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Abstract—The span of an N-segment chain in a given direction, ¢, is defined as the maximum distance between
parallel planes normal to e which contain segments of the chain. We present a simple derivation of Daniel’s result for
the span of a random chain. We have generalized this simple derivation and have calculated: (1) (X..,,), the average
span of an N-segment random polymer ring; (2) (X.u«), the average span in the direction normal to the solution
surface of an N-segment chain which is attached at one end to the surface; (3) In addition, we have obtained the
exact solution of a problem treated by Hollingsworth, the calculation of (Ry.y ), the average distance between the
first segment and the most distant segment in an N-segment polymer chain. The results are:

(Xiing) = (wN/6)2 = 0.724N 2
(Xourt) = 2 In 2(wN [6)2 = 1.003N >
(Ruon) = 3w (7N [6)2=1.137TN ",

For reference purposes we note that the average span calculated by Daniels for an N-segment polymer chain is
(X)=202N/3m)"?=0.921N"* and the root-mean-square end-to-end distance is (r\2)"2= N2,

The spans of each chain configuration in the directions defined by the principal components of the square radius of
gyration of the chain have been determined. The relative values of the average squares of the spans in the directions
of the largest, intermediate, and smallest components of the square radius of gyration are found to be 6.7:2.2: 1 in the
case of the unrestricted polymer chain model. For the same model, Sol¢ and Stockmayer obtained the following set
of relative values of the ordered principal components of the square radius of gyration, 11.7:2.7:1. We have
determined that the apparent difference between these two sets of relative average dimensions arises from a different
segment density distribution in the different principal directions.

1. INTRODUCTION
Spans of polymer chains are useful measures of their size
‘and shape. The span of an N-segment chain in a given
direction, e, is defined as the maximum distance between
parallel planes normal to e which contain segments of the
chain. The span was first introduced by Daniels' in 1941
and later was discussed independently by Kuhn?’ and, in
a different context, by Feller.* A set of spans in three’
orthogonal directions serves to define the dimensions of a
rectangular box occupied by a polymer chain. The relative
proportions of the box and the disposition of segments of
the polymer chain within the box influences the solution
properties of these chains. For example, properties such
as viscosity, streaming birefringence, dielectric relaxa-
tion, and rates of diffusion and sedimentation are related
to movements of the entire chain, or parts of it, relative to
the solvent. Recently, Mazur and Rubin® have shown that
the typical or average shape of the circumscribing box for
a polymer chain is significantly noncubic. They investi-
gated spans based on space-fixed axes® and on chain-fixed
axes’ and ordered each set of three spans according to
their magnitude. The relative dimensions based on
chain-fixed axes associated with the maximum span of the
entire chain were found to be respectively, 2.42:1.48:1
and 2.73:1.55:1 for unrestricted lattice-random-walk and
self-avoiding lattice-random-walk models of polymer
chains. The result that the typical shape is asymmetric is
not new. Kuhn? Hollingsworth®® and Kuhn’ came to
similar conclusions. Asymmetric configurations are sim-
ply more numerous than symmetric ones. More recently,
Koyama''?, Sol¢ and Stockmayer,” Solé" and Mazur,
Guttman, and McCrackin®” investigated the ordered
principal components of the square radius of gyration
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tensor of model polymer chains and found evidence for an
even more asymmetric form than that indicated by the
values of the ordered spans cited above. The origin of this
apparent discrepancy lies in the distribution of polymer
segments within the spanning prism and will be discussed
in Section 3.

The effect of the asymmetric shape of polymer chain
molecules on their solution properties has been recog-
nized for some time.'*"” However, detailed knowledge of
the average shape of the molecule and detailed knowledge
of the average disposition of segments of the molecule
with respect to its center of gravity has been lacking. This
type of information is important in any discussion of the
gradient dependence of the intrinsic viscosity of chain
molecules.' '

In Section 2, the random flight model of a random
walk®™ is adopted as a model of a polymer chain. We
present a simple derivation of the joint probability
distribution function of three orthogonal spans of the
polymer chain. The derivation uses ideas implicit in the
work of Daniels' and Kuhn® and is easily modified to treat
the following problems: (1) the span of an N-segment
ring; (2) the span in the direction normal to the solution
surface of an N-segment chain which is attached at one
end to the surface; and (3) the exact solution of a problem
treated by Hollingsworth,” the determination of the
average distance between the first segment and the most
distant segment in an N-segment polymer chain.

