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ABSTRACT
The principal effects determining the value of the free energy of mixing of

polymer solutions are discussed and compared, namely the combinatorial,
energetic and structural effects. The influence of the last on the thermodynamic
behaviour of polymer solutions is then dealt with, as revealed in the lower
critical solution temperature. and in the effect of pressure on polymer—solvent
compatibility, the second virial coefficient and the coil dimensions. Quanti-
tative aspects of polymer solution thermodynamics are then discussed;
arguments in favour of the use of the segment fraction (instead of the volume
fraction) in expressing the combinatorial term are given, and the noncom-
binatorial contribution at zero pressure and the effect of pressure on the x
parameter are characterized. Finally, a difficulty is noted in assessing the
possible effect of a difference in diameter between polymer chains and solvent

molecules or chains.

The first topic to be dealt with by the Microsymposium is 'interactions
arising from the difference in size and shape of the polymer and solvent
molecules'. The most important interaction of this type comes from the
'structural effect' of Prigogine, Mathot, Bellemans and Trappeniers'. The
'equation of state effect' which has become familiar through the recent
work of Flory and collaborators2 is similar in nature. The importance of
the structural effect was recognized twenty years ago by Mathot3. It is the
main new concept in the theory of polymer solution thermodynamics of
Prigogine and collaborators.

THE STRUCTURAL EFFECT

Introducing the structural effect, Prigogine points out that a polymer
liquid and a solvent or 'monomeric' liquid typically have very different equa-
tion of state properties. This is related to the polymer having a very low
degree of thermal expansion or 'free volume't compared to the solvent.
This difference of free volume is independent of any difference in chemical

t The term 'free volume' is chosen here because of its intuitive appeal in an essentially
qualitative discussion. It was not used by Prigogine and collaborators, and may be replaced
by terms such as 'degree of thermal expansion above close-packed volume'.
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nature between the polymer and the solvent, and exists when the com-
ponents are homologues. e.g. polyethylene. and, say, n-pentane, or poly-
styrene and toluene. The free volume difference is due to the difference in
structure between the polyethylene and the pentane. Suppose the pentane
molecules were to be connected by valence forces to form polyethylene
molecules in the liquid state. During the process, external, volume-dependent
degrees of freedom of the pentane molecules are replaced by low-amplitude
vibrations internal to the polyethylene chain. These do not affect the volume
hence there is a decrease of the thermal energy promoting expansion of the
liquid. However, there is a small counter-effect. The disappearance of the
ends of the pentane molecules reduces the total molecular surface available
for intermolecular contacts.

This effect would decrease the total cohesive energy resisting the thermal
expansion. Both effects can be taken into account through the ratio of the
number ol' external degrees of freedom, 3c, of the molecule, to the number of
external contacts. q:. The ratio is. within a constant factor, the Prigogine
structural parameter. eq. This parameter decreases in passing from a
monomeric liquid to a polymeric one.

One may also consider the ratio of the thermal energy of' the external
degrees of' freedom to the cohesive energy. This gives the reduced temperature:

— Utinai — c kT —
T

1— ,*
cohesive q L

Here ;* is the depth of the interaction potential between segments or essen-
tially a characteristic cohesive energy per contact. The reduced temperature
is directly related through the equation of' state to the reduced volume,
V = V V. where the molar reduction parameter. V*, may be thought of
as the actual rnolecufar volume. One thus sees that T of the liquid is charac-
teristic of' its free volume or degree of thermal expansion. The f'ree volume of'
a series of' homologues will decrease with increasing chain-length, not
through any change of' the force-field around the homologues, i.e. e* in
equation 1. but through the decrease of' the structural parameter. ('/q.
Furthermore, the decrease depends on the flexibility of' the chain, that is.
on the extent to which the valence bonds reduced the number of' external
degrees of' freedom, Molecular structure and size affect the properties of' the
liquid by changing cq. On the other hand, two monomeric' liquids. e.g.
ethane and ethanol, are of widely different free volume, not because of a
large difference in c/q, but because of' a difi'erence in intermolecular force
fields or r*.

