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ABSTRACT
The clustering functions interpret adsorption, sorption, and solution thermo-
dynamic behaviour in geometric terms; they cannot predict solution properties.
The clustering functions, derived from the cluster integrals of the dilute gas
method of statistical mechanics, are free energy functions which depend
strongly upon the first derivatives of activities with respect to volume-fractions.
Clustering functions greater than minus one are monotone, increasing functions
of the tendency of like molecules to cluster. Clustering functions less than minus
one denote segregation of like molecules; this segregation increases as the
clustering functions become more negative. The clustering functions are
applicable to any binary sorption system. This is demonstrated by considering
experimental data for several solventpolymer and gas-polymer systems, a
binary solution of liquids of ordinary molecular sizes, three versions of the
lattice theory of polymer solutions, monolayer and multilayer adsorption

theories, and ideal solution behaviour.

I. INTRODUCTION

Two distinctly different methods of statistical mechanics have been used
to develop theories of adsorption and solution for small molecule and
macromolecular systems. These arise because two methods are used to
approximate the function which describes the partition of energy of a system
among the many, quantized energy levels accessible to the molecular moities
which make up the system.

In the usual method of statistical mechanics, the grand partition function
is separated into a product of partition functions describing distributions of
non-interacting, independent energy levels (see, for example, ref. 1). Obviously
this works quite well for individual molecules, such as those in dilute gases,
if widely spaced non-interacting energies, such as electronic and transla-
tional motion energies, are considered. The separation into a product
works not nearly as well for more closely spaced, interacting energies like
those for vibrations and rotations. In condensed systems, intermolecular
energies are spaced close to one another, and they interact. For mixtures, the
intermolecular energy levels for groups of like and unlike molecules cannot
be separated. The usual zeroth approximation is to assume that contributions
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due to configurations, the mixing of different kinds of molecules, and contri-
butions due to interactions among molecules can be separated as a product
in the partition function. In a sorption process, this is equivalent to assuming
that the enthalpy and entropy changes for the process are invariant with
temperature and the enthalpy change is that at OK, AH°OK. This method
separates the free energy change for any process into an energy-independent
configuration term and a configuration-independent energy term.

The so-called 'dilute gas method' of statistical mechanics2, which is not
limited to dilute systems, uses all expansion of the free energy in a power
series in concentrations of molecules and identities properties of single
molecules, pairs, triplets, quartets, etc. with corresponding powers of
concentration. This method does not separate the partition function into
configuration and energy terms. However, calculation of the free energy
change for a process from a given geometric model becomes impossibly
complex except at high dilution. Nevertheless, the dilute gas method does
give some generally applicable equations which can be used to interpret
and understand sorption behaviour in geometric terms hut which cannot
predict sorption behaviour from a geometric model and molecular proper-
ties.

The assumption inherent in the usual method of writing the partition
function as the product of partition functions for various non-interacting
levels and a mixing term can be seen best by writing a partition function for
a system3:

all states

Q = q1 exp [ — (: (I)

where — energy of the energy level i above the ground state or lowest
energy level

q the multiplicity or degeneracy of the ith energy level (the
number of quantum states of energy c1)

k the Planck Boltzmann constant.
The Gibbs free energy, the enthalpy H, and the entropy are4

G = H TS = E K + RT2(' + RT((T Jv (V Jr
- In Q + R .1(lnQ)] (2)

where E K internal energy of the system at 0 K,

RT(' lnQ\ = p the pressure of and on the system (in the equation of
V f, state contribution to the free energy of the system), and

R the gas constant.
Writing the partition function as a product of energy and configuration

terms is equivalent to saying (? In Q/?'l) = 0 or that the heat capacity is
iero (c, = 0). For no real process should the change in heat capacity,
be zero, the enthalpy change at any experimentally accessible temperature
be that at 0 K, and the entropy term be energy-independent and invariant
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with temperature. Nevertheless, the usual statistical derivations of sorption
isotherms begin with these limitations5. Effects of energies of interactions on
entropies and the effects of configurations are added as corrections. These
corrections usually result either in mathematical complexities preventing
inclusion of anything except small first order corrections6, invoking a
corresponding states assumption7, or using empirical terms in the resulting
equations. In spite of these limitations, results of derivations made with
these assumptions are valuable in predicting properties of pure systems
and in understanding macroscopic behaviour in molecular terms. Much of
our understanding of statistical thermodynamics, including polymer solution
chemistry, has been gained in spite of these limitations.

The dilute gas method of statistical mechanics does give equations which
are generally applicable to any binary system at equilibrium over the whole
concentration range. Calculations of thermodynamic properties from
geometric models are impossibly complex; therefore these equations cannot
be used to predict thermodynamic properties from molecular properties of
constituents. However, these equations can interpret in geometric terms, the
tendency of like molecules to cluster or to segregate, the thermodynamic
properties of any binary solution or adsorption system whether the properties
be measured experimentally or calculated from some model.