1. SPANS OF SOME RANDOM FLIGHT CHAINS
In this Section we first derive an expression for
P(Ry, Ry, R;; N) the joint probability distribution func-
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tion (p.d.f.) of three spans of a random flight chain in the
directions of the orthogonal space-fixed axes, x;, x,, Xs.
The quantity, p(R,, R,, R;) dR; dR, dRs, is the probability
that a random flight chain of N steps has a span in the
x;-direction which lies between R, and R, +dR;,i = 1,2, 3.
The terms random flight, polymer chain, and random walk
are used interchangeably. In the limit of large N, the p.d.f.
of the position of the random walk after N steps is
governed by the equation:®®

N 6 \ax.

2 2 2
v 1<av+g_€+a_z;) )

ox 9x 9xs

where v = v(x,, x,, x5; N). The solution of this equation
which is the normalized probability that a random walk
starts at £, &, & and arrives at x;, X,, x5 after N steps is
given by the expression

Vg 6,15 X2, X3) = 27N [3) " exp { - 3[(x, - £)°
+(x:— &)+ (x; - &)12N}. @
The mean square displacement in N steps is
(1= &)+ (- &+ (- &)) = N. (©)]

To determine p(R,, R,, R3; N), consider the auxiliary
random flight problem governed by eqn (1) in the box-like
region (XR,, R, R;) where 0<x;<R, i=1,2,3 and
where the boundary conditions on the walls of the box are
absorbing. That is, v(x,, x,.x3; N) =0 on the walls of the
box. The probability that the random walk starts in the
box at £, &, & andis located at x;, x,, x;at step N is?!

vﬁ.&,fa(xh X2, X3 N) =
3 e
11 {Ig 2} sin (n.;;f ) sin (nllzx) e—n,lelek.’}' )

From eqn (4), we derive an expression which is
proportional to the total number of distinct N-step
random walks which are contained in Q(R,, R,, R5),

R, R, R, R, R,
[ dxl I dX2 f dx; f df] I d§2
Jo 0 0 0 0

x f " st 06061, Xy 223 N) = [T®:N) 6

‘I,(Rlv R2’ R35 N) =

where

¥(Ri; N) = 'A; 2 @n +1)2exp [~ (2n +1)*7°N/6R?).
©

Included among the distinct N-step walks in
Q(R,, R, R3), ¥(R,, Ry, Ry; N), there are exactly

(R1 = p1)(R2 = p2)(Rs = p3)p (p1, p2, p3; N) dp, dp, dps

walks whose spanning box is Q(p;, p,, p;) where 0<p, <
R, i =1,2,3. Thus, the following relation exists between
Y(R;, R;, R;; N) and p(p,, p2, p3; N)

The solution of this simple integral equation is

3 dz
p(Rl,Rz,Ra;N)=‘l:[{Ww(&;m}. ®

Daniels' obtained the product form in eqn (8) for the joint
p.d.f. of the spans in the limit N > 1. Recently, Weiss and
Rubin®* evaluated correction terms to this asymptotic
result.

The average value of the span in the x;-direction, (X;),
is obtained from the expression

f j dR, f dR,Rp(R,, Ry, Rs; N)

f dR, f dR, f dR:p(Ry, Ry, Ry; N)

X)) =

© d2
[ ar R ue; M)

b
[[arsvrm

| R vk M-uis ) ||
-1 — ©
Ik VR N)|

The functions (d/dR)¢(R; N) and (R ; N) in eqn (9) are
equal to zero at R =0. At R =, the numerator and
denominator in eqn (9) must be evaluated by taking the
limit R - «. The results obtained in Appendix 1 are:

lim 2 ¥(R; N) =1 10
and
. d 12
lim [R@ W(R: N) - (R N)] = 20Nm)".
- (11)

Thus the average span of an N-step polymer chain in the
x;-direction is'**
(X)=22N/[37)" (12)

1. Span of an N-segment ring

The calculation of the joint p.d.f. of thé spans of an
N-segment ring requires only a slight modification of the
foregoing calculation. We consider the same auxiliary
random flight problem governed by eqn (1) in the box,
Q(R,, R,, R,), with absorbing boundary conditions on the
walls of the box. Then the probability that a ring of N
steps is contained in the box and passes through the point
&, &, & can be obtained from eqn (4) by setting x; = &,
i=1, 2, 3. This probability is proportional to

V&, ?3(61, flr §3) =
e

i=1

5: sin

An,l

(";ff ) —nlullek,z} 13)

