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Abstract—The span of an N-segment chain in a given direction, e, is defined as the maximum distance between
parallel planes normal to e which contain segments of the chain. We present a simple derivation of Daniel's result for
the span of a random chain. We have generalized this simple derivation and have calculated: (1) (X,,,5), the average
span of an N-segment random polymer ring; (2) the average span in the direction normal to the solution
surface of an N-segment chain which is attached at one end to the surface; (3) In addition, we have obtained the
exact solution of a problem treated by Hollingsworth, the calculation of (RHII.), the average distance between the
first segment and the most distant segment in an N-segment polymer chain. The results are:

= (irN/6)"2 0.724N"2

= 2 ln 2(irN/6)"2 1.003N"

<RHO,,) = 1ir(irN/6)"2 1.137N"2.

For reference purposes we note that the average span calculated by Daniels for an N-segment polymer chain is
(X) = 2(2N/3ir)" 0.921N" and the root-mean-square end-to-end distance is (TN2)"2 = N"2.

The spans of each chain configuration in the directions defined by the principal components of the square radius of
gyration of the chain have been determined. The relative values of the average squares of the spans in the directions
of the largest, intermediate, and smallest components of the square radius of gyration are found to be 6.7:2.2: 1 in the
case of the unrestricted polymer chain model. For the same model, Sole and Stockmayer obtained the following set
of relative values of the ordered principal components of the square radius of gyration, 11.7:2.7: 1. We have
determined that the apparent difference between these two sets of relative average dimensions arises from a different
segment density distribution in the different principal directions.

L INTRODUCTION

Spans of polymer chains are useful measures of their size
and shape. The span of an N-segment chain in a given
direction, e, is defined as the maximum distance between
parallel planes normal to e which contain segments of the
chain. The span was first introduced by Daniels' in 1941
and later was discussed independently by Kuhn2'3 and, in
a different context, by Feller.4 A set of spans in three
orthogonal directions serves to define the dimensions of a
rectangular box occupied by a polymer chain. The relative
proportions of the box and the disposition of segments of
the polymer chain within the box influences the solution
properties of these chains. For example, properties such
as viscosity, streaming birefringence, dielectric relaxa-
tion, and rates of diffusion and sedimentation are related
to movements of the entire chain, or parts of it, relative to
the solvent. Recently, Mazur and Rubin' have shown that
the typical or average shape of the circumscribing box for
a polymer chain is significantly noncubic. They investi-
gated spans based on space-fixed axes6 and on chain-fixed
axes7 and ordered each set of three spans according to
their magnitude. The relative dimensions based on
chain-fixed axes associated with the maximum span of the
entire chain were found to be respectively, 2.42: 1.48: 1
and 2.73: 1.55: 1 for unrestricted lattice-random-walk and
self-avoiding lattice-random-walk models of polymer
chains. The result that the typical shape is asymmetric is
not new. Kuhn,8 Hollingsworth9"° and Kuhn2 came to
similar conclusions. Asymmetric configurations are sim-
ply more numerous than symmetric ones. More recently,
Koyama"2, Sole and Stockmayer,'3 Sole'4 and Mazur,
Guttman, and McCrackin'5 investigated the ordered
principal components of the square radius of gyration

tensor of model polymer chains and found evidence for an
even more asymmetric form than that indicated by the
values of the ordered spans cited above. The origin of this
apparent discrepancy lies in the distribution of polymer
segments within the spanning prism and will be discussed
in Section 3.

The effect of the asymmetric shape of polymer chain
molecules on their solution properties has been recog-
nized for some time.'6"7 However, detailed knowledge of
the average shape of the molecule and detailed knowledge
of the average disposition of segments of the molecule
with respect to its center of gravity has been lacking. This
type of information is important in any discussion of the
gradient dependence of the intrinsic viscosity of chain
molecules.'8"9

In Section 2, the random flight model of a random
walk2° is adopted as a model of a polymer chain. We
present a simple derivation of the joint probability
distribution function of three orthogonal spans of the
polymer chain. The derivation uses ideas implicit in the
work of Daniels' and Kuhn3 and is easily modified to treat
the following problems: (1) the span of an N-segment
ring; (2) the span in the direction normal to the solution
surface of an N-segment chain which is attached at one
end to the surface; and (3) the exact solution of a problem
treated by Hollingsworth,9 the determination of the
average distance between the first segment and the most
distant segment in an N-segment polymer chain.