H. THE CLUSTERING FUNCTIONS

The molecular pair distribution function

F(ij)d(i)d(j)

is the probability that molecules i and .j are each at the coordinates i and /
in space and in the range of these coordinates d(i) and d(j) (where V is the
volume of the system)8. This may be represented pictorially by

two volume elements, d(i) and d(/), each containing a molecule and separated
by a distance nj. Ofcourse, inherent in the development of dilute gas method
statistical mechanics is the assumption of a centro-symmetric system. The
resulting equations may not be limited by this limitation in our mathematical
methods. The cluster integral is

G11 = -- fl'[F2iJ) — l]d(i)d(/) (3)
where

the mean number of type 1 molecules in excess of the mean
concentration of type 1 molecules in the neighbours of a given
type 1 molecule at low concentrations of component 1,

01 volume fraction of component 1,and
partial molecular volume of component 1.
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In 1953, Zimm9 derived a simple relationship between the cluster integral
G1 and the volume fraction activity coefficient of component 1:

G11 kTJ3 [a(a1/q1)1-:—c2ll —1 (4a)
v1 v1 a1 Jp.T

where

v
is the isothermal compressibility of the system,

= (1 — n2132/n1i51)' = 1 — (1)2 = 1 —(1 — n1i31/n2i32)'

n1 and n2 number of molecules of components! and 2, and
t and i2 partial molecular volumes of component I and 2.

A similar function can be written for component 2

G22 kTf3 13(a2//2)1 4b—

1)2 a2 jp.T
1

We have called these the clustering functions5.
Equations 4a and 4b describe molecular clustering in single component

and binary systems. In a pure system the activity coefficient term is 7ero, and
the compressibility term is not dominant except for gases at pressures below
one atmosphere, in the critical region, and for vapour and liquid coexisting
at equilibrium. At the critical point and for vapour and liquid coexisting at
equilibrium, the compressibility increases without bound; so must the
clustering function. In a liquid—gas region, gaseous molecules can and do
condense to form clusters of molecules large enough to be recognized as a
macroscopic phase.

For binary systems far from the gas-liquid critical region, the com-
pressibility terms can be neglected; kTfi /v is about 0.02 to 0.06 for ordinary
liquids'0. Neglecting the compressibility terms, the clustering functions for
components I and 2 are

G1, 42 4i2a,('i41\— —1 = —--+—-—- —1 (5a)
v1 0a, j,.T (1', (1,(1lva1J,.T

and
G22 [(a2/42)1 — 4,
—--——(1,-———--—-i —i——-----+-—---—-——•• —1 (5)
V2 aL2 ]p,T 2 42 2\2 p.r

Behaviour of the clustering functions for a binary system in the critical
miscibility region and where two liquid phases coexist is exactly analogous
to behaviour of the clustering function of a single component in the critical
and liquid—vapour regions. Since activity—volume fraction isotherms have
zero slope (a1/ô(1, = 0 and äa2/342 = 0) at the critical miscibility point
and in the region where two phases coexist, the clustering functions increase
without bound. This is consistent with sufficient clustering to form macro-
scopic phases.
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For pure condensed systems, the clustering functions have values of
minus one. In a pure system a molecule excludes to another molecule only
its own molecular volume and has no other effect on the system.

A clustering function decreasing without bound corresponds to segrega-
tion increasing without bound. Infinite segregation of like molecules probably
is not physically reasonable even in the limit of zero concentration. Therefore,
in the limits of zero concentrations, the clustering functions should be finite.

The values of the clustering functions at limiting concentrations and at
phase separations are: - -

G11/v1 G22/v2

= 1,4) = 0 —1 finite
4), = 0,4)2 = 1 finite —1

phase separation + co

The clustering functions of the two components of a binary system are
related; G1 1/it can be calculated from G22/152 and vice versa. The Gibbs—
Duhem equation' " for activities holds for any system at equilibrium; thus,
for a binary system

x,dlna1 + x2d In a2 = 0 (6)

wherex, = (1 + n2/n1)' = 1 — = 1— (1 + n1/n2)' andx, andx2 are
mol fractions of' components I and 2.

Substituting equation 5b and 6 into equation 5a, and equations 5a and 6
into equation 5b. along with definitions of mol and volume fractions, gives for
the clustering functions, neglecting compressibility:

G,, 2(4)2\2[G22 1 1 1-—=-1Ji--:--+—I—- (7a)
V V\4)J [V2 4)2] 4)1

and

G = + 11 — (7b)'2 V2\\4)2) [ 4] 4)2
For systems of very different molecular volumes, the larger molecules will

be segregated, that is the average concentration of the larger molecules in
the neighbourhood of a given larger molecule will be less than the mean
concentration of larger molecules. This can be seen easily by taking >
and noting that even if G, ,/i5 > 0 the — 1/4)2 form of equation 7b will
dominate and G22/i52 will be less than minus one over most of the concentra-
tion range (even as 4)2 —÷ I because of the rapid decrease in (4)1/4)2)2 as
4)2 —+ 1). For i52 > i51, the first term of equation 7a predominates; the cluster-
ing function can be greater than minus one indicating clustering of molecules
of component 1, or less than minus one denoting segregation of molecules
of component 1.

