp-
ecially when the plots have been said to disprove some theory; or when it has
been assumed that the slope is equal or close to the value.of x of that series,
theoretically uniquely defined with all its parameters, which would be
approached using sufficiently accurate measurements (in the thermodynamic
limit (V-»w)). This is shown to be most unlikely in practice, since in the
experimentally elusive limit of criticality and infinite volume, the Ising
model and reality must part company in many ways which may leave the experim-
entalist unperturbed.

3. THE TECHNICAL CASE AGAINST EXPONENTS IN THE TESTING AND REFINING
OF PHYSICAL MODELS

3.1 The untruncated series of eq. (1)

When in eq. (1) the exponents x and y, and the parameters ai(i=1,2,...) are
calculable from a model, and if the series is convergent, no serious trouble
is foreseen. This is already the case in many classical theories, where
indeed the series can often be summed into closed form. In most such cases,
as illustrated in figs. 4 and 8, the leading term is far from dominating the
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total function when fitted to data over present-day ranges available. Unfort-
unately, only few coefficients are known for most modern theories, and our
case concerns the situation where no bound can be assigned to the remainder
of the series.

The Weierstrass theorem on uniform convergence of polynomials, which we used
in our recent paper on critical and uncritical exponents (Ref. 16), can be readily
generalised thus:

Proposition. For any arbitrarily given x in the range -«<x<+e andy>0 there
exists a function

2
f(e;A,a1,a5,...a,5 X,y) = Aex(1+a1€y *+ae y+...arery), (r<=) )
which fits any continuous curve ¢=¢ () or any given finite set of data ($e

any given error bound (however small) over the whole of any closed range
in €.

Eexp) within

b4
owever large)

The changes in the usual proofs of the Weierstrass theorem are very minor,
since the main requirement of the functions f defined, that they should form
an algebra closed under addition and multiplication, is true as it is for
polynomials. As a consequence of the proposition, there exists for any crit-
ical exponent x such a function whose plot of log f against log € lies as
close as desired throughout any closed range (however large) to any given
straight line. The slope x*, say, with x* # x, of such a line, extending over
more than one decade (say) of values of e, was called an 'uncritical exponent'
by us. For a practical case of an uncritical exponent in fitting data to a
closed-form theoretical function see Irvine and Gordon (1la,11b).

To extend the proposition to the case of matching ¢(e) or (Gexps€exp)» when in
addition to the arbitrary assignment of x (-»<x< +) and of y>0, also A and
aj,az,...ax(k<e) are to be assigned arbitrarily, requires merely to note that:

Aex(1+aley +o.0.) = Aex-(k+1)y(€(k+l)y+ ale(k+2)y+..J 3)

Stanley, in the passage quoted, assigned to the exponent '"considerably less
information'" than to the function as whole. We see that, <n the absence of a
bound on the remainder, the proposition deprives the leading exponent of any inf-
ormation whatever concerning the experimental data to which the whole function
has been fitted, or even a function f truncated after a sufficient number of
its terms. Any exponent (-w<x<t®) can be equally well fitted to given data

by some such " polynomial", with arbitrary y, A, aj,...ak. The notion, widely canvassed
in the literature, that experimental data differ qualitatively from predictions of cert-
ain theories, is untenable, because it was based on the assumption that any
terminal good straight-line segment found must reflect the asymptotic slope
due to the leading term AeX in the model.

3.2 The truncated series (eq.[3.3] of Stanley)

We have just seen that the untruncated series of eq. (1)

is compatible with all possible data for all possible critical exponents. Even
the truncated series, with r-2, in eq.(2) is likely to fit data within exper-
imental error using any reasonable exponent (cf. fig.8). Recently, truncation
right down to r=0 has come into favour, i.e. equation [3.3] of Stanley, against
his explicit warning. In what follows we treat the models constituted by all
truncated variants of eq.2. This means turning from mathematics to physics
and statistics. We shall aim at proving that the truncated series constitutes
a new model, which, in a strictly defined sense (section 3.4) is <ncompatible
with the modern theories such as the Ising model.

3.3 The physics of criticality

The testing of models is the main concern of the physicist. On approaching
the critical point, an ever closer balance is established between the inter-
particle potentials taken into aecount in the mathematical models constructed
to simulate the physics. As is well known, the gravitational potential then
becomes significant in liquid/gas criticality; chain-end and polydispersity
effects in polymer phase equilibria, and higher anharmonic terms in the therm-
al expansion of magnets are among the untold examples of disturbances (Ref.16) which
become significant. Specifically, at spinodal points, the Hessian of the free
energy G vanishes in composition space (W. Gibbs). This implies that the G-
landscape becomes very flat and signals the vanishing of restoring forces for
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displacements from equilibrium as manifested by the macroscopically observed
fluctuations. One disturbance, that due to the surface (or wall) effect, is
present in all critical phenomena. For gelation, these effects due to finite-
ness of physical systems were calculated roughly by Covas et al. (17), and
treated with combinatorial exactness by Donaghue and Gibbs (18), and Burchard
and Nerger (19) seem to have detected the expected effect of finiteness exp-
erimentally. (In 1965, Fisher (20) rightly stated that the required accuracy
was 'way beyond the possibilities of most experiments'). Perhaps in principle
all disturbances can be included in a theoretical model, but they certainly
have not been included in models so far tested. Accordingly, Stanley's claim
cited above, of an 'experimental fact that sufficiently near the critical

point the behaviour of the leading term dominates' (our emphasis) is not
acceptable. It is a weakness of all present models that we are not sure
exactly how close to criticality they Zose their validity; and this invalid-
ates the choice of the critical exponent as a consistent test parameter, as

we shall see. :