The difference of free volume, whether it arises from a difference of' '/q
or of :*. has an important role in determining the thermodynamic mixing
functions of the solution, During the mixing process, the free volumes of
the two components approach an intermediate value characteristic of' the
mixture, These changes of free volume lead not only to an over-al! change
of' volume. AVM, but also to important contributions in the other mixing
functions, ASM and AGM. The main features of the contemporary
view of the thermodynamics of non-dilute polymer solutions were set
f'orth fifteen years ago in Prigogine's book:
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The origin of the excess properties has to be found in the following three effects:
Geometrical effect: the molecular volumes of A and B are different; hence

the combinatorial factor is different from that of an ideal system. This is a
purely geometrical effect present in all r-mer systems and independent of the
natures of A and B

Energetical e/frct: the interactions between pairs of elements AA, AB and
BB are different; this kind of effect is exactly the same as in monomer
mixtures

Structural effects: the ratios c/q and c8/q8 may be different; in this
case, we also have deviations from ideality. This effect. like the geometrical
effect, is specific to r-mer mixtures. However, the geometrical effect is general
and independent of the nature of A and B, while the structural effect is directly
related to the structure of the molecules and depends primarily on the nature of
the valeney forces.

It is of interest to note that both characteristically polymer effects, the
geometrical and the structural, raise the free energy of the mixture above a
corresponding monomeric system with the same quantity of material,
that is, the free energy is increased by linking particles of component 2 to
form chains (where I and 2 denote the solvent and polymer).

We should appreciate that the energetic effect can be divided into two
parts. (a) One would be an elleet of the relative weakness of 1—2 contacts
compared with I—I and 2 2 contacts or at2 < 1(at1 + at2), corresponding to a
non-iero value of the 0-parameter in the Prigogine nomenclature or the
X1 2-parameter in the Flory nomenclature. This is the effect which gives rise
to the interchange energy, A w in the traditional Flory—Huggins theory or
the theory of strictly regular solutions. (b) However, even if at1 =
+ at2) there is still an energetic effect if a' at2; the T and free volumes
of the liquids are different. This energetic eliect and the structural elleet act
similarly through the free volume. Although it is conceptually important
to separate the roles of a and c/q in T, it is difficult to do so operationally.
It is thus useful to distinguish only the following efTects on the mixing
functions

(1) the combinatorial or geometrical effect.
(2) the effect of an energetic weakness of contacts of unlike type.
(3) effect of free volume difference between the components due to a

dil'ference of c/q or a in 71
Contributions (2) and (3) are now similar in form for monomeric and
polymeric solutions. They give the well-known x-parameter which the
Flory—Huggins theory attributed exclusively to contribution (2). Their
theoretical treatment has been given by Prigogine and Flory, and more
specifically for monomeric mixtures by Scott4 and Brown5.

LOWER CRITICAL SOLUTION TEMPERATURES

Prigogine and his colleagues were primarily interested in qualitative
predictions and interpretations of new phenomia. One of these is the lower
critical solution temperature (LCST) which occurs as a general phenomenon
in polymer solutions in addition to the better known upper critical solution
temperature (UCST) associated with the Flory ®-point. The UCST is
related to a positive AHM arising from contribution (2), i.e. a weakness of
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unlike contacts. The LCST is relatedh to a negative contribution to the
ttSM. and is associated with contribution (3). The necessary ditièrencc of
free volume or T may be attained at higher temperatures due to the difference
in structural parameters between the components. This would be the case
in polymer solutions. LCST are also found7 8 in mixtures of higher branched
and normal alkanes with methane. ethane and propane and here again the
free volume difference is prcsumth1v a structural effectt. On the other
hand, the LCST was first studied in ethane—ethano!'2 mixtures. Here the
free volume diflerence is due to the difference ol' contact energies. in the
T expression.
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I qure 1. The (temperature. Volume traction) phase diagram kr the polystyrene acet OflC
system. or tractions ot indicated MW. showing UCST and L('ST 0r low MWs and the hour-

glass' cloud-point curve for the 19 50(1 traction. The L('S'l arc the higher temperatures.

Contusion can arise From the term 'energy'. Thus Rowlinson suggests that the L('ST in
hydrocarbon mixtures is primarily an energetic etThct. here the energy is that of the whole chain-
molecule. i.e. :* times the number of segments. The energy per segment is essentially the same for
the two components. The large difference in energies between methane and e.g.. hexanc is due
to the large difference in numbers of segments. (See also discussion in refs. It) and II).