III. EXPERIMENTAL MEASUREMENTS OF CLUSTERING
FUNCTIONS

The clustering functions for the system n-perfluoroheptane—2,2,4-tri-
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methylpentane calculated from slopes of a1/41 versus a1 plots using activity,
volume and concentration data of Mueller and Lewis12 at 30°C are given in
Figure 1. This system has a critical miscibility temperature of 23.78°C at

0.45 perfluoroheptane13. The clustering function of n-perfluoroheptane
is a maximum of G, ,/v, + 14 at 0.28: that for 2,2,4-trimethy!-
pentane has a maximum of G22/32> + 17 between / 0.56 and 4

I.
(:1

C0

C0
U
C

0)
C

U

Volume fraction of 22L.trimethylpentane

1.0

Figure 1. Plot of clustering functions versus concentration for n-perfluoroheptane (,) and
2,2,4 trimethylpentane (2)at30CC from data of Mueller and Lewis'2

0.62. As the temperature of this system is decreased from 30°C to 'I
23.78°C, the maxima in the clustering functions should increase becoming
infinite at 1 and should shift with concentration toward 4, 0.45. This
system at a temperature more than six degrees from the critical miscibility
temperature has clustering functions substantially greater than minus one.
This indicates that like molecules are clustered. Unfortunately, we have no
calibration of the degree of clustering from other experiments.

The clustering functions for the systems, benzene—rubber at 25°C'4,
benzene—polyethylene at 109°C , cyclohexane--polyisobutylene at 15°C' ,
toluene--polystyrene at 25°' and 27°C8, and water-collagen at 25° and
40°C'9 are shown in Figure 2. These are calculated by graphical differentia-
tion and/or by differentiating activity—concentration functions given by
investigators to represent their data.
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The clustering functions for most nonpolar solvents in solution with
nonpolar polymers probably are positive, usually about plus one or two
except in solutions dilute in polymer, and perhaps in very concentrated
solutions. This arises from the concavity downward of the plot of activity,
a1, versus volume fraction , and the dominance of the (al/Ul)T term
of equation 5a. Examples of polymer solutions for which G1 1t of solvent
is about plus one to plus two are benzene polyethylene at 109°C15, toluene—
polystyrene (M 300000) at 25°C10, and benzene—rubber at 25°C'4. The
clustering function of cyclohexane in polyisobutylene at 15 C'6 is larger than
those in the three examples cited rising to G,,/t1 4 at 4 0.8 (Figure 2).

100 050 00
6— I I I I I

5
ToLuene- PoLystyrene270)

-

Cyclohexone- /' -

- Poy'sobuty[ene,15°" -

Ben zene—
- ---.---

/ Heptone—
0 ,/

Fotyethylene,lQgo - 0
/ Totuene—Polystyrene,25o

:__
0.0 0.50 1.00

q1

Figure 2. Plot of clustering functions versus solvent (tb,) and polymer (çb2) concentration for
benzene—polyethylene at 109°C'5, toluene—polystyrene at 25°C'1 and 27°C'8, benzene—rubber

at 25°C1 , cyclohexane--polyisobutylene at 15°C'6 and water-collagen at 25°C'9

Since clustering functions greater than minus one are evidence of the
tendency for like molecules to cluster, solvent molecules in these four systems
are clustered. The cyclohexane—polyisobutylene system is more hetero-
geneous than are the other three systems.
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The clustering function of toluene in dilute solutions of polystyrene
(M,, 500000) at 27°C18 has a maximum value of G11/i31 + 5.5 at

0.99 and decreases to /i3 = — 1 at 4 1 as it must for pure
solvent. This increase in G11/1 to a maximum in dilute solutions is con-
sistent with the increase in heterogeneity of a polymer solution upon dilution
as polymer molecules begin to disentangle. A detailed description of the
clustering function of toluene in polstyrene at high dilution is given in
Figure 3 where the osmotic pressure data of Bawn and colleagues20 and those
of Schick, Doty, and Zimm'8 are plotted. Virial-type equations given by the

Figure 3. Plot of clustering functions rersus concentration for toluene in
various fractions of polystyrene at 25'C2° and 27C. (Reprinted from

courtesy of Marcel Dekker, Inc.)

