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ABSTRACT
Recent advances in the theory of dilute polymer solutions are critically
summarized. The following topics are discussed: theory of the excluded volume
effect, including perturbation theory, the asymptotic solution, and approxi-
mate treatments: the second virial coefficient: the theory of intrinsic vis-
cosity. especially perturbation theory: comparison of theory with experiment
using data recently obtained for monodisperse polystyrenes: methods of
determining the binary cluster integral: and simple analysis of the binary

cluster integral by a cell-theory approach.

INTRODUCTION

The statistical mechanics of polymer solutions has been for many years
one of the active lields of polymer science because of its close relation to
molecular characterization. Specifically, since the concept of the excluded
volume effect in a polymer chain was introduced by Flory"2 in 1949, there
have been a number of significant advances in the study of this effect and the
related equilibrium and nonequilibrium properties of dilute polymer solu-
tions. These advances, made during the last two decades, have delineated
the relationship between the theory in the field, now called the two-parameter
theory, and other branches of the molecular sciences. There are now various
aspects of the field which are covered by the two-parameter theory3. In
this paper, emphasis is focused on the following characteristics and problems.

First, the excluded volume problem in a single polymer chain is a many-
body problem, and many mathematical difficulties are encountered. Indeed,
an exact asymptotic solution for an infinitely long chain with large excluded
volume has not yet been obtained, though the problem may be unravelled
applying the techniques used in solving many-body problems in simple
tluids and many-electron systems. This is in contrast with the problem in
configurational statistics of polymer chains without excluded volume which
is equivalent to the problem in one-dimensional cooperative spin systems
and is therefore amenable to exact solution. Although the asymptotic
solution to the excluded volume problem cannot be directly compared with
experiment, it is of great statistical-mechanical interest and is also useful
in deriving approximate closed expressions.
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Second, there have been a number of attempts to derive approximate
closed expressions for the expansion factor and the second virial coefficient
which are valid over a wide but experimentally accessible range of excluded
volume interaction. However, there have been very few investigations of the
nonequilibrium properties, such as intrinsic viscosity, of polymer chains
with excluded volume. In this case, we must solve simultaneously the
problem of polymer dynamics, such as the problem of the hydrodynamic
interaction which exists even in the unperturbed (9-state. Nevertheless, the
establishment of such consistent expressions for all equilibrium and non-
equilibrium properties is very important, because it provides an under-
standing of the physical processes in dilute polymer solutions and also
methods of determining the two basic molecular parameters, the unper-
turbed dimension and the binary cluster integral for a pair of segments.
We note that several advances have recently been made also in the pertur-
bation theories of equilibrium and nonequilibrium properties.

Third, when we attempt to make experimental tests of the derived approxi-
mate expressions. a fundamental difficulty arises from the fact that the
binary cluster integral and hence the excluded volume parameter are not
directly observable. Even with Monte Carlo data, another difficulty arises
from the fact that there is a gap between lattice chains and polymer chains.
This is in contrast with the theory of simple fluids. Although the latter also
involves the many-body problem, experimental tests of the derived approxi-
mate equations of state can be achieved by examining the relationship
between pressure and density with the use of actual experimental data and
also of molecular dynamics data.

The fourth point is concerned with the theoretical interpretation of the
two basic molecular parameters appearing in the theory. As for the unper-
turbed molecular dimension, extensive investigations have been made
during the past decade, and the methods and results are summarized in
books by Volkenstein4, by Birshtein and Ptitsyn5, and by Flory6. The present
paper is not, of course, intended to discuss this subject. On the other hand,
very few investigations of the binary cluster integral have been published.
However, it is this parameter that has a close relation to the excluded volume
effect, and plays an important role in the interpretation of interactions in
dilute polymer solutions on the molecular and atomic levels.

In the following sections, we discuss these problems in more detail,
summarizing the results recently obtained by the present author and col-
laborators. We emphasize that the resolution of the many-body problem in
polymers consists of exploring the dependence of dilute-solution properties
on polymer molecular weight, and that this leads to correct estimates of the
molecular parameters.