136



FREE VOLUME IN POLYMER SOLUTION THERMODYNAMICS

Figure / shows the phase diagram'3 for several fractions of polystyrene
in a poor solvent, acetone. Diethyl ether gives a similar phase diagram'3.
These solvents are poor, in part because they are of dilierent chemical
nature from the polystyrene. However, a more important factor is their
large degree of thermal expansion as indicated by large values of the thermal
expansion coefficient. (At 25°C, = 1.42 x io- and 1.67 x iO K' for
respectively, acetone and diethyl ether.) Thus, both a UCST and an LCST
are found, reflecting a minimum in the y-parameter as a function of tem-
perature and attainment of the critical value of x at two temperatures. With
the Flory—Huggins assessment of the combinatorial contribution to AGM
we have

Xcrij' T) = Mi + r4)2. (2)

As the molecular weight of the polymer is increased, the combinatorial
contribution to the free energy per mole of segments increases, and hence
solution stability decreases, corresponding to a decrease of the critical
value of x in equation 2. In Figure /, the UCST and LCST move together
until at a molecular weight just below 19 800 the two critical solution
temperatures coalesce. The two-phase region then has an 'hour-glass' shape,
and there is no temperature region of complete polymeNsolvent mis-
cibility. With further increase of the molecular weight the right-hand side
of the hour-glass moves rapidly to higher concentration and the left-hand
side to such low concentration that it is inconvenient to measure it. This
type of phase diagram should be general for a polymer in a non-solvent.

The polymer will swell to a concentration given by the right-hand side of
the hour-glass, and on increasing the temperature will at first imbibe more
solvent and then shrink. These phenomena are also obtained with cross-
linked networks.

The Flory—Shultz plot14 of .T' against r4 + (2r', where r is the
number of segments of the polymer, is expected to be a straight line of
slope (i/i,OY'. Here the /i,-parameter is proportional to the entropy of
dilution and is hence positive at the UCST but negative at the LCST. Figure
2 shows T;' for the systems, polystyrene—acetone and polystyrene—diethyl
ether and for polystyrene—dimethoxymethane which shows the LCST but
no UCST above —78°C. One notices that in the first two systems the
/t, has a marked temperature dependence, decreasing as the
temperature is raised through the IJCSTs and then becoming negative
for the LCSTs. Thus the form:

(1 — x,) i/i,(l — 0/I),
also used in applying excluded volume theories, is not of general validity.

Diagrams similar to those in Figure / can be obtained with a single
molecular weight of polymer, but adding a solvent of lower thermal expan-
sion to form a ternary system. Wolf 15 has illustrated this with the polystyrene
—acetone—methyl ethyl ketone system. The methyl ethyl ketone (ci = 1.29
x 10 K 1 at 25 C) having a lower degree of thermal expansion than the

acetone, lowers the free volume contribution to x throughout the temperature
range. The LCST is raised and the UCST lowered, so that qualitatively one
has the same effect as obtained by decreasing the molecular weight of the
polymer.

137



Q

3,5

30

25

20

D. PATTERSON

—1r 2+ (2r)
Fiqurc 2. The Shult7 Flory plot of' reciprocal critical solution temperature against r + (2i)
for: a, polystyrene acetone: h. polystyrene diethyl ether: and c. polystyrene dimethoxy-

methane. The dotted line represents an estimated section of the curve.

PRESSURE EFFECTS

Effect of pressure on phase diagrams
Thc pressure dependence of the LCST has been published for a number