3.4 The statistics of criticality

The testing of models is the main concern of the statistician. Typically he
defines a model as a family of functions, viz. as a function containing one
or more parameters (whose variation generates the family). A set of experim-
ents are considered as samples from a population, and problems of convergence
are paramount in statistical analysis. Experiments are regarded as subject
to finite error E, which can be reduced in principle but without reaching
zero. A model which fits data everywhere within the current E cannot be
refined until E is reduced. We shall now define the notion of compatibility
of two models. Though compatibility is weaker than mathematical equivalence
of functions, equivalent models are not distinguishable by experiment as a
matter of principle. Equivalence prevails when uniform convergence throughout
the experimental range of a sequence of functions, belonging to the family
defining the first model, leads to a limit curve not belonging to the first
model but to the second model. This is precisely the situation in the prop-
osition concerning ¢(e) and a sequence of "polynomials'" defined in eq.(2).
Accordingly, the result derived in 3.1 from that proposition may be stated:
all theories expressed in terms of a series of form of eq.(1l), in the absence
of at least a bound on the remainder, are compatible with each other. Modern
or classical theories, so expressed, are compatible with all other theories,
and the critical exponent is in the technical terminology of statistics, an
unidentifiable parameter. Since singular and non-singular models can be compati-
ble (though never mathematically equivalent) the implication (Ref. 10) of renorm-
alisation group theory, that the Hamiltonian must have a singular term, is an
axiom which cannot be tested experimentally.

It is readily seen now-that if the series is truncated, it is not compatible
with the so-called modern theories, but constitutes a new model. In other
words, with sufficiently accurate (though not perfect data) the model of the
untruncated series, when all its coefficients are finally calculated from the
theory, can always be distinguished from the truncated-series model, even if
its coefficients are freely adjusted.

Operations with the truncated-series model fall into two classes, according
to whether we take the measurements directly to determine the exact location
of the critical point, or whether we allow some adjustment of this location.
Now a number of disturbances are known always to exist close to the critical
point (see above), among which surface (or wall) effects are prominent; their
contributions have been roughly estimated (Ref.20). If we consider the crit-
ical point given exactly and independently without adjustment, the only way
in principle in which surface effects can enter the truncated-series model

is by injecting a small term of exponent lower than that of real interest to
theoreticians. This small term must vanish at V=~ , the thermodynamic limit,
which causes a jump in the critical exponent. Since the theory is based on
the 1imit V-, while the physical system has V<», the model estimate of the
critical (leading) coefficient of the physical system is not consistent , to use
the technical term (Refs. 21-23).

The inconsistency can be cured only at the expense of a lack of robustness

(Ref. 22) of the parameter, by correctly allowing some adjustment in the loc-
ation of the critical point. As has been noted by several investigators, but
is not well enough heeded, a small change in the assumed location causes a
large change in the slope of a log-log plot (see e.g. fig. 7). Thus by
adjusting the critical point, we are indeed able to fit at will a classical
or a modern exponent to the data in many cases. However, the lack of robust-
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ness of the exponent is caused by its sensitivity not merely to the location
of the critical point, but to the sundry other disturbances also. The contr-
ibutionsto G, which the models do take into account, come into balance as we
approach criticality, so that physically it is not surprising that tiny cont-
ributions which are neglected in the model may cast their shadows on log-log
plots into the experimental region far from the critical point. We describe
the inbuilt mathematical mechanism of the ill-conditioning which reflects
this physical effect, to the detriment of the rate of convergence of the series.

Mathematically, the inbuilt mechanism reflects a collusion between the leading
term and a whole dominant packet of successive terms somewhere higher up in
the series (eq.l) to simulate a linear log-log plot. The mathematics were
exemplified using an exactly computable perturbation of a Flory-Huggins model
for phase equilibrium in polymer solutions. There the minute leading term
represented a disturbance with physical significance arising from second-
neighbour effects. (The paper by Barber (24) on '"Non-universality in the
Ising Model" arising from second-neighbour disturbances should also be consu-
lted here). In a typical case, the addition of the minute leading term caused
the free energy to remain proportional, in the usual experimental range, to
its undisturbed value to within 0.04%, but caused the umeritical exponent of
the disturbed model to differ by. about 25% from the critical exponent of the
undisturbed model. The Ising model has a rapidly convergent series, as shown
by Monte-Carlo studies. But a slightly perturbed Ising model might well have
a much more slowly convergent series. For just such a transformation from
rapid to slow convergence by virtue of a small perturbation, see the virial
expansion of the chemical potential in section V.4 of reference (11.