TWO-PARAMLTER THEORY
Consider a model polymer chain composed of n identical segments

(beads) joined linearly with a bond of effective length a. Suppose that inter-
actions between two segments belonging to the same chain or different
chains in dilute solutions may be described in terms of the pair correlation
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function g(r) as a function of the separation r between segments averaged
over all orientations. 'With g(r), define the binary cluster integral /3 by

/3=[l —g(r)]dr, (1)

which represents the eliective excluded volume for a pair of segments at
infinite dilution. Then, all the equilibrium and nonequilibrium properties
of dilute polymer solutions may be expressed in terms of the two parameter
combinations na2 and n2/3 within the framework of the two-parameter
theory, i.e., on the assumptions that n >. 1, /3 4 (na2)1, and the potential is
pairwise additive. We may choose as the two basic parameters the unper-
turbed mean-square end-to-end distance <R2>0 (or the unperturbed mean-
square radius of gyration <S2)0) and the excluded volume parameter z:

= = na, (2)

z = (3/2m(R2)0)1n2/3. (3)

We note that the parameters n and a, and also n and /3, never appear separately
in the final equations. In other words, the final equations are invariant to
the choice of n, and the value of n may therefore be, to some extent, arbitrary
as long as the value of /3 itself is not discussed.

Expansion factors
We define expansion factors R and by

=
and

cz2 =

with <R2) and <S2> the mean square end-to-end distance and radius of
gyration of the chain with excluded volume, respectively. These expansion
factors may be expressed as functions of z only. For small z, an evaluation
of cxR and cx can be carried out in a manner similar to the virial or cluster
expansion of the gas pressure at low density. The results obtained so far
are summarized as follows,

= I + l.333z — 2.075z2 + 6.459z3 — (4)

1 + 1.276z — 2.082z2 + ... . (5)

The linear term of cs2 was derived by Teramoto7 and many other investi-
gators8" long ago, the quadratic term of cz2 and the linear term of cx2
being due to Fixman10. The cubic term of nH2 and the quadratic term of
ns2 have recently been derived by Yamakawa et al.' 2. 13

The investigation of the other extreme, i.e., the asymptotic solution for
R at large z, has been initiated by Edwards'4, applying the self-consistent
field method. Subsequently, this approach has been further investigated by
Reiss'5 and others'6' 17, However, these investigations involve some
numerical error and incorrect derivations. The correct integro-differential
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equations for the distribution function have been obtained by Yama-
kawa'8' 19 and Freed2° for both the zeroth-order field of Edwards and the
first-order field of Reiss. For the Edwards field, the solution is

urn R Cz (6)

with v = 5 and C = O.744' ' (Edwards has erroneously obtained the
value of 1.49 for C.) For the Reiss field, the exact solution of the integro-
differential equation has not yet been obtained, but it has been solved by
Yamakawa'8 only in a uniform-expansion approximation with the result
v 5 and C = 1 .45. These recent results support the earlier conclusion of
Flory1' 2 though there has been controversy on the question of whether the
behavior of cx or obeys an equation of the fifth-power type (v = 5) or of
the third-power type (v 3)21 22 We note that integro-differential equations
have also been derived by the liquid theory approach23 24

As for the derivation of approximate closed expressions for R or ,
various attempts have been made for many years3. In these the problem has
been approached from two starting points. One begins with the closed form
of the distribution function of the end-to-end distance R,

P(R) Z1P0(R)exp [— V(R)/kT], (7)

where Z is the configurational partition function, P0(R) is the unperturbed
distribution, and V(R) is the potential of mean force with R fixed. In this
approach. the problem is to evaluate V(R). Recently. Fujita et a!.25 have
shown that within the framework of the two-parameter theory. V(R) may
be expressed exactly in the form,

V(R) = kT> cP(O1R)dfl, (8)
t<i 0

where the conditional probability density, P(0111R), for the contact between
the ith andjth segments with 1? fixed is to be evaluated in the perturbed state.
In the earlier treatments belonging to this category, the conditional prob-
ability density in equation 8 was evaluated in the unperturbed state. However,
this has a significant influence on the final result. For instance, Kurata,
Stockmayer. and Roig21 have evaluated P in equation 8 in the unperturbed
state for an ellipsoid model to derive an equation of the third-power type
for R' while evaluation of P in the perturbed state for the same model leads
to an equation of the fifth-power type25. In general, fifth-power type equa-
tions are obtained irrespective of the form of distribution of segments if P
is evaluated in the perturbed state with the use of a uniform-expansion
approximation3 25.26 We note that Alexandrowicz27 has also used an
expression for J/(R) similar to equation 8.