Then the total number of distinct N-segment rings which

N R, R,
Y(Ry, Ry, R N) = ]( do, f dps f dps(R, - p)(Rs— p)(Rs— p)p (o1, 2 p5; N). 10
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are contained in (R, R,, R) is proportional to
‘I'n‘ng(Rl, R, Ry;;N)=
R, R, Ry
J; dflL dsz &30 0. 6(é1, €2, €3 N)
3
=[Ix®;N) (14)
where

X(Ri; N)= 2 exp[-n'm’NJ6RY.  (15)

The joint p.df. of the spans of an N-segment ring,
Pring(Ri, R2, R3; N), and ¥,;(R;, R,, Ry; N) satisfy an
integral equation which is identical with eqn (7). Thus, the
expression for p,.(R;, R,, R3; N) is

3 dZ
PanlRi, R R M) = [T {3 x®: M} (16

The average value of the span of the ring in the
x;-direction is obtained from an expression which is
identical in form with eqn (9)

R x®: M -x& ][

d ©
AR

(Xiing) = 7

The values of the numerator and denominator in the limit
R > are obtained in Appendix 2. The results are

lim = ¥(R; N) = (322N)" )
and
lim [ Rk x®: N -x®; M| =3 (19)

Thus the average span of an N-segment polymer chain in
the x;-direction is
(Xeing) = (mN6)'". (20)

2. Span in the direction normal to the solution surface of
an N-segment chain which is attached at one end to the
surface

We assume that the solution surface corresponds to the
plane x;=0. The calculation of the joint p.d.f. of the
spans in this case p..(R,, Rz, Rs; N) requires further
modification. We must proceed indirectly in the calcula-
tion of ¥, (Ry, R, Rs; N), a quantity which is propor-
tional to the total number of distinct N-step walks which
originate on the surface x; =0 and lie in the region
0<x, <R,i=1,2,3. There is a complication because the
walks originate on an absorbing surface. To circumvent
this difficulty, we first calculate ¥.(R,, R,,R:;N), a
quantity proportional to the total number of distinct
N-step walks which originate anywhere on the plane
x,=¢€ inside the region ((R;, R, R;) and remain in
(R, R,, R;). Subsequently we calculate

VYot (Ry, Ry, Ry; N) =lim € ¥ (Ry, Ry, R3; N). @1
>0

The value of ¥.(R,, R,, R3; N) is
R, R, Ry R,
¥.(R, Ry, Rs; N) = f ax, f dx, f dxs f d;
0 0

Ry :
f &30 g, 6(x1, X2, X35 N) = Y (Ri; N)Y(Ry; N)(Rs; N)
’ 22)

where
WR:N) =25 Qn+1) sinl2n + DrelR,
n=0

xexp[—Qn+1)’7’N/6R? (23)

and ¢(R; N) is given in eqn (6). Substituting (22) and (23)
in eqn (21), we obtain

Yot (R1, Rz, R3; N) = ot (Ri; N)W(R,; N)Y(Rs; N()24)

where
4 S 2 2 2
Yart(Ris N) = & z_oeXp[— @n +127°N/6R ).
(25)
Included among the number of distinct N-step walks in

MR, R, R5) which originate on x,=0,
V..t (R}, Ry, R;y; N), there are exactly

(Rz2— p2) (R3 = p3)Psurt (P15 P2y P3) dp, dp, szv

walks whose spanning box has the dimensions p;, p,, ps.
Thus the relation between W¥,.(R,, R, R;;N) and

psurf.(pla P2 pg) iS ’

R, R, Ry
¥t (R, Ry, Rs; N)"j0 dp, ’; dpzf0 dps(R;— p2)

X (R3 = p3)Psurt (P15 P2, P3)- (26)
The expression for py. (R, R,, R;; N) is
d &
Psut(R1, Ry, Ry; N) = d—R—l Yt (Ri; N) m ¥(Ry; N)
d2
X iRy ¥(Rs; N). 27

The average value of the span normal to the surface is

fo dR, f dR, f dR,R par(Ry, Ro, Ry N)
(Xsurf.>= ) @ =
L dR, f dR, f dRypot(Ry, Ry, Ro; N)

[Rl#;urt.(R§ N)fJ;R dpl/:/surf‘(p; N)]r

ol N)|

(28)

The values of the numerator and denominator in eqn (28)
in the limit R - « are obtained in Appendix 3. The results
are '

lim e (R; N) = (6/N)"” 29)
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and .
im [ R R N) - [ dpaP; )] =212,
Rox 0
30)