The following typical effects ensue on letting the disturbance tend to zero
(ag»0); where ageX” is the small term added on the right of eq. (1) (x*<x).

i) the theoretical curves f=f(e) converge uniformly upon their unperturbed
limit curve, in any finite range including the critical point.

ii) the curves log f = log f(e) do not converge uniformly upon their limit
curve, because the critical point (-«,-») belongs to no closed interval.

iii) the centre of the packet of dominant terms travels forward, from terms
of higher powers, to converge upon the single leading term of the unper-
turbed limit curve.

iv) the unmeritical exponent of the log-log plot just mentioned, i.e. the exte-
nsive near-linear portion, converges rather slowly on the critical expon-
ent of the limit curve, and

V) the true critical exponent of the perturbed series remains constant up to
the limit and then jwmps to a new value discontinuously at the limit.

We summarise our conclusions on the significance of this section 3 in the
Discussion (section 6).

4. GEL POINT LOCI IN THE LITERATURE AND THE REFINEMENT OF THE
CLASSICAL MODEL

The classical Flory-Stockmayer theory made two approximations,equireactivity,
i.e. absence of substituent effects, and absence of cyclisation through inter-
molecular reactions. Efforts to refine the model showed that both neglected
effects are in practice of about equal import. Both can be measured independ-
ently of gelation experiments, and treated for such systems within the class-
ical mean-field theory. Both can also, as foreseen by theory, be reduced to
immeasurably small effects by spacing out the chemical linking-sites within
the monomers, and cyclisation can be so reduced especially by choice of stiff
monomers.

For classical theory, the first-shell (nearest neighbour) substitution effect
or FSSE was developed in the framework of cascade theory (Ref.25). The chem-
ical principles involved were generalisations of those already developed for
non-gelling systems in biochemistry by Pauling (26) and for micromolecules

by Bjerrum (27). Cyclisation in gelling systems was analogously treated

by generalising the Jacobson-Stockmayer theory of 1950 for linear systems,

in work by several schools, including Kilb (28), DuSek and co-workers (29),
and Stepto and co-workers (30). The underlying Gaussian statistics of sub-
chains are intended to reflect, as in rubber elasticity theory, their great
mobility. The high precision with which Gaussian statistics are applicable
to cycle formation was documented in the elegant labour of Semlyen's group(31).
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Fig. 1 Phase diagram for the system AA/TMBu/BG by Tang Ao-qing et al.
(33).

These statistics were incorporated appropriately in the classical tree perco-
lation model, as generalised in the so-called spanning-tree approximation (Ref.25)
to intramolecular reaction. The resulting theory was verified on several
gelling systems without significant adjustment of parameters which were secu-
red independently both by measuring chemical rates and by calculation of rele-
vant conformational statistics. By 1972, it could be claimed (Ref. 32) that
'the approximation is excellent, and that the ring-chain competition problem
is solved by the spanning-tree approximation for all but the most searching
enquiries’'.

4.1 Gel point loci and the classical pure tree-percolation model

In several industries, the mapping of gel point loci by special instruments
has become a practical tool. It is fitting to begin our review with a recent
academic study by Tang Ao-qing and co-workers (33) on polyfunctional condens-
ates of adipic acid (AA), trimethylol butane (TMBu) and butylene glycol (BG),
which are 'of practical significance for the study of the curing process and
choice of processing conditions for thermosetting resins...'. Fig. 1 illust-
rates with their phase diagram the sensitivity of the classical theory to the
assumption of equireactivity. Modern theories are not available for the lines
in their diagram. The abscissa rp denotes the stoichiometric ratio of TMBu
hydroxyls, and the ordinate rc that of BG hydroxyls, to AA carboxyls. The
parameter K denotes the ratio of rate constants of TMBuhydroxyls and BG hydro-
xyls for esterification. The upper boundary curve of the gel-forming region
is seen to lie close to the value K=1 corresponding to the unamended classical
theory. With the amendment K=2, their calculated curve is seen to fall wide
of the data, even though the implied change in relative activation free energy
is merely about 2.5 kJ mol-l. The equireactivity postulate is thus confirmed
for this reaction with a precision that must be the envy of kineticists work-
ing with reactions which are much simpler, but which lack a critical point.
The authors remark, however, that the two experimental points indicated by an
arrow, manifesting the observation of ungellable samples just inside the
calculated gel region, probably reflect a deviation from the independent
approximation which neglects cyclisation in the unamended scheme. Indeed a
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small positive FSSE in TMBu is to be expected, similar to that in pentaeryth-
ritol (PE) described below, and that observed in trimethylol ethané (Ref.34).
This would in part counteract the cyclisation effect, as in fig. 2 below,

and thus contribute, but only to a minor extent, to the quite excellent fit in
fig. 1. However, on the evidence of fig. 2, technologists would be right to
resist the argument that classical gelation theory is basically wrong.