of systems: polyethylene—pentane' ', polyisobutylene—2-mcthylbutane' and
polystyrene—methyl acetate' . Since the polymer is less compressible
than the solvent, application of' pressure decreases the free volume difference
between the components, and therefore displaces the LCST to higher tem-
perature. Ehrlich'6 has pioneered in investigating the solubility of poly-
ethylene in solvents which are gases under normal pressure and temperature:
ethane, propane. butane and ethylene. With pressure. the free volume
difference between polymer and solvent is decreased sufficiently to allow
the polymer to enter the solution. Striking effects are found when different
polymers are used. For instance, ethane at lOOC requires a pressure of
some 1 200 atm to solubilize polyethylene of high molecular weight. However,
only 100 atm are required for polydimethylsiloxane'9 which has a higher
free volume than polyethylene, as indicated by its higher thermal expansion
coefficient ( 9 x 1O K ' for PDMS at 25' C while an extrapolated
value for liquid polyethylene would be 7 x 10 K '). Ehrlich has pointed
out that the LCST at the saturation pressure of the solvent actually lies on
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a critical line—a continuous line of critical solution temperatures which
passes through a maximum in pressure and would linally arrive at the
critical point of the pure polymeric liquid. This point would be unattainable
in the case of a high polymer, due to degradation. The phase diagrams of
polymer solutions are not different in character from those of small-molecule
mixtures which have been studied extensively in chemical engineering7. In
fact theories8' 20 of the phase relations need make no real distinction between
the two types of solutions.
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Figure 3. (Temperature, weight %) cloud-point curves for polystyrene of MW 20 400 :—0 bar;
Q——20 bar; '7—50 bar; +—100 bar; fl—results from ref. 13 extrapolated from the solvent

saturated vapour pressure to 0 bar.

Pressure has a very large effect19 on the polystyrene—acetone phase dia-
gram in Figure 1. In Figure 3 the same hour-glass two-phase region is seen
at zero pressure (actually in these experiments with a 20400 MW fraction).
On applying only 20 bar, the polymer—solvent compatibility is increased so
that the UCST and LCST are separated by a 40°C gap. Higher pressures
increase the gap and the cloud-point curves take up the same positions as
were obtained in Figure 1 with fractions of lower molecular weight or through
adding methyl ethyl ketone to the acetone. By applying pressure or adding
a less expanded solvent the x-parameter in equation 2 is decreased, while
by decreasing the molecular weight the critical value of x is increased.
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Effects of pressure on the phase diagrams of non-polymeric mixtures
have been extensively studied by G. M. Schneider2t. In particular the hour-
glass cloud-point curves are general features in systems where there is a
free volume difference and also a disparity of intermolecular forces between
the components. Thus, Figure 3 for polystyrene—acetone is very similar to
Figure 6 of ref. 22 for the methylcyclopentane-methane system.

200

Figure 4. (P. 1') for different fractions of polystyrene in acetone. Experimental points. MW
20400. 14.67 wt. ':_•, -MW 510(X). 14.60wt. °:, MW 97 2(X). 14.Oôwt. o. Full lines aic
calculated from the theory with X I 2 = 4.483. Thin line: Saturated vapour pressure of acetone.

The effect of pressure with different molecular weights of polystyrene in
acetone may best be illustrated by experiments at a single composition to
determine the pressure which allows the polymer and solvent to mix. In
Figure 3, the maxima and minima of the cloud-point curves occur at 14 %

by weight. Figure 4 shows the P(T) results at this concentration for polymer
of molecular weights 20 400, 51 000 and 97200. On the P(T) curve for each
molecular weight, points to the left of the minimum correspond to UCST
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and AHM > 0, A7> 0, while those on the right correspond to LCST,
where AHM < 0 and AS1 cc 0. Throughout the temperature range of
Figure 4, AVM < 0, since the polymer—solvent compatibility is increased by
pressure. With increase of the molecular weight of the polymer fraction,
the P(T) curves are moved to higher F and T. The increase of P is of course
a consequence of the decrease in the critical value of x as given by equation 2.
The shill to higher l'is associated with the change in the relative importance
of the contributions to x from the weakness of the 1—2 contacts and from the
free volume difference. At higher pressure the first contribution increases,
and the second decreases in importance. Hence there is a displacement of the
curve to higher temperature. With systems where the disparity in inter-
molecular forces is greater than in polystyrene—acetone, one would expect
to reach a P(T) curve where (dP/dT) is negative throughout and the region
of LCSTs would have disappeared. The P( T) curves for polystyrene fractions
of increasing molecular weight in acetone are analogous to P( 1') curves for
hydrocarbons of increasing chain-length in methane, e.g. 1-hexene,
f-heptene22, or increasing disparity of force fields, e.g. 1-hexene, methyl-
cyclopentane, toluene (ci. Figure 16 of ref. 21).