There hold similar equations also for the distribution function P(S) of
the radius of gyration S and the potential V(S). Strictly, however, P0(S) is
not Gaussian, and the problem is more difficult. If we assume the Gaussian
Pa(S) and the spherically symmetric distribution of segments, that is:

V(S) = CS3zkT,
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and C is adjusted to give the exact first-order perturbation theory, the
modified Flory (F,m) equation for cx5 is obtained. Flory and Fisk (FF)28
have improved the form of P0(S) in an approximate fashion to re-evaluate
ct5, based on the investigation of P0(S) by Fixman29 and Forsman30'3t.
However, the exact solution for P0(S), though only numerical, has recently
been obtained by Koyama32 and Fujita33. With this result, Fujita and
Norisuye (FN)33 have revised the calculation of Flory and Fisk. In Figure 1

Figure 1. Values of calculated from various approximate theories. Curve F,o: the original
Flory theory. Curve Fm: the modified Flory theory. Curve FF: the Flory—Fisk theory. Curve
FN: the Fujita—Norisuye theory. Line F: the Fixman theory. Curve P: the Ptitsyn theory.

Curve VT: the Yamakawa—Tanaka theory.

are plotted the values of predicted by these three theories. Comparing
the three curves in the Figure, it is clear that the improvement of Flory and
Fisk has been made in the wrong direction. We note that the recent boson-
operator theory of Fixman34' also gives values of ct3 smaller than those
predicted by the F,m theory.

The other approach is a derivation of a differential equation for dR or. It was attempted first by Fixman (F)to 36, and subsequently by Ptitsyn
(P)37. Both these theories give equations of the third-power type for dR and. Yamakawa and Tanaka (VT)'3 have extended this approach to derive
a hierarchy of differential equations for CXR or ct, by analogy with the tech-
nique in the theory of liquids. The hierarchy has been truncated appropriately
to give higher-order approximations to ctRand ct. The values of cx53 predicted
by these three theories are also plotted in Figure 1. It is seen that the values
predicted by the VT theory are very close to those predicted by the FN theory
of the fifth-power type. In the Figure are also plotted the values predicted
by the original Flory (F,o) theory'.
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Although it is difficult to test these approv..nate expressions for cLR or
as functions of' z using Monte Carlo data3, the recent available data384°

lead to the definite conclusion that neither x, nor cx3 is linear in n. Further,
the extrapolated data for lattice chains4' support the asymptotic solution
of' the titth-power type.

Second virial coefficients
The second virial coeflicient A2 may be expressed in the form,

= 4irNa(<S2>IM2)W. (9)

where NA is the Avogadro number. M is the polymer molecular weight, and
W is a function of z which represents the degree of interpenetration of
polymer molecules in dilute solution. The problem is to evaluate ¶1'. and
this is also a many-body problem. For small z, the cluster-expansion tech-
nique is again useful. The results obtained so far are summarized as follows.

= ±(1 — 2.865± + 9.202±2 — ...) (10)

with ± = z/c'3. In equation 10, we have ignored the correlation between
intramolecular and intermolecular interactions, since it has no great influ-
ence on the result4445. The linear term in the parentheses of equation 10
has been derived by Zimm40 and others4748, and the Albrecht value41 of
9.726 for the coefficient of the quadratic term has recently been corrected
by Tagami and Casassa45 as above.

The asymptotic solution for ¶1' at large ± has not yet been investigated.
However. from a simple physical consideration, it may be expected that in
the limit z — , polymer molecules behave like rigid spheres in dilute
solutions, and therefore W becomes a constant independent of z.

On the other hand, various approximate closed expressions For P have
been derived3. Then the following question arises: what expression for
is to be combined with a given expression for 1' in order to complete the
Form of W as a function of' z or . Necessarily this must be done from the
point of' view of maintaining the self-consistence of the intramolecular and
intermolecular theories. First, the Kurata Yamakawa (KY) equation3'44'49
for ¶1' may be combined with the Yamakawa-Tanaka (YT) equation'3 for

'I' = 0.547[1 — (1 + 3.903±) 0.4683], (KY) (11)

= 0.541 + 0.459(1 + 6.04z)°46. (YT) (12)

The reason is that both have been derived by the hierarchy approach, and
the intramolecular and intermolecular hierarchies have been truncated in
mathematically consistent closure approximations. The pair of equations
11 and 12 is referred to as combination Y. There are two other possible,
though not completely justifiable, combinations. One is the combination
(F,o) of' the original Flory Krigbaum Orofino (FKO,o) equation50'5' for
'I' and the original Flory (F,o) equation1 for .The other is the combination
(F,m) of the modified Flory Krigbaum Orof'ino (FKO,m) equation5° 52 for
W and the modified Flory (F,m) equation for . In these the intramolecular
and intermolecular theories have been derived on the basis of the smoothed
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Gaussian density model. However, there is no explicit justification of any
combination.