4.2 Classical and modern gel points as guides to model refinement

The work of several researchers in our group was carried out in the 60's and
was reviewed, e.g. in 1971 in the Journal fuer praktische Chemie (35). Fig. 2
up-dates one from that review by including the broken line A, calculated by

Ul 64 V i Al L} 1 1 1 ] k) 1
0 DIAMOND LATTICE
X L A .
0. 60 -
» B _1
FLORY/STOCKMAYER
0. 56+ -
0
6 8 10 12 14

Chain-length of dicarboxylic acid

Fig. 2 Gel points of three polyesters. This figure compares two
unrefined theories (A and B) with a refined theory (C) allowing for system-
specific extent of cyclisation and substitution effects.

adapting the best modern lattice-percolation result available, for comparison
with the original Flory-Stockmayer classical tree-percolation result (line B),
and its amendment for both FSSE and by the spanning-tree approximation for
cyclisation (line C). The best individual fit to any one system is clearly
that of the modern theory A to the AA/PE gel point. The line A was derived
by placing the units of PE on the sites of a diamond lattice, which most clos-
ely mimic the conformations of carbon chains. For this lattice, various est-
imates for oc are given by Essam (36) and 0.39 is a reasonable average value.

However, two ester-bonds require to be located between any two lattice points.
This rigorously modifies the result to uc=(0.39)1/2=0.624, since no FSSE has
been clearly detected for the carboxyls of the intervening AA unit (Ref.34).
For an_analogous reason, the classical tree-percolation (line B) gives not 374,
but 3-1/2=0.577. The line B corresponds to this constant value and represents
the unrefined classical tree-like model. The line C, for the refined tree-
model copes well with the system-specific variations within the set of three
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points, bearing in mind the large scale of the ordinates. These points summa-
rise much labour (Ref. 37 ; e.g., the middle point (sebacic acid) averages ten
measurements at four temperatures to give ac=0.5988 with standard deviation
0.0045.

i) The ring-closure parameter A was found from chemical rate measurements,
and confirmed from calculation based on the appropriate random-flight
chain, subject to the constraint of the appropriate bond angles. The
parameter then allows the calculation of the -OH groups converted into
intra-molecular bonds at the gel point, expressed as a fraction o. of
the total number of -OH groups. This gave for the PE hydroxyls; 0.0501
with AA, 0.0425 with sebacic acid (SA), and 0.0307 with tridecanoic acid
(TDA). Below we review a system for which ac is about 0.018.

ii) The FSSE parameter N, measuring the factor by which the rate constant of
esterification of an -OH increases for each -CH previously esterified
on the same PE monomer, was found from chemical rate measurements on the
same systems, and in good agreement on the mono-functional model system
lauric acid/PE (Ref.38), and again, independently, from the product
analysis by GPC of that model system (Ref.39). The parameter N=1.40.1
for all these methods was tentatively attributed to intramolecular H-
bonding in the unesterified (or singly or doubly esterified) PE_monomer.
The value N=1.4 represents a decrease of only about 0.7 kJ mol-l in the
free energy of activation for each a-methylol already esterified.

Fig. 2 deals with mathematically and statistically sound tests of three
theories, not against critical exponents, but against gel points which can be
trusted to reflect theoretical quantities calculable from the models. The
unrefined classical model (line B) fits about equally well as the unrefined
modern model (line A). The refinement of the much older classical theory,

to yield the improved fit of line C, throws some light on the pathway for
refining the modern theory, which is of course equally capable of refinement.
The highly system-specific ring-closure and substitution effect, both meas-
urable independently of gelation experiments, are seen to dominate the refine-
ment process. No limit is foreseeable for the reduction of ring-closures by
spacing out the functionalities, or indeed by stiffening the monomer struct-
ures (see below). Any hope of sharply discriminating between classical
tree-like and modern diamond-like models for the particles are, therefore,
foredoomed to failure. To base the discrimination on critical exponents

would founder, not only on the difficulties already detailed for the general
case, but also because any hope of 'universality' of exponents is here dashed
by the highly system-dependent degree of cycle formation o. reached at the gel
point. Stepto and his group have shown (Ref.30) how accurately o. can be
measured independently of any gelation theory, using a combination of measure-
ments of freezing-point depression and chemical assay.

5. EXPERIMENTAL SCRUTINY OF EXPONENTS

5.1 The exponent B in gelation

Fig. 3 is by Parker and Dalgleish (40), showing the relationship between the
theory of branching processes and the heat-coagulation of milk. Their curve
of the 'classical' theory is drawn on the assumption of exact second-order
kinetics with respect to functionalities. Brauner (41) urged experimentalists
to present their data as log-log plots. He transformed fig. 3 accordingly as
part of a survey of gelation data aimed at deciding between classical and
modern theories on the basis of exponents. His policy was to accept, in cases
like fig. 3, the critical point deduced from extrapolation of the plot provi-
ded by the original authors. However, Parker and Dalgleish would hardly feel
committed to that location to within a tolerance appreciably less than the
accuracy of their actual measurements (as deducible, e.g. from the scatter
about the theoretical curve). One could not demonstrate more strikingly