Effect of pressure oii the second virial coefficient and chain dimensions
It is clear from the phase diagrams that the thermodynamic mixing

functions of polymer solutions should be strongly dependent on pressure
as well as temperature. The light scattering technique is suitable for studying
this effect. Schulz and Lechner23 have pioneered in measuring the second
virial coefficient, '2, and the radius of gyration, <52>t of macromolecules
at pressures up to 800 atm. Claessen and collaborators have reached much
higher pressures, and their measurements should provide stringent tests of
polymer solution theories which endeavour to account for free volume

cn
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Figure 5. Values of A2 as a function of pressure for: polystyrene (975000 MW) in methyl

ethyl ketone at 22C: A. polyisobutylene (1010000MW) in 2-methylbutane at 24C:. at
57T:Y.at 64C.
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effects. Results of' some thermodynamic interest may be obtained using
conventional light scattering apparatus and glass cells capable of with-
standing 150 atm. The usual Zimm-plot technique gives the value of A2
and <S2>. For the PIB—2-methylpentane system at saturation vapour
pressure24. A2 (shown in Figure 5) and KS2> decrease with increase of'
temperature. A iero value of' A2 s attained at about 44 C which is thus a
@-point associated with the LCST. If pressure is applied, both A, and <S2>
are markedly increased. The temperature dependence of A2 is related to
the heat of dilution or the relative partial molar heat of the solvent. AH1.
and hence to (X In the same way, the pressure dependence of A2 is
related to the relative partial molar volunie of the solvent. A V and hence
to (i5' )T• These thermodynamic quantities may be compared with those
obtained using calorimetric and dilatometric methods. However, light
scattering measurements are usually made at very low concentration. It
therefore seems that the solution heterogeneity should he taken into account
through the Ii(:) function of one of' the dilute solution tlleorles2S. When this
is done. ftir agreement is obtained24.

The correlation of the change of KS2> with the change of A 2 is also of
interest since these quantities are related through the excluded volume
parameter. or in fict y. II' neither pressure nor temperature has an cl'fect
on the unperturbed dimensions of the coil, a single curve for all systems
should be obtained for the coil expansion coefficient, against 12A 3M,
where A is related to the unperturbed end-to-end distance through25
A ((L> \1). A single curve seems to he obtained in our work with PIB-
2-methylbutane and polystyrene methyl ethyl ketone. On the other hand,
for polystyrene toluene and polystyrene irwis-decalin. Schuli and Lechner23
find a definite decrease of' KSi> with increase of pressure. This seems to
imply an effect of the solvent molecule packing on the unperturbed dimen-
sions of the polymer. It is generally believed that the solvent has very little
effect on the equilibrium between the different rotational isomers in the chain.
hut the possibility cannot he dismissed2. An effect of' solvent packing on
this equilibrium would have important consequences in polymer solution
thermodynamics, and would give a new role to the free volume.

QUANTITATIVE ASPECTS OF POLYMER SOLUTION
TI-IERMODVNAMICS

Combinatorial contribution
The most important contribution to the entropy and Free energy of'

mixing is the geometrical effect' mentioned by Prigogine. i.e. the combina-
torial contribution in the lattice terminology. It is usual to compute this
contribution through the Flory iluggins expression

AG(comh) R7'0i1 In 4 + n2 ln "/2) - TASM(comh) (3)

Combining this with a non-combinatorial term one has the well-known
expression for the chemical potential oF the solvent

A1i1 RT— lti/ + (1 r i)4 + /(/
(4)

(comb) 4- (non-comb)
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Initially, the were taken as volume fractions of' the components. These
variables are, strictly speaking. temperature and pressure dependent at
constant mole or weight fraction. This f'ollows from the thermal expansion
coefficient and compressibility of' the polymer being much less than for the
solvent. However, in calculating ASM(comb) within the context of the
lattice model, the volume fractions were replaced by fractions27 in molecular
volumes or numbers of' molecular segments. These fractions are independent
of 1 and P. and this procedure has been taken over in applying28 2 the
Prigogine and recent Flory theories. The actual volumes ol' the components
are replaced by the volume reduction parameters V' (core volumes) giving
the 'segment fractions' in the Flory terminology, i.e.