Intrinsic viscosities
There are two problems in the development of the theory of intrinsic

viscosities [,j]. One is concerned with the unperturbed chain, that is, the
evaluation of the Flory—Fox constant Ji0 (in the unperturbed state)53, and
the other is to evaluate the viscosity-radius expansion factor ; defined by

['i] = 6 '1i0(<S2>0/M) q3
6 D<S2)1/M. (13)

It is important to note that the evaluation of; depends on the theory of 'P0.
Many investigations of 'Ps, and more generally the dynamical properties

of dilute polymer solutions, have been published3. These have two common
foundations. One is the use of the Oseen hydrodynamic interaction tensor
introduced first by Kirkwood and Riseman54, and th' other is the reduction
to diffusion problems in the chain configuration space formulated first by
Kirkwood55 in a very general form and later by Rouse56, Bueche57, and
Zimm58 more conveniently using normal coordinates. Recently, the use of
the Oseen formula has been criticized by De Wames, Hall, and Shcn59 and
by Zwanzig, Kiefer, and Weiss60. In particular. the latter authors have shown
that in the Oseen approximation, with beads (segments) treated as point
sources of friction, the frictional forces exerted by the beads on the fluid can
become singular for some values of the strength of the hydrodynamie
interaction. Perico and Rossi61 and Thurston and Morrison62 have also
encountered a similar situation in the calculation of the intrinsic viscosity
of short chains. The difficulty may be eliminated by finite bead models.
Such investigations have been very recently initiated by Rotne and Prager63
and by Yamakawa6466. However, it seems that the Oseen formula has
still some practical value in the case of flexible chains.

There is another difficulty concerning the hydrodynamic interaction.
Use of the Oseen formula gives the draining effect, that is, the dependence of
'P0 on molecular weight. However, such an effect has never been observed
experimentally for flexible chain polymers. Very little attention has been
directed to this problem64 67. 68, and a complete solution has not yet been
obtained. It is interesting to note that according to the recent calculation of
Edwards and Oliver69 the draining effect does not occur in the frictional
coefficient of a flexible cylinder. In the following discussion, we assume
that the theory for impermeable molecules based on the Oseen formula are
valid for molecular weights of ordinary interest. In Table 1 are summarized
the values of 'P derived in the nondraining limit by Kirkwood, Riseman,
Auer, and Gardner (KRAG)54'70, by Zimm (Z)58, by Hearst (H)71, and by
Fixman and Pyun (FP)72 . The Hearst theory does not differ from the
Zimm theory except that the Rouse eigenfunctions are adopted for all values
of the draining parameter. The Oseen tensor is pre-averaged in the first
three theories of the Table, while in the Fixman—Pyun theory this is avoided
by a perturbation method. Thus, an exact value of 'P0 has not been derived,
its best experimental value being 2.5 x 1023 (egs).
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flthle 1. The viscosity constant cP
from various theories for linear flexible

chains

Theory x 0 23 cgs

KRAG 2.87
Z 2.84
U 2.82

FP(Oth order) 2.68
(1st order) 1.81

(2nd order) 2.66

Now. c becomes a function of z alone in the nondraining limit. At small
may be expanded in the form.

= 1 + C1z — '. (14)

According to the semi-empirical theory of' Flory and Fox53. ;' is equal to
so that C1 = 1.914. Kurata and Yamakawa48 have introduced approxi-

mately the excluded volume effect into the Kirkwood—Riseman theory and
obtained the value of 1.55 for C1. Fixman34 has introduced the efTect into
the Hearst theory by an application of the boson-operational technique and
obtained the value of 1.80 for C1 . However, his procedure is still approxi-
mate. Very recently, Yamakawa and Tanaka74 have introduced exactly the
effect into the Hearst theory on the basis of the Fixman—Pyun theory and ob-
tained the value of 1.06 for C1. At present, this last value may be regarded as
most rigorous.

However, there has not been derived an approximate closed expression
for ; which gives the first-order perturbation theory of' Yamakawa and
Tanaka at small z.

COMPARISON WITH EXPERIMENT
Great efforts have been made to achieve a direct experimental test of' the

two-parameter theory, instead of an indirect test provided by viscosity
plots22'75. The foremost of' these is the work of Berry7 . As already
mentioned, the binary cluster integral 11, and hence the parameter z, cannot
be estimated directly from experiment. However, Berry has attempted to
estimate fi, assuming the temperature dependence,

= fl(1 — e/r), (15)

where [1 is a constant independent of' temperature, and can be determined
from the temperature dependence of' A2 near the e-temperature. Thus
Berry has determined values of' z for polystyrene in decalin and toluene, and
plotted c2, and also ;, against z. We believe that it is the best way to use,
if possible, these plots as a criterion of validity for a theory. However, there
is no justification of' validity of the assumption (15) over a wide range of
temperature49, and moreover, it is difficult to determine f. accurately.
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Subsequently, experimental tests have therefore been attempted without
the use of any ad hoc assumption for polychloroprene by Norisuye eta!.7879,
for poly-p-methylstyrene by Tanaka et al.80, and for poly-p-bromostyrene
by Takashima et a!.81. In this paper, we use light-scattering and viscosity
data obtained recently by our group82 for monodisperse polystyrenes
(prepared anionically in tetrahydrofuran) to test the theory following our
procedure.