Thus the average span normal to the surface of a
surface-attached N-segment polymer chain is
(Xous) = In2Q7N[3)", @31)
3. Exact solution of a problem posed by Hollingsworth®
We next treat the problem of calculating for an N-step
random walk the average largest excursion from its
starting point. The problem of calculating the p.d.f. of the
largest excursion in an N-step walk, pyu(R), can be
treated in a manner which is exactly analogous to the
calculation of the joint p.d.f. of the spans R,, R,, R;in eqn
(8). We consider the auxiliary random flight problem
governed by eqn (1) in a sphere of radius R with an
absorbing boundary condition on the surface of the
sphere. The appropriate coordinate system for treating
this problem is spherical polar with the origin and starting
point of the random walk located at the center of the
sphere. In spherical polar coordinates, for a walk starting
at the origin, eqn (1) takes the form
v 1134 zav
9N 6ror ar (32)

with v(R, N)=0 and (7, 0) = §(0). The solution is*

v(R,N) = L i g sin (%m') exp (— w*n’N/6R?).
(33
The total number of random walks which start at the

origin and remain in the sphere after N steps is
proportional to

Vua®; N)= [ dptmpogo; N)
=23 (- 1) exp(- *n’NI6RY).  (34)
n=1

The total number of walks represented in Wy (R; N) is
related to the p.d.f., puyu(p; N), that the maximum
excursion is p by the relation

R
VR N) = [ dopuatosh) 69
)
d
Prai(R; N) = iR Py (R; N). (36)
The average value of the maximum excursion is
f dRRpyau(R; N)
(RH0"> = s
I dRpya(R; N)
[R Yyon(R; N)— f dp¥ua(p; N )]l
= 0 - 37N

Vo (R; N)l

The values of the numerator and denominator in eqn (37)
in the limit R - « are obtained in Appendix 4. The results
are -

lim ¥yo(R; N) =1 (%)
R-»

and

R
lim [ R (R: N) - [ 40 ¥ua(p3 N) | = (aN16)"
-0 0
(39)

Thus the average largest excursion from the starting point
of an N-step walk is

(Ruon) = 3w (mN [6)"". (40)
The numerical value of (Ry.) which Hollingsworth®
obtained agrees with (40) to the first two decimal places.

L ASYMMETRIC DISPOSITION OF SEGMENTS
IN RANDOM FLIGHT CHAINS

Sol¢ and Stockmayer” have studied the asymmetric
shape of random flight polymer chains by determining the
average ordered principal components of the square
radius of gyration. If u;(n), i =1, 2, 3, are the coordinates
of the nth segment with respect to the center of gravity of
the chain in the principal axis directions of the square
radius of gyration, then the ordered components of the
square radius of gyration are

SHAN)=(N+1) ZIj ui(n), i=1,2,3 41

where S;’(N)= S,A(N)= SA(N). The relatlve average
values obtained by Sol¢ and Stockmayer® ar

(S :{SH:H(SH=11.7:27:1. 42)
Rubin and Mazur’ have determined the square spans
r#(N), r (N), ri’(N) associated with the set of values
S:(N), SA(N), S{%(N) for each polymer chain. The span
rA(N) is simply

max {lw;(n) - u;(m)1*}

where max { }denotes the maximum value in the set of all

mtersegment distance components. The relative values of
the average square spans are

{r3):(r):(r®)=67:2.2:1. 43)
Rubin and Mazur’ verified that the distribution of values
of u*(n), n =0,..., N, within the spanning box is, on the
average, significantly different in the different directions,
i =1, 2, 3. The distribution is flattest in the direction i =3
and the distributions in the directions i =2 and i =1 fall
off progressively more rapidly from the center to the faces
of the box. This type of variation accounts for the
apparent discrepancy between the two measures of
asymmetry listed in eqns (42) and (43).
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APPENDIX
1. Evaluation of

.d
)lzl_lﬂ. iR ¥(R; N)
and
lim [Ria/f(R'N)— R'N]
R dR b 'I’( I )
where

W(R;N)=8Rr™> S 2n + 1) exp[- 2n + ¥ n*N/6R).

The expression for
R N)
is
TR YR N) =877 5, 0+ ) exp [~ @n-+1PwNI6R?
+@N/3R?) 5‘/0 exp[-@2n +17°N/6R?]
=8 20 @n +1)7exp[~ @n + 1y n>NI6R?]
+AN3RY9:0, i2eN3R?), (44)

where 6;(0, i2wN/3R?) is a Theta Function.” The Theta Function,

0,0,i2aN3R?) =2 S exp [- w(i%);’) (n +'§)=], @5)
n=0
is related to another Theta Function by the transformation®

6,0, 27N /3R = (3R?*[27N)"*8+(0, i3R*2wN)  (46)
where

6, 0,i3R*27N) =1+2 3, (= 1) exp (= 3R*n*2N).  (4)

Combining eqns (46) and (47) with (44), it can be seen that the
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second term on the right-hand side of eqn (44) is negligible
compared to the first term in the limit R -, so

. d S
lim R YR:N) =877 3, @n+1)=1.