dilute solutions of
ref. 36, p. 706, by

authors were used. The second virial coefficients of Bawn and coworkers
were smoothed by a linear, least squares fit with M The clustering
function G11/i31 of toluene passes through a maximum which is greater and
occurs at higher dilution the greater is the molecular weight of the dissolved
polystyrene. The maxima occur at polymer concentrations which are
greater than the maximum concentrations at which solutions of discrete
polymer molecules can exist based on estimates of molecular dimensions in
solution from measurements of scattered light21.
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The clustering functions for nonpolar gases in nonpolar polymers are
considerably less than minus one at high concentrations of polymer22. In
the concentration range 0, = 0 to 0, 0.04, the clustering functions of
nitrogen in polyethylene melt increases from G, ,/13, — 11 at 126°C to

— 7 at 226°C. From 4', = 0 to 4', 0.1, the clustering function
of methane in branched and linear polyethylene rises from G, ,/i5, — 5
at 125° and 140°C to G, ,/O, — 3 at 227°C. Clustering functions are more
negative for methane in polyisobutylene, G, ,/i3, — 8 at 10 1°C increasing
to G,,/i3, — 4 at 189°C in the 4', = 0 to 4', 0.05 concentration range.
Even lower values of the clustering function are found for methane in
polystyrene, G,,/i, — 17 at 100°C rising to G,,/i3, — 7 at 189°C for
4', = 0 to 4', 0.0322. As the pressures of these gases are increased, the
polymers should become miscible in the gases over wide ranges of concentra-
tion; this expectation is based upOn the measurements of Ehrlich of the
solubilities of polyethylene in ethane, ethylene, and higher alkanes23. In
these ranges of great miscibility, the activity—concentration plot should be
concave downwards giving clustering functions for the gaseous solvents
greater than minus one, probably about plus one like the nonpolar systems
in Figure 2. Estimating from Ehrlich's data for polyethylene solubility in the
higher alkanes23 and the methane—polymer solutions cited22, the region of
negative functions less than minus one, G,1/i3, < 1, which requires concave
upwards activity—concentration plots, may be limited to low concentrations
of solvent, and temperatures close to or above the critical temperature
of the solvent in the case of nonpolar solvent—polymer systems. The con-
centration range over which the clustering function is less than minus one
in these hydrocarbon systems appears to be broader the higher is the tem-
perature of the system above the critical temperature of the solvent gas.

For polar solvents in polar polymers or polyelectrolytes, the clustering
function G, ,/ii, of solvent is negative in the lower concentration ranges of
solvents. It rises to values characteristic of ordinary nonpolar solvents (in
nonpolar polymers) as the polar polymers or polyelectrolytes are swelled
and become more dilute solutions. Bull's data for water in collagen are
characteristic of water in several proteins19 and cellulose24. The first water
to enter the collagen is widely dispersed; at 4', 0.07 each molecule of
water excludes on the average about seven times its molecular volume to
another molecule (Figure 2). Such segregation of like molecules is neither
unusual nor extreme as Bull's data for other proteins attest'9. This segrega-
tion is not limited to systems with strong interactions between solvent and
polymer molecules. In the essentially athermal mixtures of gases in molten
polymers previously cited22, gas molecules are segregated.

A clear picture of the general behaviour of the clustering function for
solvent in a polymer—solvent system emerges from the foregoing observations.
The (d ln4',/d lna,) term of equation 5a dominates in determining G, ,/ii,;
other terms involve only concentration. Therefore, requirements upon
functional dependence of activity and concentration can be outlined. Any
comprehensive theory of polymer solutions must satisfy these criteria.
Behaviour of the clustering function generally is as follows. (1). At 4', = 0,
the clustering function for solvent may be very much less than minus one
and rise at low concentrations of solvent to the about plus one to plus two
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or more range characteristic of ordinary, nonpolar solvent—polymer systems.
Alternatively, at , = 0 the clustering function may be about the value it
has over most of the concentration range for ordinary, nonpolar solutions.
(2). In the concentrated solution range (4, 0.2 to 4', 0.8), the clustering
function of solvent will be about plus one to plus two or more with a tendency
to increase at lower concentrations. (3). In the dilute solution range, the
clustering function for solvent will rise to a maximum which increases with
molecular weight and might be in the plus 3 to plus 15 or more range. (4).
The clustering function of solvent will decrease to minus one, G1 ,/i5, = — 1,
at 4', 1. The activity—concentration equation which can give a good
representation of experimentally observed behaviour of the ch'stering
function (which is dominated by the first derivative of activity with respect
to concentration) probably is a multiple term equation containing more
than two and, perhaps, four or more adjustable parameters. The probability
of deriving such an equation from first principles, without the inherent
empiricism of an assumption of corresponding states, is not great.