Expansion factors and second virial coefficients
What have been adopted as criteria of validity of a theory are the following:

(1) consistency in the values of z determined from observed values of cx
and from observed values of T using the theoretical expressions for and
W, and (2) linearity between M+ and z determined from observed values of
c using its theoretical expression. The first criterion arises from the fact
that the binary cluster integral for segments in the same chain must be the
same as that kr two segments belonging to different chains. Clearly the
second criterion is required by the definition of z. These two criteria involve
no assumptions.

Fjure 2. Plots of 1' against a for poIystyrenc:. in benzene at 30C..(). in toluene at 30C:. in dichloroethanc at 30 C:O, in cyclohexane at various temperatures82. The broken curve
is an empirical fit to the previous data. The full curves represent the theoretical values calculated

from the three combinations of the theories of P and defined in the text.

The fulfilment of criterion (1) may be examined conveniently by con-
structing plots of W against , as proposed by Fujita et al.78. Figure 2
shows such plots for polystyrene in benzene, toluene, and dichloroethane
at 30°C and in cyclohexane at temperatures ranging from 32° to 60°C82.
The data for A2 and <S2> have been obtained from light-scattering measure-
ments by the method of square-root plots76. The broken curve represents the
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best lit to all published data cited above, the present data being consistent
with those. Thus both P and c are seen to be functions of zonly. The three
full curves in the figure represent the values calculated from combinations
F,o, F,m, and Y of intramolecular and intermolecular theories. It is seen
that combination Y is most satisfactory. Strictly, this combination, and also
the other two, cannot explain the experimental curve which is almost
horizontal for > 2. The Casassa—Markovitz theory83 can explain such
a trend, but cannot predict values of t' greater than 0.2, this being in dis-
agreement with experiment.

7

5

N

3

t qurt 3. [est of the linearity between and .\1 with the data or polystyrene in heniene at
C82 The values of were calculated lrom various theories o : - lrom the F.o theory

). Irom the F.m theory • from the YF theory A. from the F theory: A from the P theory.

We now turn to the examination of criterion (2). Figure 3 shows plots of z
against the square-root of the weight-average molecular weight, for
polystyrene in benzene82, where the values of z have been estimated from
observed values of czs using the theories indicated. The data points obtained
from the F.o. F,m, and YT theories are seen to fall close to the respective
straight lines passing through the origin, indicating that these theories
satisfy criterion (2). On the other hand, the F and P equations are seen to
lead to nonlinear relations between z and M, indicating an inadequacy of
equations of the third-power type.

From the above analysis and all previous investigations of this type, we
may conclude that combination Y satisfies both criteria (1) and (2). Thus,
in what lillows, we adopt the YT equation (12) to determine values of z
from observed values of c. Very recently, Fujita et a!.84 have made a similar
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test for polyisobutylene to show that the Flory theory85 of ¶1' for a uniform-
density sphere model combined with the Fujita—Norisuye theory33 of rx5 is
also in good agreement with experiment.

Finally, we note that Berry's analysis has led to estimates of z greater
than ours; he has concluded that the Flory—Fisk theory of ct is in good
agreement with experiment76. Further, we note that the raw data obtained
by Kato et a!.86 for (anionically prepared) poly-ct-methylstyrene are different
in behavior from all data cited above; for example, Kato's observed values
of W reach only 0.2 in good solvents. This difference may be regarded as
peculiar to Kato's samples82.

Intrinsic viscosities
Berry77 has concluded that for polystyrene the viscosity-radius expansion

factor ; is not a function of z only, again with the use of the values of z
determined following his procedure already mentioned. This result has
been interpreted in terms of the draining effect. However, this effect has
never been observed for Ilexible chains at e-temperatures, and then there
arises the question of whether it actually exists for z>0.

100

Th

50

2.0

Figure 4. Plots of A2M/[tfl against a2 — 1 for polystyrene82. The symbols have the same
signilicance as those in Figure 2. The curve is an empirical fit to the previous data.