II. SPANS OF SOME RANDOM FLIGHT CHAINS

In this Section we first derive an expression for
p (R,, R2, R3; N) the joint probability distribution func-
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tion (p.d.f.) of three spans of a random flight chain in the
directions of the orthogonal space-fixed axes, x,, x2, x3.
The quantity, p(R,, R2, R3) dR, dR2 dR3, is the probability
that a random flight chain of N steps has a span in the
x-direction which lies between R, and R + dR,, i = 1,2,3.
The terms random flight, polymer chain, and random walk
are used interchangeably. In the limit of large N, the p.d.f.
of the position of the random walk after N steps is
governed by the equation:2°

9v _1 f32v 92v 32v
3N69x,2+8x22+3x32

where v = v(x,, x2, x3; N). The solution of this equation
which is the normalized probability that a random walk
starts at ,, e2 and arrives at x,, x2, x3 after N steps is
given by the expression

x2, x3) = (2irN/3)312 exp { —3[(x, —

+ (X2 — 2) + (X3
— 3)2]/2N}.

The mean square displacement in N steps is

((x, —)2+ (x2 — 2) + (x3 —fl)=N.

To determine p(R,, R2, R3; N), consider the auxiliary
random flight problem governed by eqn (1) in the box-like
region fTl(R,, R2, R3) where 0 x1 R,, i = 1,2,3 and
where the boundary conditions on the walls of the box are
absorbing. That is, v(x,, x2,.x3; N) =0 on the walls of the
box. The probability that the random walk starts in the
box at ,, 2, 3 and is located at x,, x2, x3 at step N is2'

x2, x3; N) =

{- sin (t) sin (nlTxi) e_2NI6?}. (4)

From eqn (4), we derive an expression which is
proportional to the total number of distinct N-step
random walks which are contained in fl(R,, R2, R3),

(R, (R2 (R3 (R, CR2

I'(R,, R2, R3; N) =J dx, J dx2J dx3 J d,J d2
0 0 0 0 0

where

xfR3 d3v01,,(x,, x2, x3; N) fl /i(R,;N) (5)

i/i(R; N) = (2n +1)_2 exp [— (2n + 1:21T2N/6Rii.

Included among the distinct N-step walks in
fl(R,, R2, R3), I'(R,, R2, R3; N), there are exactly

(R, — p,)(R2 — p2)(R3 — P3)P(P1, P2, P3; N) dp, dp2 dp3

walks whose spanning box is fl(p,, P2, P3) where 0 p,
R,, i = 1,2,3. Thus, the following e1ation exists between
'I'(R,,R2,R3;N) and p(p,,p2,p3;N)

The solution of this simple integral equation is

p(R,, R2, R3; N) =J {ii(Ri;N)). (8)

Daniels' obtained the product form in eqn (8) for the joint
p.d.f. of the spans in the limit N 1. Recently, Weiss and
Rubin22 evaluated correction terms to this asymptotic
result.

The average value of the span in the x, -direction, (X),
is obtained from the expression

J dR, J dR2J dR3Rp(R,, R2, R3; N)
0 0

I dRj dR2J dR3p(R,,R2,R3;N)Jo o 0

= [R/j-fi(R; N) — (R; N)]"

The functions (d/dR)iIi(R; N) and fr(R; N) in eqn (9) are
equal to zero at R =0. At R = oo, the numerator and
denominator in eqn (9) must be evaluated by taking the
limit R -* 00 The results obtained in Appendix 1 are:

and

limifi(R;N)=l (10)