The clustering functions for polymer, G22/2, calculated from equation
7b using the values of G,,/i1 of solvent from activity of solvent data for the
solvent—polymer systems in Figure 2, are almost indistinguishable from
—4'2 . This must be the case because of the dominance of the i,/i32 and
(4'I/4'2)2 terms of equation 7b. The clustering function for polymer G22/i32 at
low concentrations of polymer will pass through a minimum, increase
becoming greater than zero, and pass through a maximum ifG1 is positive
and then decreases. The clustering function G22/t2 does not decrease without
bound as — 0. The limiting value of the clustering function for polymer
may be of the order of — i2/i5, as predicted by some theories.

IV. CLUSTERING FUNCTIONS CALCULATED FROM
PREDICTIVE THEORIES

1. Small molecule solutions

If on a volume fraction basis the activity of one component of a binary
mix.ture follows the ideal or perfect solution equation (Raoult's law)' "

(8)

or the regular solution equation (Henry's law)' C

a, = k'14', (9)

where k'1 is constant, the activity of the other component is

(10)

as a consequence of the Gibbs—Duhem equation (equation 6). The cluster-
ing functions are

= — I (ha)
and

G22/2 — l — I (Ilb)
4'2y'2 )
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Similarly, if on a mol fraction basis the activity of component 1 of a binary
system follows the ideal or perfect solution equation (Raoults law)' lb

a, = x, (12)

or the regular solution equation (Henry's law)'

a1 = k,x, (13)

where k, is a constant, the Gibbs—Duhem equation requires that the activity
of component 2 be given by the ideal solution equation'1"

a2 = x2. (14)

The clustering functions are

G,,/i3, = — 42[1
— — 1 (15a)

and

G22/132 = — 4i,[1 — 1 (15b)[ Vj
The clustering functions, equations 1 la, 1 ib, 15a, and 15b, show clearly and
unambiguously the necessary requirement for ideal or perfect solution
behaviour over the whole concentration range, that the partial molecular
volumes of both components be equal (13, = i2). Only if 17, can both
G, /i7 and G22/172 be minus one. In an ideal or perfect solution, one molecule
of a given component excludes only its own volume to another molecule
and has no other effect on the system. This statement defines an ideal or
perfect solution.

Of course, in binary systems where Henry's law holds for the minor
component, Raoult's law applies to the major component' hI For real systems,
this behaviour is approached in the limit of pure, major component. The
clustering functions for ideal solutions, the major component at infinite
dilution, and pure compounds are identical and have the value G, ,/17, = — 1

as they must.
Equations 1 5a and 1 5b show the effect of molecular size upon molecular

distributions. In the absence of either net repulsive or attractive interactions
between molecules of components 1 and 2 in a binary system, the smaller
molecules are clustered and the larger molecules are segregated. In equations
l5aandl5b,if171 c172,G,,/17, > — landG22/172c —1.

Adding a van Laar or Scatchard—Hildebrand type partial molal heat of
mixing term25 to equation 8

a1 0, exp (,44) (16)

where AR, = RTGL,Ø22 partial molal heat of solution of component
1 and ct1 a constant,
and substituting in equation 5a and this result into equation 7b, confirms
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that positive heats of dilution and clustering of like molecules, and negative
heats of dilution and segregation of like molecules, accompany one another'°.
Of course, the solution model described by equation 16 is idealized to a
degree which limits its application to few systems over limited ranges of
concentration. Nevertheless, the regular solution equations, on a volume
fraction basis (equation 16) or on a mol fraction basis for which the clustering
functions are more complicated but depend similarly on parameters i52/151
and heats of mixing10, demonstrate the interplay of molecular volumes and
heats of mixing in determining the kind and give a relative measure of
molecular association in solutions.

2. Polymer solutions
The athermal solution theories or ideal solution theories for polymer

solutions, which assume ideal mixing of chain-like molecules and no heat
effects or volume changes on mixing, were developed from lattice or free
volume models by many investigators including Flory26, Huggins27,
Guggenheim28, Hildebrand29, Miller30, 0rr31, and others. These theories,
which we have called the Flory—Huggins--Guggenhein (F—H—G) theory5,
may be summarized by writing the activity equation for the solvent (in
closed form):

7 2 \_I —
= — (17)

where is the 'effective coordination number' defined by Huggins and is
very nearly equal to the coordination number of the assumed lattice.

Hildebrand's free volume derivation29 is equivalent assuming an infinite
coordination number in equation 17. Flory made this approximation first2b,
apparently because the kindred expressions which Flory derived and
equation 17 are not strong functions of z' for z' 6. In effect, taking z' — co
assumes that polymer molecules are infinitely flexible and can pass through
themselves. This assumption of super-flexibility and no exclusion of volume
should and does result in an over estimate of the partial molal entropy of
dilution corresponding to an underestimate of the heterogeneity of the
system. In the limit of z' — co,equation 17 simplifies to

a1 = i l2}2 (18a)

The clustering functions for Flory's and Hildebrand's equation 1a are

- - ——- (18b)
v1 v2/v1 — (v2/v1 —

and

G22 —= — - —------ (18c)
v2 v2/v1 — (v2/v1 —

In the limit of very high molecular weight polymer these become

urn -- = 0 (18d)
v2/vI -. -( V1
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and