Figure 4 shows plots of A2M/[q] against a52 — 1 for our polystyrenes82,
fti] being expressed in deciliters per gram. The curve is an empirical fit to
all data cited above; the plots may be well represented by a single-composite
curve. This suggests that the two-parameter theory does work well for the
intrinsic viscosity as well as the equilibrium properties, and therefore that
there is no draining effect irrespective of the value of z.We note that earlier
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Figure 5. Double logarithmic plots ol against br polystyrene82. The symbols have the
same significance as those in Figure 2. The curve is an empirical fit to the previous data.

data for the above ratio have been found to scatter remarkably when plotted
against — 1, or 2 — 122. This is probably due to the inaccuracy of the
estimates of A2 obtained from the conventional plots.

Whether the draining effect exists or not for z > 0 may be examined
more explicitly as follows. If cx, is a function of c only, then ct,, must be a
function of z only, since is a function of z only. In order to demonstrate
this, Fujita et a!.79 have proposed to plot log,,3 against log Such

a

1.2

1.0

0.8

Figure . Plots of P against for polystyrencTM2. The symbols have the same significance
as those in Figure 2. The broken curve is an empirical fit to the previous data. Curve KY: the

Kurata Yamakawa theory. Curve FS: the Fixman Stidham theory.
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plots can be made without any assumptions, and are explicitly shown for our
polystyrenes in Figure 5, where the curve is an empirical fit to all data cited
above. The plots form a single-composite curve, and we therefore have
support for the earlier conclusion that there is no draining effect for flexible
chains irrespective of the value of z, as advocated first by Flory2. Our problem
is then to test approximate two-parameter theories of the intrinsic viscosity.
For this purpose, it is convenient to plot /cP0 (= ;3/3) against x.
Figure 6 shows such plots for our polystyrenes. The broken curve is an
empirical fit to the data. The horizontal line, and curves KY and FS represent
the values predicted by the Flory—Fox theory, the Kurata—Yamakawa
theory ('P/'P0 = °57)48. and the boson-operator theory of Fixman and
Stidham34'35, respectively. The observed P/k0 is seen to decrease first
rapidly and then increase gradually with increasing cxx. This behavior of 4i
cannot be interpreted by any of the above approximate theories.

z
Figure 7. Plots of a,, against z for polystyrene82, where the values of z were calculated from the
values of a using equation 12. Ihe symbols have the same significance as those in Figure 2.
The curve is an empirical lit to the previous data. The insert is an enlargement of the region of
small :: line (I): the first-order perturbation theory of Yamakawa and Tanaka. equation 14
with C1 = 1.06: line (2): the Kurata Yamakawa theory with C1 = 1.55: line (3): the Fixman

theory with C1 = 1.80.

Now we examine the behaviour of üç/ asa function of z. We may determine
values of z from observed values of using the YT equation (12), as already
discussed. In Figure 7 are plotted values of against z for our polystyrenes,
where the curve is an empirical fit to all data cited above. The insert in the
figure is an enlargement of the region of small z. Straight lines (1) to (3)
represent the first-order perturbation theory predictions (14) with C1 = 1.06
(Yamakawa and Tanaka), C1 = 1.55 (Kurata and Yamakawa), and C1
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= 1.80 (Fixman). respectively. The new theory of Yamakawa and Tanaka
is seen to be in good agreement with experiment. The theory seems to be
valid for z < 0.3. which range is wider than the range (: < 0.15) of validity
of the first-order perturbation theory of

The curve in Fiqure 7 has only slight curvature. This characteristic of the
plot, which corresponds to the StockmaycrFixman plot7. accounts for
why there is a linearity between [q] 'M and M over a relatively wide range
of M. Now, except at large :. the curve in the figure may be approximated
by two straight lines, the equations of which are79'

1 + 1.05: for 0 < ;' < 1.6.

1.05 + 0.87: for 0 < ;3 <2.5. (16)

Since the Stockmayer-Fixman plot is based on the Kurata-Yamakawa
equation. ; = 1 + 1.55:. the basic equation for this plot must now be
modified (see the next section). We note that the first of equations 16 is
approximately valid over a wider range than is the first-order perturbation
theory. and therefore that the value of 1.05 for the coefficient of : is not
necessarily equal. though close, to the YamakawaTanaka value.

BINARY CLUSTER INTEGRALS
Having established the equations for and ,. we can now estimate

values of the parameter:. or the interaction parameter BdelIned by

B (nI)2/ (17)

by the use of these equations. As already noted and also as seen from equation
17, an analysis of' the binary cluster integral fi itself requires the assumption
of'thc size of a segment. Throughout the remainder of this paper. we consider
the binary cluster integral per monomeric unit, for convenience. We first
summarize practical methods of determining fi. and then attempt a theoretical
interpretation of' the values of fi for several systems.