(11)

urn FR_d i(R; N) — fi(R; N)] = 2(2N/3ir)"2.R-= L dR

Thus the average span of an N-step polymer chain in the
x1 -direction is"3'4

(X) =2(2N/3ir)"2. (12)

1. Span of an N-segment ring
The calculation of the joint p.d.f. of the spans of an

N-segment ring requires only a slight modification of the
foregoing calculation. We consider the same auxiliary
random flight problem governed by eqn (1) in the box,
fl(R,, R2, R3), with absorbing boundary conditions on the
walls of the box. Then the probability that a ring of N
steps is contained in the box and passes through the point

2, 3 can be obtained from eqn (4) by setting x =
= 1, 2, 3. This probability is proportional to

2, S'3) =

(R1 (R2
'I'(R,,R2, R3; N) = 'J dp, J dp2 J dp3(R,

— p,)(R2 —
p2)(R3 — P3)P(Th, P2, p3; N).Jo 0 0

(7)

(1)

JdRRc(i(R; N)

(2) jdRr(R;N)

(3) (9)

(6)

j {f , sin2 (!!) e_rz?26b0?).
(13)

Then the total number of distinct N-segment rings which
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are contained in fl(R1, R2, R3) is proportional to The value of 'I'(R1, R2, R3; N) is

Iring(Ri,R2,R3N) tR1 fR2 tR3 tR2
'I'(R1,R2,R3;N)= I dx1 dx2J dx3J d2fR1 fR2 fR3 Jo Jo 0 0

I d1 J d2J d3v,(e1,2, N) R3
JO 0 0 J• dv,(x1,x2, x3; N) = (R1; N)çfr(R2; N)çfr(R3; N)

3 0
(22)

1T.Ex(R1;N) (14)
j=:1

where
where

s(R1; N) = (2n + 1)' sin [(2n + 1)re/R1]
x(R ; N) = exp [ —n2i2N/6R2]. (15) n=o

x exp [ — (2n + l)2ir2N/6R12] (23)
The joint p.d.f. of the spans of an N-segment ring,
Pring(Ri, R2, R3; N), and 'Pring(Ri, R2, R3; N) satisfy an and ii(R ; N) is given in eqn (6). Substituting (22) and (23)
integral equation which is identical with eqn (7). Thus, the in eqn (21), we obtain
expression for Pring(Ri, R2, R3; N) is

'I'.(R1, R2, R3; N) = iIi,.(R1; N),!i(R2; N)/i(R3; N)

pring(Ri, R2, R3; N) = IT x(R1;N)). (16)
(24)

where
The average value of the span of the ring in the
x-direction is obtained from an expression which is cb,(R1; N) = exp [— (2n + l)2ir2N/6R12J.identical in form with eqn (9)

(25)

(Xring) =
[R x(R; N) —x(R; N)] Included among the number of distinct N-step walks in

(17) fI(R1, R2, R3) which originate on x =0,
x(R; N) 'I',,1.(R1, R2, R3; N), there are exactly

The values of the numerator and denominator in the limit (R2 — p2)(R3 —
p3)Pu1.(p1, P2, P3) dp1 dp2 c!p

R— oo are obtained in Appendix 2. The results are
walks whose spanning box has the dimensions Pi P2, P3.
Thus the relation between 'I'surf.(Rl, R2, R3; N) and

lim x(R; N) = (3I2irN)"2 (18) P2, P3) is
R

and (R1 (R2 tR3
'l',.(R1, R2, R3; N) = 1 dp1 I dp2 dp3(R2

—
P2)

Jo Jo JO

lim [R x(R; N) -x(R;N)] = . (19)
(R3- P3)Psurf.(P1, P2, P3). (26)R-=

Thus the average span of an N-segment polymer chain in The expression for R2, R3; N) is
the x-direction is

(Xnng) = (ITN/6)U2. (20) R2, R3; N) = i/i,.(R1; N) dR, i/i(R2; N)