the lack of robustness of the critical exponent as a statistical parameter
than by replotting on a log-log scale. Thus fig. 4 gives the conventional
log-log plot for two different assumed values of tc. For the crosses, the
value of tc taken was the same as in fig. 3. The straight line drawn is an
unweighted linear regression line and has a slope of/0.45, close to the
theoretical lattice percolation value of 0.39, and slightly different from
the value 0.54 calculated by Brauner using the same method for the same data.
(The difference must be due to the sensitivity of reading points near the
critical point off a graph). The points styled O represent a decrease of
1.75 per cent in the value of tc. This adjustment is within the experimental
error as is clear from the scatter in fig. 3, and indeed the first six
experimental points after the gel point (t/tc=1) mildly suggest such a shift
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of tc. The curve through the circles represents the 'classical' theory. Its
slope at the point (-«,-») would be 1.0, which represents the classical crit-
ical exponent. The lack of practical significance of this exponent is appar-
ent since the slope of the classical curve varies over the experimental range
from about 0.9 to about 0.1, and this is adequately fitted to the data points.
The classical theory is probably weakly wrong, as Parker and Dalgleish have
suggested, especially in the precise values of the (properly averaged) funct-
ionality of the casein wunits. Clearly better data are required to refine

the classical theory further. Taking its crude assumption at face value, the
modern theory is seen to be weakly wrong also, since the rough averaging of
the slope over the systematic deviations of the crosses gives 0.45 rather than
0.39. To be applied with confidence, however, a bound for the remainder of
the series must be calculated, to confirm that (unilike what happens in eclassical
theory ), the leading term dominates the modern theory throughout the experim-
ental range.

Parker and Dalgleish's work in fig. 3 is of interest to the Dairy Industry,
because i) it explains convincingly as a single chemical process what was
previously thought to be a composite effect involving a delay period, ii) it
elucidated the order (and activation energy) of the chemical process involved.
Even moderate degrees of cyclisation in the sol would measurably lower the
apparent reaction order below the observed value of two. Since the three or
so sites on a casein molecule are probably spaced out over intervals larger
than those between the carboxyls in TDC (fig. 2), little cyclisation is exp-
ected in the sol. iii) Finally, a satisfactory model with an appropriate
functionality of 3 in the Cayley-tree being available, 'the exact nature of
the reactivity groups should be elucidated more easily' (Ref. 37). Neither
of the two replottings in doubly logarithmic coordinates, shown in fig. 4,
would have shed any light on these three practical concerns, and such plots
are not, therefore, recommended. Note also that the log-log plot depends on
accurate knowedge of the location of the gel-time, which is not required when
using linear coordinates (fig. 3).

5.2 The exponent in rubber elasticity
Let G'(0) denote Young's modulus, o the fractional conversion of cross-linking
sites, and qc its value at the gel point. The exponent t in the relation

' (0)~ ((a/ac)-1)"t 4

is predicted to be ~1.7-1.9 by scaling theory, and 3 by a classical theory,
hailed as non-trivial by de Gennes ( 9). We review de Gennes' attempt to dis-
criminate with a series truncated after a single term against classical, and in
favour of scaling, theory using scattered data on the difficult, because
weakly bonded, gelatin system. These data were presented (Ref. 42) by the
original authors for purposes substantially less sensitive to experimental
scatter than eq. 4, for which they are unsuitable. The modest purposes were
(cf. ref. 43) the demonstration that a), the mere placement of the curve

in the diagram gave support to the correct multiplicity of the helical cross-
linking zones (triple helix), and b) the overall very rough fit of the scatt-
ered data was sufficient to suggest that molecular theories of rubber elast-
icity were generally relevant to weak gelatin gels of this type, a notion
hardly yet considered at that time.

Fig. 5 includes the full data of 3 runs together with the line drawn in his
text book by de Gennes to obtain 1.7 as the slope for the points (® ) he
selected from one run, and four points (0) from that run which he omitted.
(He has handsomely apologised for this omission (Ref. 44)). The point seems
to have been misplaced in de Gennes' figure from the higher position in the
original plot, also shown here just above this triangle. We use this textbook
example to illustrate the conclusion, which follows from our adaptation of
Weierstrass's theorem, that the series (1) is not a test function that can
discriminate between rival theories by reference to experimental data without
a bound on the remainder of the series. We recall Stanley's remark that the
exponent contains substantially less information than the whole function.

The whole function is available for the classical theory and it shows that,
for that theory, truncation is very far from justified in the experimental range.
For the convenience of those who favour series expansions, Gordon and Ross-
Murphy ( 43) published two expansions of classical formulae, of which the one
for random cross-linking of long homodisperse chains is sufficiently relevant.
From it we find:

t=d 1n GYd ln(a/ac-l) = 3-(22/7)(a/ac-1) .. ; (5)
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Soluble fraction

1 2 3
t/te

Fig. 3 Soluble fraction of milk as a function of relative heating
time t/tc. O, data of White and Davies, and White and Sweetsur (in Ref. 40).
The kinked curve is the theoretical classical result for random trifunctional

polycondensation.
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Fig. 4 Conventional critical-exponent plots for fig. 3 of log G

1- soluble fraction) plotted against log (t/tc-1), for two
different assumed values of t.. X, linear regression with t. taken as value
used in fig. 3; O, the same Jata fitted to the classical curve by adjusting

t. downwards by 1.75 per cent of its value.

(G=gel fraction =
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Fig. 5 Conventional critical-exponent plot for the data of Judd (see
ref. 17) on the modulus (E = G'(0)) of three gelatin gels. @ ,points chosen
by de Gennes ( 9) to estimate the slope as t = 1.7 (broken line), the left-
most point ® of Judd's data having accidentally been misplaced to the pos-
ition of the triangle A . The solid line is a linear regression of the chosen
data after correcting this misplacement.