= n, V/(n V + n2 Vfl (5)

instead of
= n, V, (n, V'1 + n2VV7) (6)

Using the two prescriptions for 4 leads to values of the y parameter,
calculated from experimental A't, data, which can differ by as much as
0.1 to 0.2, and the concentration dependences of y are slightly different.
A difference of' free volume between the components is meaningless within
the lattice model on which equations 3 and 4 were based, and it does not
seem obvious which of' the two prescriptions is correct. The 1'ollowing two
arguments favour the segment fractions.

First, the T and P dependence of' the volume f'ractions has peculiar con-
sequences. There would be combinatorial contributions29'30 to AHM and
A V arising from AGM(comb). They would be negative29 and of the same
magnitude as experimentally observed mixing functions. Also, the Flory
Huggins expressions in equation 3 for AGM and ASM would be inconsistent
since (iAGM/IT)p would not give — ASM.

A stronger argument in ltvour of the segment fractions comes from
considering the Longuet-Higgins derivation3' of equation 3. This derivation
is well known since it does not assume the lattice model. However, the
most important and unrealistic feature of' the model remains. The two
components and the mixture must all have the same 'density', i.e. the same
degree of thermal expansion or free volume. Thus there is still no distinction
between volume and segment fractions. However, the derivation can still
he used to give the ASM in the real case of components of unequal free
volume, and it appears that the segment fraction is the appropriate compo-
sition variable. The mixing of components of different free volume could take
place in a three step process, which is the second of the constant-volume
processes considered by Scott4 and McGlashan32, termed constant volume
per element (segment) by McGlashan. Step I consists of compression or
expansion of the components to the same standard free volume: step 2,
mixing at equal free volume; step 3. expansion or compression of' the
mixture to its equilibrium free volume. The value of ASM associated with
step 2 is, according to Longuet-Higgins, given by the Flory Huggins
equation. The 4 to be used are numerically equal to the segment fractions
in the original components of' diffCrent free volume. The entropy ef'f'ects
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associated with steps I and 3 are exactly the free volume effects, which are
to be dealt with in a supplementary term.

It is interesting to consider the L\SM ina case of ext remely large free volume:
the components are now two dilute gases at equal pressure, P0. one having
monomeric molecules and the other r-mers. It is clear. intuitively, that
ASM must be ideal, but it is not obvious how this is to be arrived at from
the Flory Huggins equation. Equal pressure means equal numbers of
molecules/volume whereas in the Longuet- Higgins derivations equal
density has the significance of equal free volume or equal numbers of
segmentsvolume. At equal P0. the number of segments1'volume for the poly-
meric gas is r times higher than for the monomeric gas. Step I therefore
expands the volume of the n2 moles of r-mers by a flictor of r:

AS'R = 112 In r.

Using equation 3. step 2 gives ASR = - n In n1 (n1 + rn2) — n2 In
(n1 + 1112). Step 3 must compress the mixture by a factor of (n2r + n1)
(n1 + n2) to regain the original pressure P0

AS'R = — (n1 + 112) In (n1 + n2r)/(n1 + 112).

The sum of the entropy changes is:

AS R = — ,i lnx — n2 lnx 2'

As predictions of the y-parameter become accurate, it will be important
to consider more exact approximations For the combinatorial ASM. due to
Huggins. Miller. Orr. Guggenheim (presented in the texts by Guggenheim27
and Tompa33) and Kurata34. In computing the y-parameter values from
solvent activity data, it is of importance to assess the effect on the com-
binatorial entropy of branching of the polymer or solvent, differences of'
chain-diameter and size between the components, and differences of' flexi-
bility. Some of these effects are discussed in the texts by Guggenheim and
Tompa. The exact calculations, using a 2-dimensional square lattice, of'
Bellemans and co-workers35 should lead to further insights.

Non-combinatorial contributions at zero pressure
In polymer solution work, the partial molar mixing quantities are more

useful than the actual mixing quantities. The non-combinatorial contri-
but ions to A1i1, AH and — Th1 define interaction parameters:

(A1i1 )1(mh = RTy(/J (7a)
(Al-I — 1)7' ,2 — .j A2

I 'non-(umI) = XJJJ 2 = 2

T(ASl)nt)nmb RTy RT( (7c)
Thus.

in + is = /1.