48)
The expression for RdiR Y(R; N)-y(R;N) is
Rg% $(R; N)=¢(R; N)=8Rr"? i @Qn+1)?
n=0
xexp[-(2n + 1w N/6R"]
+(4N[3) (3/27N)'2040, i3R*[27N) — y(R; N) ;
=20N/[3m)"26,(0, i3R*2xN). )
In the limit R —»oo,.we have
lim [R—d— VR N) = w(R; N)] =2ONBm)™.  (50)
Rr-=| dR ’ ’

2. Evaluation of

. d
BﬂﬁX(R’N)
and ‘
' lim [R—d-x(R'N)— (R'N)]
Pl TR
where

X(R;N)= i exp (- n*n”N/6R?).

The function y(R; N) can be expressed in terms of a Theta
Function

X(R; N)= —3+1650, inN/[6R?) (51
where
050, imN/6R) =1+2 S exp [— w(gR’—V;)nz]. (52)
n=1
Equation (51) can be rewritten using the transformation®
0,0, irN/6R?) = (6R 2/1rN )'205(0, i6R?/7N) (53)
0
x(R; N)= -1+ (3/2mN)2R6,(0, i6R? wN). (54)

The derivative with respect to R of the expression for y(R; N) in
eqn (54) leads to the following result in the limit R -

liﬂ%x(R; N)=(3[27N)">. (6M)]

The expression for

RS YR N)-x®;N)

dR XK X(R;N)

is
Ra% x(R;N)-x(R;N)= (3/27rN)”2[R03(0, i6R*[7N)

+R2i 8500 i6R2/1rN)]

dR 3\,
+3-(327N)"?R05(0, i6R?/wN)

=14 (3/27rN)"2R2% 05(0,i6R*=N).  (56)
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In the limit R >, the second term in eqn (56) is negligible so
. d .
lim RIR?)((R;N)“)((R;N) =3 57
R—o
3. Evaluation of lim ¢,+(R; N) and
R

1 (R R; N) - [ Aot V)
where
V(R N) =4R™" 3 exp [~ (2n +1VnNI6R’),

The function ..« (R; N) can be expressed in terms of Theta
Functions as

Yeours(R; N)=2R7'0,(0, i27N/3R?) (58)
or
Yaurt(R; N) = (6/TN)"264(0, i3R?[27N). (59)
In the limit R -, we have
lim Yue(R; N) = (6/7N)"”. (60)

The expression for [Rieus(R; N)— X dpa//s.,,g,(p;l;l)], which is
obtained by using eqns (59) and (47), is

RiaelR N) - [ oo N)
= (6/7rN)”’R{1 +2 n}: (-1 exp[- 3R2n2/2N]}
- L ) dp(6/1rN)”~2{1 +2 ?;, (=1)" exp[- 3p2n2/2N]}
= 2R(6/7N)"™ i (= 1)" exp (= 3R?n?/2N)

+26IRN)2 S, (~ 1y f " do exp (= 3p*n212N).
(61)

In the limit R »>®, we have

im [ R R: M)~ [ el N) 80 =202, 60
R-x 0

4. Evaluation of lim ¢gon(R; N) and
R

lim [Rn/mou.(R; N)- fo ) dpduan(p; N )]

where
Uran(R; N)=2 3 (= 1) exp (- mn*N/6R?).
n=1

The function Yu.n(R;N) is expressed in terms of Theta
Functions as

Yuon(R; N) =1~ 040, imN/6R?) (63)
or
Yuon(R; N) = 1-(6/7N)"*R,0, i6R*/mN). (64)
In the limit R >
lim yuan(R; N)=1. (65)

R
The expression for Ryyon(R; N)— f dpYuan(p; N) is
0
R
Rll’ﬂon.(R ;N)- J; dP‘I/Hou.(P 3 N)
= R —(6/7N)"*R?00, i6R*/7N)
R
- [ dot1 - 1Ny 080, i6p% N
0
= —(6/7N)"?R?0,(0, i6R*/7N)

+267N)" 3, [ dop exp [ + 76071
n=0J0 (66)

In the limit R >, we have

i [ Rpuan R N) - [ doi o3 N) | =t a6
R 0
®)