Many terms of the series are required at the end of the experimental range,
where (o/ac)-1=1; <llicit truncations at this point of the series give t=3 at
the first term and t=-0.74at the second term. Thus the slope of the chord
drawn by de Gennes does not disprove the classical theory. The whole classical
function is also plotted (fig. 6) to show that the predicted slope in the exp-
erimental range is variable, decreasing from about 2.5 to 2.2. It is, of
course, sensitive to the assumed position of the gel point also, which is dis-
placed in the top plot (ac=1.025) to show that the 'uncritical' exponent could
be 2.33. Neither, of course, does it disprove the scaling theory, which we
prefer, however, to fit successfully to the much better data on a well charac-
terised system below.

5.3 A better test system: esterification of decamethylene glycol/benzene-1,3,5-
triacetic acid

Fig. 7 shows_five plots of the storage modulus G'(w) as a function of frequency
(0.1<w<25 s'l) for decamethylene glycol/benzene-1,3,5- triacetic acid (DMG/BTA)
polyester condensates. Measured by Roberts wusing a Weissenberg Rheogon-
iometer, these results are taken from a recent paper (45). They confirm, with
increased accuracy, earlier plots for the same system taken with a microsphere
rheometer essentially at w=0, published in several reviews (Refs. 35,47 )and
quoted as background for the gelatin work (Ref. 43 ) (cf. fig. 5). The system
DMG/BTA has been carefully characterised by several chemical and physical
methods. 1Its bulk-state esterification in stoichiometric mixtures has a




Scrutiny of the critical exponent paradigm 1473

3 ' 1 L§

DMG/BTA

Log10 G'(0) + const.
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Fig.6 Classical theory (log G'(0) against log(a/a _-1)) for different
cross-1linking mechanisms and different assumed gel points, in the range of the
data (1.1 < a/a < 1.7) by Judd et al. (17)on gelatin (fig. 5). Polycondens-
ation (bottom) 8nd helix-formation (middle) give different degrees of curvat-
ure and positions. Top (displaced upward): "uncritical” exponent due to shift
of gel point o =1.025. 0, theoretical points,and regression line

fractional conversion of 0.722+#0.006. The fraction of links formed intramolec-
ularly up to the gel point is about 0.018. This reduction in degree of cycl-
isation in comparison with PE/TDA (0.0307, see above), despite the chain-
length of DMG being lower than that of TDA, is due to the greater stiffness of
BTA when compared with PE. This is shown both by calculations of the conform-
ational statistics of the chains and by the case of self-etherification of
1:3:5 trimethylol benzene (TMB). This compound closely resembles BTA in stru-
cture. Although this self-etherification proceeds without a 'long-chain'
component bearing widely-spaced functionalities like the carboxyls in TDA, the
cyclisation degree is found to be so low as to lie between 0.01 and 0.02. The
gel point was found to be 0.508%0.006 by Temple (35,48 ), while the classical
theory gives 1/2, and the spanning-tree refinement raises this merely to 0.502.

The five curves in fig.7 were superposed by Kistner (49) using his elegant
frequency reduction theory, which also confirmed that the lowest curve (0.1ls~ )
is an adequate approximation to G'(0) as a function of time. The classical-
theory curve drawn through the points adjusted (slightly) only one parameter,
the front factor. Theoretical reasons were given to accept the value of unity
as in Flory's early theory. The value chosen in fig.7 was 1.336 by way of
optimising the fit. However, over the best 10 runs taken, the average front
factor found by optimisation was 1.04120.157, very close to Flory's early
prediction. The gel point was also adjusted for optimal fit within the narrow
visco-elastic range where viscometry and elastic measurements overlap, the
critical conversion estimated by back-extrapolation of the modulus to zero
being between 0.002 and 0.005 lower than the critical conversion estimated by for-
ward extrapolation of the reciprocal low-shear viscosity to zero. Thus the bott-
om curve is after all a practically parameter-less fit of the classical tree-like theory.

We do not recommend the transformation to a log-log plot, which renders the
experimental errors less uniform, spaces out experimental points in an unde-
sirable way, and wrongly debases the front-factor. Nevertheless, we present
the log-log plot in fig. 8 with a very satisfactory fitting to the modern
theory of critical exponent 1.8. This illustrates that the modern theory
(which is as yet equivalent to all possible data) could fit with essentially
two parameters.