2. Span in the direction normal to the solution surface of d2

an N-segment chain which is attached at one end to the x i/i(R3; N). (27)

surface
We assume that the solution surface corresponds to the The average value of the span normal to the surface is

plane x1 =0. The calculation of the joint p.d.f. of the
spans in this case R2, R3; N) requires further 1 dR1 I dR2 I dR3R1p,.(R1,R2, R3; N)modification. We must proceed indirectly in the calcula- J0 J0
tion of 'I'.(R1, R2, R3; N), a quantity whieh is propor- (Xsurf.) =

I dR dR2 I dR3p(R1,R2, R3; N)tional to the total number of distinct N-step walks which Jo Jo
originate on the surface x1 =0 and lie in the region

[
o R,, i = 1,2,3. There is a complication because the Ri/i (R; N) — dpi/c5(p;N)
walks originate on an absorbing surface. To circumvent =

SU ]
(28)this difficulty, we first calculate 'P(R1, R2, R3; N), a

i1i5(R; N)quantity proportional to the total number of distinct
N-step walks which originate anywhere on the plane The values of the numerator and denominator in eqn (28)x1 = inside the region fl(R1, R2, R3) and remain in

in the limit R — coare obtained in Appendix 3. The results
fl(R1, R2, R3). Subsequently we calculate are

'1'5,.(R1, R2, R3; N) = lim E'I'E(Rl, R2, R3; N). (21) lim i/i5(R; N) = (6/irN)"2 (29)E-0 R—
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and I fR
urn

[RlIIsud.(R; N)— J dp.i8.(P;N)] = 2 in 2.
R-'o 0

(30)

Thus the average span normal to the surface of a
surface-attached N-segment polymer chain is

(X,0.) = in2(2ITN/3)"2. (31)

3. Exact solution of a problem posed by Hollingsworth9
We next treat the problem of calculating for an N-step

random walk the average largest excursion from its
starting point. The problem of calculating the p.d.f. of the
largest excursion in an N-step walk, pH0,,.(R), can be
treated in a manner which is exactly analogous to the
calculation of the joint p.d.f. of the spans R,, R2, R3 in eqn
(8). We consider the auxiliary random flight problem
governed by eqn (1) in a sphere of radius R with an
absorbing boundary condition on the surface of the
sphere. The appropriate coordinate system for treating
this problem is spherical polar with the origin and starting
point of the random walk located at the center of the
sphere. In spherical polar coordinates, for a walk starting
at the origin, eqn (1) takes the form

avll 3
—

6 r2 3r T (32)

with v(R, N) = 0 and v(r, 0) = 8(0). The solution is2'

v0(R, N) = sin (r)exp (— IT2n2N/6R2).

(33)

The total number of random walks which start at the
origin and remain in the sphere after N steps is
proportional to

'I'HO,,.(R; N) = JR dp4irp2v0(p; N)

= 2 (—1) exp (— rr2n2N/6R2).

The total number of walks represented in 'I'H0,,(R; N) is
related to the p.d.f., PHoII.(P; N), that the maximum
excursion is p by the relation

so

I'H0,,(R; N) = JR dpp011(p;N)

pHOl,.(R; N) = 'I'HOll.(R; N).

The average value of the maximum excursion is

—J dRRp,01,.(R; N)
(RH0,.) —

dRp,0,.(R; N)

[RI'HOI.(R; N) — JR dp'I'H0,,.(p; N)]

'I'HOI,.(R; N) r

The values of the numerator and denominator in eqn (37)
in the limit R - are obtained in Appendix 4. The results
are

and

urn 1'H0lI.(R, N) = 1
R-,o

(38)

urn [RI'Holl(R; N) —
JRdp"I'H01,.(p; N)] = ',r(irN/6y'2.