Jim = — 4— (18e)v Q2

For Flory's and Hildebrand's equation 18a, the clustering function for
solvent as a function of concentration is described by an envelope of curves
between minus one and zero. Of course for = G11/131 = —1; at
v2/v1 —*cc,G11/131 =OforO ( Ø < 1.Forallvaluesofi32/131,G11/131 = —1
at 4 = 1 and G11/131 = —1/2 at q = 0; G11/131 — i/2 over most of
the concentration range and decreases to G1 1/1 = —1 as Ø —. 1. Clearly,
the Flory—Hildebrand form of the equation underestimates the heterogeneity
of the system. To agree with experiment the clustering function for solvent
should have a value from about one to two or more.

The clustering function for polymer calculated from Flory's and Hilde-
brand's formulation of the theory departs little from equation 18e. Since
equation 7b holds for all cases, G22/152 must be very nearly equal to —1/02
unless G1 1/i1 departs from zero by the order of 2/i Over most of the
concentration range, the clustering function for polymer according to
equation 18c follows —0{ . As 02 —0, G22/132 continues to decrease but
is greater than _02_1 and reaches the limit G11/151 = —2/1 at 02 = 0
and = 1.

Huggins27 and Guggenheim28 took the coordination number of the
lattice as a finite parameter. Indeed Huggins stated explicitly that for a
hydrocarbon polymer solution z' should be about four 27c. The clustering
functions for equation 17 are for solvent

— 2(152/131)02 — z'
(19—

(152/151)z'Ø2
— 2(152/151) 02 + zØ1

a

and for polymer

G — (i32/131)(z' — 2) + 20
(19b)

1)2

— —
(132/i51)z'Ø2 2(152/151)02 +zØ1

In the limit of very high molecular weight polymer, equations 19a and 19b
simplify to

lim — (19c)V2/I'1&t IYI — 2

and to equation I 8e, respectively.
For Huggins' and Guggenheim's equation, the clustering function for

solvent as a function of concentration is given by an envelope of curves
between

G11/131 = (2 — z'151/132)/(z'
— 2)

and G11/131 = 2/(z' — 2) for 0 01 < 1 and G11/131 = —1 at 01 = 1. The
clustering function is approximately

G11/151 (2 — z'131/132)/(z' — 2)
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over most of the concentration range 0 0.9 for 132 > 1(2/1 >
10) and z' 3; as — 1, G11/t151 decreases to minus one at 4 1.

With z' = 3 to z' = 4 for which equations 19a and 19c become G1 + 2
and G1 /13 + 1, respectively, the lattice theory gives remarkably good
agreement with experiment for nonpolar solvent—polymer systems. If chain
stiffness and bulky side groups decrease the number of configurations which
a polymer molecule can assume, the effective coordination number of such
a chain may be less than four giving clustering functions of solvent greater
than one.

The clustering function is a first derivative f wction; therefore it provides
a means for rigorous test of agreement between predictive theories and
experiments. Not only must predictive theory give a good representation
of activity—concentration data, it must give correct first derivatives with
respect to concentration. This examination of the first derivative shows
clearly that the combinatorial term in the partition function given by con-
sidering reasonable, small lattice-numbers represents experimental data
much better than does the infinite lattice number approximation.

Flory261' and Huggins27c 32a wrote equations 18a and 17 respectively in
logarithmic form, expanded the second logarithmic term neglecting powers
of concentration greater than 22, and added a Scatchard—Hildebrand heat
term. This expanded equation, which is often called 'the Flory—Huggins
equation', written in exponential form gives for the activity of solvent

a1 = 41e' —V Vl)4 +1I (20a)

where in Huggins' derivation

= (1 —
131/132)/z' + ' (20b)

Equation 20a is a regular solution-type equation, the product of an athermal
entropy of mixing and a configuration-independent heat of mixing term.
Such separation of configuration and energy terms is not possible; therefore
taking as an empirical parameter corrects in part for the errors made in
separating the partition function into a product in this way. The empirical
nature of y, the dependence of z' in equation 20b on temperature, the im-
probable values of z' and ', and the concentration dependence of x has
been recognized since the early tests of the lattice theory were made'

The clustering functions for the expanded form of the Huggins Guggen-
heim equation are

G11 _____2x42
—= ____—------• - --- (20c)V1 2 — 2x4142 + 41,/2

and
G22 — 2X4)i — 1

20d—
2 — 2X12 + 1V1/V2

(

In the limits of very high molecular weight polymer these reduce to

2l,m — = ———• (20e)-• v, 1 — 2x4
for solvent and to equation 18e for polymer.
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The clustering function for solvent given by equation 20c has the value