PAAC 53:8 - B
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Fig. 7 G'(w) against time for run 23 of Roberts and Gordon (46) on
stoichiometric DMG/BTA. These data are in a range (1.005 < a/ag < 1.02) much
closer to the gel point than shown in fig. 6. Frequencies, from left to right

w= 25, w= 10, w= 5, w=2.5, w=1.0, w=0.1 Hz. The rightmost curve (w= 0.1
Hz) shows the classical theory, fitted by optimisation with respect to the
front-factor (here g = 1.38, predicted (ref.46) g = 1).
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Fig. 8 Fit of the modern theory (eg. 1) to the low frequency data
of Roberts (the circles in fig. 7), on stoichiometric DMG/BTA, using a crit-
ical exponent plot: log G'(0.1) against log(a/ag-1). The first three points
show large deviations from the linear behaviour exhibited by the remaining
points. This reflects the artificiality of log-log plots wherever absolute
rather than percentage errors tend to be uniform, plus the finite-frequency
effect, etc. Dotted line: G'(0D)/104 = 0.61939z1.8 + 4510.623.6, where
z = (o/og -1). This implies that the second term contributes up to 5 times
the amount of the first term, while in the expansion of the closed-form class-
ical equation, fitted in fig. 7, the second term contributes a maximum of
5%. Continuous line: G'/104= 0.39418z1.8 +5531,92z3.6 - 10.436.107 z5.4,



Scrutiny of the critical exponent paradigm ' 1475

6. DISCUSSION

We discuss first the status of classical and modern theories within the cont-
ext of natural philosophy, and answer some fundamental and specific objections
to the classical approach which have been put forward. This leads on to a
brief statement for the claim that the response of models to refinement is a
better guide to progress than selected acts of curve-fitting. - Finally, we
return to the case for treating log-log plots and their slopes as tools to be
avoided wherever possible, and certainly tools unfitted to give a firm verdict
for or against either the classical or the modern approach to critical pheno-
mena.

A constructive philosophy views classical and modern theories not as qualit-
atively different and mutually exlusive, but as two methods of crudely
averaging for a first approximation. Classical theory typically replaces the
configurational phase integrals by random-flight or Gaussian-chain approxim-
ations, thereby exploiting the factorisation of multivariate integrals of that
kind. Modern theories place the moving particles at fixed average positions,
viz. at lattice points of an embedding space. There is no intrinsic reason
why either approach should not be refined by higher approximations (cf. figs.2,8).
Both methods of averaging have some theoretical -appeal. The modern theorist
can draw on the vast array of solid-state models which have served well for
crystalline materials. The classicist may take comfort from the invariance
principle (Ref.50 ), which sanctions the reduction of molecules moving in

a three-dimensional embedding space with freely rotating inter-unit links,

to the classical unembedded tree-graphs in terms of invariance to such
reduction of the relevant ratios of symmetry numbers. It also seems that this
reduction can be widely, and perhaps always, expressed as a degeneracy of the
Riemann metric to a graph metric (Ref.51 ).

The modernists sometimes put their basic case mére philosophically. They
feel the advantage of starting from an exact solution of a well-defined model,
the 2D Ising model, or a variant for which a very close approximation to the
true exponent seems assured. If it did not fit the data, they would not wish
to refine further a model whose exact first term was known to be wrong. This,
in the modernist's view, is just the flaw in the process of refining a mean-
field theory: the unrefined results of mean-field theories, even where they
admittedly fit certain types of measurement, do.so demonstrably by cancell-
ation of large errors .among the terms contributing to the mean-field solution
(cf. the large numbers of terms in fig.6 , see above). A superstructure
erected on such foundation is a poor tabernacle for physics. The argument

is persuasive. But is it really correct? The mean field is, of course, an
average by definition. (The terms in its series expansion can very often be
summed!) . And a good model succeeds in averaging correctly, for some defined
purpose, over some broad distribution. In other words, a large cancellation
of errors is the mark of a good theory, not a flaw. But the theory will need
refinement when we require it to fulfill more demanding purposes.

As a more specific objection to classical models, it has been thought that a
tree-percolation model cannot in principle deal with cyclic structures.
Electrical circuits also contain cycles, yet their properties are analysed in
terms of the basic graph-theoretical notion of a spanning-tree. The success

of the spanning-tree approximation, illustrated in dealing with the system-
specific cycle formation in polymerisations, essentially parallels a model
approach to the statistics inherent in certain epidemics put forward long ago
by no less a statistician than Neyman (52).

Again, certain graph-models are rejected by modernists as being overcrowded
in a three-dimensional embedding space. Especially, a tree-like gel of Flory-
Stockmayer type acquires infinite packing density in such a space when the
atoms are assigned a volume. This Malthusian Packing Paradox has been resol-
ved (Ref. 43). Essentially the resolution depends on the fact that, for the
purpose of physical theories, a formal accountancy procedure simplifies the
calculations by classifying large ring closures in a gel as if they occurred
intermolecularly, thus generating the overcrowded tree structure as a conven-
ient and useful picture.

6.1 Refinement versus fit

The notions of ""correct™ or "wrong" theory cannot rest on the quality of fit
of a crude first approximation. After all, melts of adipic acid and PE do not
fix their highly mobile particles on a diamond lattice, and thus the modern
theory is crude, as well as the classical, even though it can predict the gel
point a little better (fig. 2). The correctness of a theory rests, instead,
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on its response to the refinement process. This was realised early on

by the leaders of the field of studies in which particles obediently do occupy
lattice sites. For instance, Pauling and co-workers (53) detected that a
crystal structure assigned to B-Se was indeed wrong: although the fit of the
relevant Fourier synthesis had been remarkably good, indeed good enough to
achieve publication in Acta Crystallographica. Pauling et al. noted that
even fifteen successive refinements of the Fourier synthesis had not removed
some disturbing features. Only by a wholesale displacement of the molecule
in the unit cell could a new trial-structure be generated which rapidly
refined under slight shifts of the new assumed atomic coordinates. This
structure, now accepted as correct, unlike the earlier one, had the correct
bond lengths everywhere, which means precisely that the bond lengths found
were those upon which properly refinable models converge in other molecules
containing Se-Se bonds...