(39)

Thus the average largest excursion from the starting point
of an N-step walk is

(RH0,.) = lir(irN/6)"2. (40)

The numerical value of (RHO,,.) which Hollingsworth9
obtained agrees with (40) to the first two decimal places.

ilL ASYMMFRIC DISPOSJI1ON OF SEGMENTS
IN RANDOM FLIGHT CHAINS

Sole and Stockmayer'3 have studied the asymmetric
shape of random flight polymer chains by determining the
average ordered principal components of the square
radius of gyration. If u(n), i = 1,2,3, are the coordinates
of the nth segment with respect to the center of gravity of
the chain in the principal axis directions of the square
radius of gyration, then the ordered components of the
square radius of gyration are

-

S,(N)=(N+ 1)' uj2(n), i = 1,2,3 (41)

where S32(N) S22(N) S12(N). The relative average
values obtained by Sole and Stockmayer'3 are

(S32):(S22):(S,2) = 11.7:2.7:1. (42)

Rubin and Mazur7 have determined the square spans
r32(N), r22(N), r,2(N) associated with the set of values

(34) S32(N), S22(N), S,2(N) for each polymer chain. The span
i2(N) is simply

max {[u(n) — u(m)]2}

where max { } denotes the maximum value in the set of all

(35 intersegmentdistance components. The relative values of
the average square spans are

(r32): (r22): (r12) = 6.7:2.2: 1. (43)

(36) Rubin and Mazur7 verified that the distribution of values
of u?(n), n = 0,... , N, within the spanning box is, on the
average, significantly different in the different directions,

= 1, 2, 3. The distribution is flattest in the direction i = 3
and the distributions in the directions i = 2 and i = 1 fall
off progressively more rapidly from the center to the faces
of the box. This type of variation accounts for the
apparent discrepancy between the two measures of
asymmetry listed in eqns (42) and (43).
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/ISU!.(R; N) = 4R1 exp [— (2n + 1)2ir2N/6R2].

The function /SUd.(R; N) can be expressed in terms of Theta
Functions as

iIi,,.(R; N) = 2R'82(0, i2irN/3R2) (58)

or

fr=.(R; N) = (6/irN)"200(0, i3R2/2irN). (59)

In the limit R — 00, we have

lirn N) = (6IirN'2. (60)

The expression for [RiIi,.(R; N) —f°' dpfr,.(p;N)], which is
obtained by using eqns (59) and (47), is

R.(R; N)_J dp,(p; N)

= (6/ITN)h/2R{1 + 2 (—1) exp [— 3R2n2I2N}}

—
JR dp(6I1TN)"{1 + 2 (— l) exp [—

3p2fl2/2N]}

= 2R(6/nN)"2 (— 1) exp (— 3R2n2I2N)

+ 2(6/irN)"2 (- 1)' JR dp exp(-3p2n212N).

(61)

where

IIHOII.(R; N) = 2 (— l)'exp (— ir2n2N/6R2).

The function iO1.(R; N) is expressed in terms of
Functions as

IFHOaI.(R, N),= 1— O(0, iirN/6R2)

or

I/HO.(R, N) = 1— (6/irN)"2R62(0, i6R2/irN).

In the limit R -+00

lim IIFHOII(R; N) = 1. (65)R-.

The expression for RIIIHO.(R; N)— JR dpfrH,.(p;N) is

RcHII.(R; N)— J dpFHØII.(p; N)

= R — (6/irN)"2R202(0, i6R2/irN)

—
JR dp[1

—(6/irN)"2p02(0, i6p2/orN)]

= —(6/iN)"2R2O2(0 i6R2/irN)

+ 2(6/irN)"2 J dpp exp [— (n + )26p2IN].

In the limit R —oo, we have

urn [RIFHOIl.(R; N) — JR dp/IH,.(p; N)] = ir(irN/6'2.

(66)

(67)
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In the limit R -+ oo, the second term in eqn (56) is negligible so In the limit R -+00, we have

urn [R&x(R; N)—x(R; N)] = . (57) urn [RIFsUfR; N)_J
N)dp] = 2ln 2. (62)

3. Evaluation of lim FSU,.(R; N) and 4. Evaluation of lim IIFHOII.(R; N) and
R-= R-=

fR I
lim N) — I dp',,.(p;N)] lim [R1/HOII.(R; N) — J dpl/1H01(p; N)R-. Jo R-=' o

where

Theta

(63)

(64)