Experimental determination
There arc two methods. One is based on equation 12. We first determine

values of' from observed values of for various molecular weights using
equation 12. and then plot the values of : against M. as in J"iqurc' 3. \Ve
can determine fi from the slope of this plot by the use of equations 3 and 1 7.

The other is an indirect method applying the Stockmayer Fixman plot.
Since we have established the new empirical equations 16 for ,, the basic
equations for this plot must be modified as follows.

= K + 0.346 PBM2 br 0 < < 1.6,

{pJ 'M1 = 1.05K + 0.287 P BM l'or 0 < < 2.5. (18)

where K = [tj]0M1 with [11]o the intrinsic viscosity of' unperturbed chains,
and we may assume = 2.5 x 1023 (cgs). Thus we can determine /1 f'rom
the slope of the plot by the use of'equations 17 and 18. According to equations
18. values of [ifl/M f'or our polystyrenes are plotted against M) in Figure
8. The two thin horizontal lines in the figure indicate the upper bounds below
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Polymer

Polystyrene82

Solvent Temp. C
/3 x

From cz

1024 cm3
—--——
From [q]

Dichloroethane 30 24.4 22.9
Poly-p-methylstyrene8°

Poly-p-chl orostyrene8 88

Toluene
Methyl ethyl ketone
Monochlorobenzene
Toluene
Benzene

30
30
30
30
30

40.4
t2.4
20.0
9.90
5.69

38.0
10.3
22.9
9.78
5.86

Poly-p-bromostyrene81' 87 Monochlorobenzene
Toluene

30
30

27.8
1.84

27.3
1.94

Polychloroprene78'" Carbon tetrachloride
n-Butyl acetate

25
25

21.0
8.99

23.5
8.77
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4

3

2

0

FigureS. Stockmayer-Fixman plots for polystyrene:•. in benzene at 30CC: (1. in toluene at
30CC: 0. in dichloroethane at 30CC: 0. in cyclohexane at the &-temperature8 2, The broken
lines are the initial tangents. The two thin horizontal lines indicate the upper bounds given in

equations 18.

which equations 18 are applicable, corresponding to [i]/KM4 = 1.6 and
2.5, respectively. For good solvent systems, extrapolations to M = 0 have
been carried out to give the same intercept as that in the 0-solvent, neglecting
the minor ditlerence between K and 1.05K. The broken lines in the figure
indicate the tangents to those parts of the curves which may be regarded as
linear. Values of and hence /3, can be obtained from the slopes of these

Table 2. Values of /3 per monomeric unit estimated from expansion factors and intrinsic viscosities

M2x io2
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broken lines using the second of equations 18. (If a linear part of the plot
lies below the lower horizontal line, the first of equations 18 is to be used.)

Table 2 summarizes values of fi thus obtained fr several polymers in
various solvents7882 87. 88 It is seen that there is good agreement between
the values determined by the two methods. The second indirect method is
useful when there are no available light-scattering data.

Theoretical interpretation
As seen from the definition of IL it is closely related to the second virial

coefficient for segments. or monomeric units. Consider now a hypothetical
solution such that the solute molecules are monomeric units which would be
obtained by cutting the parent chain. The second virial coefficient A2° for
this solution may be related to f by the equation.

A2° NAfl/21n2, (19)

where in is the molecular weight of the monomeric unit. We note that A2°
is just the single-contact term of the second virial coefficient for the polymers.
Thus /i can be computed by an evaluation either of the free energy of mixing
or of the pair correlation function for solutes in very dilute solutions com-
posed of small molecules. Yamakawa et al.89 have evaluated the excess
binary cluster integral frr polar polymers by the second approach. a com-
parison of theory with experiment having been made for poly-p-halostyrenes.
Very recently, Yamakawa and Fujii9° have attempted a simple analysis by
the first approach. which we briefly describe here.

Yamakawa and Fujii have adopted the smoothed-potential cell model of
Prigogine9' to evaluate the free energy of mixing. For this model, the con-
figurational partition function Z for the solution (of small molecules) may be
written in the form.