G11/151 = (2x — 1/2)
at 0 = 0; it increases to a maximum value of

(Gii/15i)max 2/(l — 2x + I1/12)
at

02 — [1/2 + (i51/i32)fl/27

and decreases to G11/131 = —1 at 4 = 1. The numerical values of the
clustering function derived from the expanded form of the F—H—G equation
can represent experimental results for nonpolar solvent—polymer systems
quite well. For values of x

0.375 $ x ct [ + (151/7)2)12 + (13l/12)]

it rises from

0.75 G11/151 [1 + 2(i1/i32)]
at 01 = 0 to a maximum of 3 j G1 1/i5 j 152/151 at concentrations somewhat
less dilute in polymer than those at which maxima in G11/z51 are observed
experimentally for 7)2/151 i0l. The clustering function for polymer decreases
from G22/iT32 = — 1 at 01 = 1 almost as rapidly as 02'to approximately
02 (Ol/152)+. At higher dilutions it decreases less rapidly and passes
through a minimum at

= [1 — (131/7)2)]/2x

if this 01 < 1, or ii continues to decrease; the limiting value at 01 = 1 is

= (2 — 1) (152/131).

That this expanded form, an approximation to the F—H G equations,
should give better representation of experimental data than do the exact
forms of these equations is not merely surprising irony. Using the expanded
form adds an empirical, concentration-dependent parameter x which
is dependent upon configuration and heat of mixing in such a manner
as to correct in part for separating the partition function into a product.

3. Adsorption systems
Langmuir used a mass-action type kinetics argument for adsorption and

desorption of a monolayer of gas on a continuous surface to derive his
adsorption isotherm33. Adsorption of single molecules on a limited number
of sites, n, yields the same equation for the activity, a1, of n1 adsorbed
molecules34

a1 = (21a)
'Is — fli

where c is a constant. If each site has a partial molecular volume 15, the
concentration can be written in terms of a volume fraction

01 = (1 + n5i55/n1i31' (21b)
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These equations with equation 5a give

1= (21c)

for the clustering function for adsorbed gas. Substituting equation 21c into
equation 7b yields for the adsorbent

_q51_-! 1

(21d)
V2 V1

In the limit of zero adsorption (4 —. 0), G11/i51 —2 —
i3,/i51. Since the

volume of an adsorption site is usually larger than the volume of an adsorbed
molecule, the clustering function for adsorbed molecules at low coverage
usually is substantially less than minus three. At low coverages an adsorbed
molecule excludes an average of 2 + i3/i31 times its own molecular volume
to another molecule of adsorbate. In monolayer or Langmuir adsorption,
adsorbed molecules are segregated. The Langmuir adsorption equation is
limited to fairly low coverages; in these ranges the clustering functions,
G1 1/i31 and G22/i32, have reasonable values and reasonable limiting values
at c/ = 0.

The solubilities of at least some nonpolar gases in melts of nonpolar
polymers follow the Langmuir adsorption isotherm over significant ranges
of concentration. These are, nitrogen in branched polyethylene, and methane
in branched and linear polyethylene, polyisobutylene, and polystyrene22.
The clustering functions of these gases in these polymers, which range from
G11/f1 —3 to G11/i51 —17, were cited in Section III. These clustering
functions can be interpreted quite literally by stating that one molecule of
sorbed gas excludes to the next molecule of gas from 3 to 17 times its molecu-
lar volume. These gas—polymer systems are athermal or almost athermal in
their behaviour. We usually associate the Langmuir isotherm with relatively
strong binding between adsorbed molecules and adsorbing sites. Nothing
in the derivation of the Langmuir isotherm restricts it to strong binding
systems. The configuration or combinatorial term in the partition function
merely states that as each molecule of gas is adsorbed one site is occupied or
used up and no site is added to the system. In the limit of an atherma! system,
adsorption or solution behaviour is purely entropic. In these nearly athermal
gas—polymer systems, the adsorption sites may be nothing more than
unoccupied volumes in the polymer melt, volumes which can accommodate
an average of one gas molecule in each void or unoccupied volume.

In monolayer adsorption, the adsorbed molecules are segregated. If
molecules are adsorbed on molecules in the first layer, molecules involved
in adsorption in two or more layers are clustered. Therefore, in multilayer
adsorption molecular segregation at low coverages (considerably less than
one monolayer) going over to clustering at higher coverages (multilayer
adsorption) should be reflected by the clustering function for adsorbed
molecules increasing from much less than minus one to values greater than
minus one, perhaps greater than plus one.