The K and i are from the nomenclature used by Flory. who has also recently
used2u the y and y nomenclature. The latter originates, we believe, with
Tompa33.

The corresponding-states approach of' Prigogine gives similar expressions
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of identical form for the three partial molar quantities (equation 23 of
ref. 36):

(API)noncurnb RTyØ = PtI/rUO(?) — (t1) + (f1 —

+ — + TVG/fl)}( (8)

The expressions for AQand TA1 are obtained by replacing the reduced
function G by H and TS, respectively. Equation 8 has been written with
the nomenclature of the more recent Flory theory. In the Prigogine nomen-
clature, 02 X2: both correspond to the surface fraction of polymer, i.e.
the fraction of the molecular surface associated with the polymer. Prigogine
used a lattice model to calculate this quantity while the Flory approach
considers the actual molecular structures. Previously, we had36

The first term in equation 8 corresponds to the equation of state term of
Flory and is associated with the free volume changes: the second corresponds
to the contact interaction term of Flory, associated with a weakness of the
1 -2 contacts. The expressions may be written in terms of a particular model
of the liquid state, e.g. that of Flory which puts:

o = -
S = 3ln(kH_ 1).

The corresponding expressions of the Flory theory, i.e. equations 46—48
of refi 2b are then obtained from equation 8. They give a very good semi-
quantitative interpretation of the partial molar quantities as seen in the work
of Flory and collaborators. However, it may still be advantageous to have
the more general equations in order to assess discrepancies between theory
and experiment. They permit a visualization of the thermodynamic origin
of the x, XH and Xs parameters as illustrated in Figure 6 for the calculation
of x. It may be seen that the first term of equation 8 has the opposite sign to
the curvature of 0(T) against T, i.e. it has the sign of C, the reduced con-
figurational heat capacity, which is a positive quantity. The contact inter-
action term must also be positive since

— G(T) + T1)C/.fT = — U

and the configurational energy. U, of any liquid is negative. The signs of the
two terms in the x. XH and x s-parameters are noted in the following table.

Tab/c' 1. Signs of the terms in the Z. Zn and ZrParameters

Equation of state
term proportional to

7 Zn Zs

C,
(+) (—

— T?C,,!i'?
at high T)

?PCv/ë? +
(+ at high T)

Contact
interaction — C — C + TC,, — IC,,
term proportional to ( +) (+1 (—)
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In y, the contact interaction term, important in monomeric systems,
negative, while the equation of state term must be positive at higher T
since d/dT tends to infinity at the vapour liquid critical point of the liquid.
In the Flory model, C/T and hence )'s' are positive for all T. For a typical
polymer solution the major part of 7 is contributed by the entropic 7s

6

Fiqure 6. Visuali7ation ol the terms in (j in equation K. The length (t) — T),.
enters equation 8 with positive sign and is multiplied by the dimensionless parameter y12P

to give the contact interaction term.

Using calorimetry and the vapour sorption technique37. we have measured
heats of dilution and solvent activities for about a dozen systems composed
of polydimethylsiloxane with the aliphatic and aromatic hydrocarbons and
and siloxane oligomcrs. Quite generally, the ' values are much larger than
would be predicted by the Flory model, or any other (a variety of models
give very similar predictions). The thermal expansion coefficient of the
polymer is so large that it is more typical of a solvent than a polymer. The
free volume contribution is therefore very small in the predicted y. In many
of the systems the parameter is predicted to be negative. The experimental
values obtained at 25 C for y and y are, however, large and typical ol
polymer solvent systems. Furthermore, Morimoto3M has obtained volumes
of mixing of PDMS with some ten solvents at high dilution of the polymer. lii
all cases but one, the volume of mixing is negative, whereas the theory.
independent of the model, predicts positive volumes of mixing.