As a general quantitative measure of refinability, the reduction in standard
deviation of experiment from theory should be divided by the change in the
free enthalpy G or Hamiltonian per relevant particle in the model responsible
for this reduction. It was recently shown (Ref. 17) that further theoretic-
ally inspired refinements of an already-refined (Ref. 54) Flory-Huggins model
for phase equilibrium in a polymer solution, resulted in substantial improve-
ments in fit of spinodal and critical point data. The corresponding adjust-
ments in G descended rapidly down to 0.05kT per polymer chain.  Such minute
adjustments will still cause displacements of several centigrade degrees in
the location of spinodals at the dilute end of the experimental range. The
process of refinement of the classical theory has followed the path of moving
inward towards the critical point with successively smaller adjustments in G.
This mode of model refinement is classical in the widest sense, and the con-
verse procedure seems yet to have to prove itself in polymer science.

6.2 Critical and uncritical exponents

It is time to return to the impressive log-log plots in the literature some-
times spanning several decades, which verify modern exponents. In favourable
cases, the experiments concerned do provide evidence that the Ising or perco-
lation model, the phenomenological scaling models, or microscopic modelling
through the renormalisation group approach, lead to truncated series whose
leading term models the physical behaviour over the observed range. The
truncation implies mathematically, and the limited range of effects built
into the model implies physically, that the location of the critical point
assumed in these plots is not exact, if the correct procedure is used to ad-
just it. This correct procedure selects that location of the critical point,
which gives the most linear tail-piece to the plot. The procedure is correct
for locating an experimental range over which the model, in its stark simpli-
city, reflects the physically dominant effect, provided the slope agrees with
that deduced from the model. If so, the critical point selected by this
straightening routine may be that of a hypothetical substance which harbours

no effects beside those built into the model. It is never the exact critical
point of the physical system taken to infinite volume. Thus all measured
exponents are uncritical in a strict sense. The straightening of the plot

by adjusting the critical point will tend to extend the apparent range of
linearity, and may do so substantially, as shown in the top plot of fig.6 ,
without reflecting the properties of any specifiable model.

Experiments which have been precise enough to lead to a 'verification' of
modern exponents remain an achievement of which experimentalists can be proud.
It should now be clear that the log-log plots in question in no way preclude

a classical theory from being refined to fit just as well (see, e.g. fig. 2

of Ref. 11b). Equally, a log-log plot with a classical slope can in principle
be fitted just as well to a refined modern theory (e.g. fig. 8). The two ways,
mean-field and modern, of tackling the process of initial averaging and
successive refinements, are available. The experimentalist will be aware
already of the need to keep this process in tune with the system-specific
features of his materials. Burchard and his school have demonstrated (Ref. 55)
that a wide range of physical properties can be calculated to serve for
judicious testing of mean-field model refinements, and Dufek's school has

been successful in using model systems of technological interest in this
process (Ref. 56); and the whole wide programme of research into gels at
Prague has greatly benefitted from constant efforts to build specific

features into mean-field theories.

Theoreticians, for their part, have every cause to be proud of the Ising model,
among the most useful and exciting in physics. With remarkably simple forms
for its Hamiltonian, this model succeeds in mapping well-defined and sharp
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singularities into experimental plots, in which the corners must always be
rounded off to some degree. A set of well-defined singularities, was shown
by Riemann to define uniquely an analytic function and its series expansions,
with all their exponents and coefficients. But caution is required in att-
empts to preserve Riemann's conclusions while we pass through the mapping

just described. Once we enter the experimental plots with their visible or
implied roundings, their finite ranges and their experimental errors (however
small), we pass from Riemann's unique series to Weierstrass's non-denumerably
infinite set of equivalent series resembling polynomials, with no restriction
on the leading exponent. Our message is not merely that the error limits on
the slope of a log-log plot are easily underestimated by a power of ten or
more, but rather that, without application of a remainder theorem, the critical
exponent cannot be restricted to any range between -~ and +x. The need for
such a theorem to give a bound on the truncation error is reinforced by the
proven effects of minute perturbations on this error when it can be calculated,
and the realisation that near the critical point all physical systems do be-
come subject to disturbances.

Finally we summarise the results of tests for rejecting model theories by
citing the conclusions of two recent surveys on the use of exponents in
discriminating between classical and modern theories of gelation. Brauner
(41) concluded: 'No clear confirmation of one of the two theories is found'.
In this conference, Stauffer (57) ends thus: 'At present the outcome which
seens most likely to me would be that for some materials classical theory
results to be valid, for other cases percolation-like exponents are found,
and for some gelation experiments both competing theories are wrong.' These
conclusions are indeed to be expected from statistical principles in any
situation where a yes-no decision (null-hypothesis) is being tested in terms
of a parameter which, according to different variants of the test, is either
unidentifiable, estimated inconsistently, or lacking in robustness.
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