The multilayer adsorption isotherm of Brunauer, Emmett, and Teller35
(B—E-T) is

276



MOLECULAR CLUSTERING AND SEGREGATION

a1 1 c—i
a1 (22a)

n1(1 — a1) vr5c n,c

where a1 activity of adsorbed molecules
number of adsorbed molecules
number of adsorption sites and

c constant.
This gives the clustering functions for adsorbed molecules

(22b)

and for adsorbent

1 +2ai(1 —)]+Qø—2 (22c)

These clustering functions have reasonable limiting values

limS-= —2—4+- (22d), —.0 V1 V1 c V1

and

lim —2+ (22e)
42-'O V2

For pure component 1 (adsorbate) and pure component 2 (adsorbent) the
respective clustering functions have values of minus one. Equation 22d
shows clearly that the B—E—T equation combines a Langmuir type adsorp-
tion with a term that accounts for clustering, multilayer adsorption, at
higher concentrations.

The water—collagen system, the twelve other water—protein systems
studied by Bull19, water sorption by nylon, silk, and wool19, and water
sorption in cellulose24 follow the B—E—T adsorption isotherm at least as
well as any other two-parameter equation. The clustering functions for
water in collagen, calculated by taking the slopes of a plot of experimental
values of a1/ft1 versus a1 are shown as points and those from Bull's best fit
of the B—E--T isotherm as the solid line in Figure 4. Considering that the
clustering function varies as the first derivative of the concentration as a
function of activity, the agreement between clustering functions determined
from a plot of experimental data and those calculated from the B—E—T
equation is remarkably good. Each of the first molecules of water added to
collagen excludes from 7 to 9 times its molecular volume to the next molecule
of water to be added. As more water is added, 'sites' begin to be used up and
water is sorbed on water; multilayer adsorption or water clustering begins
to occur. As the activity of water rises to a1 0.95 at 0.4, the water
in collagen behaves like that in an ordinary polymer solution with G1 1/i31

+ 1.3. As more water is added to this collagen solution the system may
be expected to behave somewhat like an ordinary, nonpolar solvent—
polymer system with G1/i31 ito 2 up to 4 0.9 and G11/i31 > 2 at
a maximum at 4 0.98 or 0.99.
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the B—E-T adsorption isotherm may be one of the best—if not the best—
two-parameter equations for describing polymer solutions. 'Site adsorption'
going over to usual polymer solution behaviour may be much more com-
mon behaviour for solvent—polymer systems than has been realized in the
past.

V. SUMMARY AND CONCLUSIONS

The clustering functions cannot predict thermodynamic properties of
mixtures. They do interpret in geometric terms, the probability that similar
molecules occupy adjacent volumes in space, the activity-concentration
behaviour of any binary adsorption, sorption, or solution system.
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The foregoing example of the applicability of the B—E—T equation to a
strong-binding polymer—solvent system and the expectation from the gas-
in-polymer-melt data22 and the solubility-in-polymer data of Ehrlich23
that the B—E—T equation is applicable to nonpolar systems, indicates that

Volume fraction of collagen /2

1.00 0.50

0

—1

-5

-10

0.00

Volume fraction of water

Fiqure 4. Plot of clustering functions versus concentration for water () and collagen (2) at
25 and 4() C'9 by graphical integration, and calculated from the Brunauer, Emmett. and Teller

adsorption equation5 which represents the data.
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The clustering function is a free energy function derived without separat-
ing the partition function into a product of terms including an energy-
independent combinatorial term and a configuration-independent energy
term. Therefore, the clustering function should be applicable to any binary
system at equilibrium over the whole concentration range of the system.

The clustering functions are derived from the cluster integrals of dilute
gas method statistical mechanics which assumes a centrosymmetric system
in its development. On a molecular basis a chain-like polymer molecule is
not symmetric about another polymer molecule or any given solvent
molecule. This lack of radial symmetry of polymer molecules seems to have
no effect on the efficacy of the clustering function in describing solvent
clustering or segregation. The cluster integral for polymer molecules may
not describe the segregation of polymer molecules at some small range of
concentrations at high dilution.

In spite of the serious consequences of splitting the partition function
into a product of terms in developing predictive theories, real differences in
combinatorial terms do appear. Examples are the much better represen-
tation of experimental results by the F—H—G theory with small values of
the coordination number than with z' approaching infinity and the need
for an adsorption-on-sites combinatorial term in some nonpolar as well as
polar systems.

The B—E—T adsorption isotherm and the F—H—G theory in its expanded,
empirical form are the best two-parameter polymer solution equations over
the whole range of concentration. Only the B—E—T equation, among the
common adsorption and solution equations, can describe activity—concen-
tration behaviour where activity is concave upwards at low concentrations
and concave downwards at higher concentrations.

The non-uniqueness of models is demonstrated by the fine fit of some
polymer solution and sorption data by equations derived for adsorption of
one or several layers of gas molecules on a continuous surface.

Calibration of the clustering Functions, For example by measuring sizes
of average clusters by scattering experiments, is needed.

Clustering functions provide a method for rigorously testing any adsorp-
tion theories with other theories or experimental data. Further, the clustering
functions provide an easily understood, unified treatment of thermodynamics
of solutions, sorptions, and adsorptions.
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