We have also obtained heats of dilution3' of polyisobutylene and poly-
styrene in a number of solvents. Several of these solutions have negative
heats of dilution. e.g. Pill n-pcntane, PDMS•-n-pentane, PS toluene. In
all of the solutions the K or y is predicted to increase with increasing polymer
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concentration. This is strikingly so in the case of the PIB--n-pentane where
XH is predicted2e to vary between —0.4 and + 0.2. (The average value
—0.1 is fitted to the experimental heat of solution.) According to our measure-
ments, however, the Xu is almost independent of concentration, remaining
throughout equal to —0.1. In the PS—toluene case, XH' already negative
for 2 = 0, becomes more negative with increasing polymer concen-
tration39 . In thinking qualitatively about the concentration dependence
of a negative XH' we may consider mainly the free volume or equation of
state contribution. This gives quite generally40 dy11/d2 ci d2/dT which
must be positive. Another source of the concentration dependence comes
from the surflice/volume ratio of the polymer relative to that of the solvent2a.
In the PIB-n-pentane case this ratio2e is considerably less than 1, and leads
to a further increase in the predicted %H with concentration. The concen-
tration dependence of XH parameter appears to indicate a failure of the
general equation 8 and possibly a departure of the liquids from corresponding
states behaviour. So far, however, no general picture has emerged from
these and other discrepancies between theory and experiment. They are
of minor importance compared with the qualitative success.

Pressure dependence of the parameter
Expressions for the contributions to the x' XH' Xs parameters at low

concentration ofpolymer may be obtained from equation 8 by developing
G(T) and (i3G/9T) for the solution in Taylor series in powers of (T — T1).
Keeping only second order differences in reduction parameters and also
putting X2 _ 42' one has4° for x1

7 —U1(PT)(X1 + CI(P,T)2 (9)RT \Pt) 2R
where U, and C,,, are the configurational energy and heat capacity of
the pure solvent, and r = I — T'/T. Expressions for the other parameters
may be obtained similarly from the coefficients in Table 1. The theoretical
critical lines in Figure 4 are obtained from theory2° essentially through the
pressure dependence of the i-parameter. Using the Flory model of the
liquid, the pressure dependence of U1 and C,,, are obtained. The 712-
parameter for the polystyrene—acetone system was fitted'9 by requiring
that the parameters have the critical value at the minimum of the P(T)
curve in Figure 4 for the 20400 MW fraction. The remainder of the curve
and the curves for the other molecular weights were then predicted. Quali-
tative agreement with the experimental results is seen in Figure 4. With
increasing molecular weight the theoretical curves are displaced to higher
P and T. The same evolution is observed if X12 is increased. As expected
from experience with non-polymeric systems21, with sufficient increase of
X12 the minimum in the critical line disappears and (dP/dT) is negative
throughout.

Role of size in reduction parameters for the solution
Equation 8 is based on the assumption that the configurational properties

of the solution G(T), H(T), V(T) have the same dependences as the pure
components, but with different reduction parameters. These are obtained
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through combining rules from the reduction parameters of the pure com-
ponents. Theories of mixtures of monomeric liquids have emphasized the
importance of the combining rules rather than the form of G(T). P(T).
V(T).One of the advantages of the Flory theory has been the omission of

any effect in the solution parameters of differences of size of the segments
of the components, e.g. in the X12 parameter. The Prigogine Average Poten-
tial Model ascribed a large efi'ect to this size difference. It is now clear9 that
the effect was much exaggerated. Nevertheless in recent work9 on mixtures
of spherical molecules of different diameter, the size difference plays a
part in the formulation of the reduction parameters for the solution and
leads to negative values of VE and GE. One would expect that a difference of
chain-diameters would play the role of the difference of diameters of spherical
molecules. Then for G' the new effect would add to the combinatorial G'
given by the Flory-Huggins equation. However, for spherical molecules of
different size, it is found9 that the negative GE are approximately reproduced
by the Flory—Huggins value of GE. There might thus be an overlap between
the Flory—Huggins G' and the new size effect for chains of different diameter.
Again an examination of the combinatorial entropy of mixing chains of
different diameter seems in order. However, the bridge from monomeric
mixtures to polymer solutions seems harder to construct than for the free
volume effects. It appears that this, and the combinatorial entropy of mixing
chains of different diameter, could he the most important topics for furl her
consideration. Finally, it is important to explore the thermodynamic effects
of orientational order in the polymer, as apparently revealed by strain
birefringence and optical anisotropy measurements41.
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