Z = const. Z(v — v t)3N exp( — E0/kT), (20)

where 4 denotes the combinatorial factor. N is the number of all molecules
in the solution, u is the average molecular volume, is its hard core volume.
and E0 is the average intermolecular energy. It is now known that real
liquid mixtures may be well represented by van der Waals liquid models9293,
as defined by E0 = const. v and used by Flory and co-workers94 .
1-lowever, we must assume Lennard-Jones liquid models for our purpose,
since we are considering the hypothetical solution and equation of state
data for the solute monomeric units are not available. Although such models
are less satisfactory, the procedure adopted has been shown to be good
enough to draw an important conclusion as a first approximation90.

Then, the thermodynamic properties. such as A20, of the solution may be
finally expressed in terms of the Lennard-Jones force constants, a and e
(i1j = 1.2), for components i andj. Values of a and for various solvents
are now available98, and a12 and L12 may be determined by the use of the
Lorentz-Berthelot rules. The constants a22 and i22 For monomeric units
have been determined to give close agreement between observed and
calculated values of fi in 0-solvent systems90. In Tables 3 and 4. are given
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Table 3. Observed and calculated values of fJ for
monomeric units of polystyrene

Solvent Temp. T
/1 x

Obs.°

1024 cm3
-_________

CaIc.

Cyclohexane 32
35
40
50

— 1.08

0.28
1.88
4.10

- 8.61
0.591

15,8
45.7

Tolucne 30
40
50

31.2

--

275
9t)

304
Benzene 30

40
50

35.6 294
335
373

See the text and ref. 22.

observed and calculated values of fi for polystyrene and polyisobutylene,
respectively. The observed values of /3 for polystyrene have been obtained
from oc82, and those for polyisobutylene have been obtained from []99. 100
except the value in cyclohexane at 25°C determined from

It is seen that the present model can interpret qualitatively the behaviour
of /3. That is, there have been obtained values of /1 which are small and
appreciably dependent on temperature in 6-solvents, and values which are
large and almost independent of temperature in good solvents. However,
the calculated values of /3 are an order of magnitude greater than the observed
values. For comparison, the corresponding observed values for several

Table 4. Observed and calculated values of I for
monomeric units of polyisobutylenc

Solvent Temp. C
/3 x 102

Obs.

4cm3

CaIc.

Benzene 22
25
35
50

—0.681°
0.19U
1.50°
3.51°

—7.54
1.62

32.3
737

Toluene

Cyclohexane

20
30
40
25
30
40

3.80°

5.13°
lbo
l9.8c

166
191
221
677
629
565

See the text and ref 99.
See the text and ref. 84.
See the text and ref. 100.
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systems composed of real small molecules'°' 102 are given in Table 5. It is
important to observe that the calculated values of /3 for polymer segments
are the same order of magnitude as the observed values of /3 for real small
molecules. This is true, because we have calculated /3 for the (hypothetical)
solutions of small molecules. In this connection, we note that the theoretical
/3 for polystyrene in toluene is equal to the molecular volume of toluene,

fable 5. Observed values of fi for binary mixtures of small molecules

Solute Solvent Temp. C /1 x 1024cm3

Beniene'°' Carbon tetrachloride 25 100
40 102

Cyclohexane 25 70.2
40 —39.8

Carbon tetrachloride'°' Beniene 25 140
40 142

Cyclohexane 25 III

40 114

Cyclohexane'"' Benzene 25 19.4

40 40.8
Carbon tetrachloride 25 158

40 164
Chloroform'"2 Acetone 35.17 298
Ethanol'"2 Chloroform 35 —696
Acetone' 02 Chloroform 35.17 470

e.g.. 178 x l0 2cm3 at 30 C. if the hypothetical solution is considered
an isotope mixture in a first approximation352. Thus, observed values of
/3 for polymer segments are definitely an order of magnitude smaller than the
values expected from second virial coefficients for small molecules. This
difference may be regarded as arising from the fact that the degrees of
freedom. translational and rotational, of polymer segments bound in the
chain are lower than those of free small molecules. At present, it is difficult
to interpret completely interactions between polymer segments in dilute
solution on the molecular and atomic levels, that is, in terms of intermolecular
forces.

CONCLUSIONS
We have critically summarized recent advances in the field of dilute

polymer solutions. We now tend to believe that the asymptotic solution to
the excluded volume problem obeys the fifth-power law rather than the
third-power law, though there have been many controversies. In the develop-
ment of the theory applicable over the range experimentally accessible,
emphasis has been focused on its self-consistency. This has led to reliable
estimates of the binary cluster integral. It has been pointed out that a difli-
eulty arises in the interpretation of the interaction between segments on

196



EXCLUDED VOLUME EFFECTS AND BINARY CLUSTER INTEGRALS

the molecular level. The asymptotic solution for the expansion factor and
the many-body problem in the nonequilibrium theory require further
investigations.
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