σ-π CONJUGATION*†: OCCURRENCE AND MAGNITUDE

T. G. TRAYLOR, H. J. BERWIN, J. JERKUNICA, and M. L. HALL

Chemistry Department, Revelle College, University of California, San Diego, La Jolla, California

ABSTRACT

Charge-transfer spectra of $aryl-CR_2$ -Metal(X)_n systems have been used to study the nature and extent of C-Metal hyperconjugation. Effects of changes in X, changes in R, and changes of the metal (C, Si, Ge, Sn, Pb, Hg, B, etc.) on the extent of σ - π conjugation as well as effects of rotation about the aryl-C bond have been determined. The dependence of σ - π conjugation upon electron deficiency is discussed and a general theory for the extent of hyperconjugation is presented.

Hyperconjugation or σ - π conjugation has been controversial since it was first proposed, possibly because the two observations which it was proposed to explain, shortened single bonds¹ and effects of alkyl groups on aromatic reactivity^{5, 6}, proved to be due to other effects^{7, 8, 9}. Despite these setbacks and a continual abandonment of the idea in favour of other concepts such as bridging¹⁰, fragmentation¹¹, d-orbital participation¹², σ - π conjugation remains a viable and demonstrable effect for electron-deficient species^{13h}.

This paper briefly summarizes our efforts to demonstrate and to probe the magnitude and geometrical requirement of $\sigma-\pi$ conjugation as a function of structure of electron-deficient species, with special emphasis on C-Metal $\sigma-\pi$ conjugation. Other species are discussed elsewhere^{13h}.

To illustrate our use of the term $\sigma - \pi$ conjugation (or $\sigma - \pi$ delocalization) we show below (*Figure 1*), with valence bond representations, the delocalization of several types of electron pairs into a p-orbital.

We refer to all these conjugation effects as 'vertical stabilizations' of the cation because they reveal themselves in vertical processes^{13a}.

The quantum mechanical description of σ - π conjugation, after Mulliken⁴,

^{*} This work was supported by the Air Force Office of Scientific Research, Grants AFOSR-69-1639 and AFOSR-69-1639B.

[†] The term σ - π conjugation^{1,2} as used in this and our other papers is taken to be synonymous with hyperconjugation as described by Mulliken^{3,4}. Curiously, although the term 'hyperconjugation', meaning very large conjugation, was a misnomer in its original application to C—H and C—C σ - π conjugation, it now takes on a correct meaning in that σ - π conjugation can be very large indeed. However, the term σ - π conjugation is preferable because it does not contain the reference to magnitude implied by the prefix 'hyper'.

Figure 1. Examples of conjugation: delocalization of electron pairs into cation centres

begins with the species (III) in which the R_nMC - is tetrahedral and has normal bond lengths, the CR_3R_4 is trigonal planar, and the C—C bond length is normal for an $sp^2-sp^3 \sigma$ -bond. We might then calculate the energy of the system with and without the $C_1-C_2 \pi$ -overlap and call the difference the $\sigma-\pi$ conjugation energy.

Movement of the groups M, R_1 and R_2 which are required for this stabilization we have called 'non-vertical stabilization' and we will not include this in our definition of σ - π conjugation^{13a, k}. For example, we have shown elsewhere that frangomeric acceleration is a non-vertical process and the stabilization providing this acceleration is not detectable in vertical ionization processes¹³¹.

 $\begin{array}{c|c} \text{MeOCR}_{2} \\ R_{2}\text{C} & \text{-CH}_{2}\text{X} \xrightarrow[\text{acceleration by}]{MeO} \end{array} \end{array} \xrightarrow[\text{MeO}]{} \begin{array}{c} \text{MeO} \xrightarrow{\delta^{+}} \text{CR}_{2} \\ R_{2}\text{C} & \text{-CH}_{2} \\ R_{2}\text{C} & \text{-CH}_{2} \\ \hline \delta^{-} & X \end{array} \xrightarrow[\delta^{-}]{} \xrightarrow{k} \end{array} \xrightarrow[\delta^{-}]{} \begin{array}{c} \text{Product} \end{array}$ (1)

It is important to differentiate elimination processes which Nesmeyanov² has called $\sigma-\pi$ transformations from $\sigma-\pi$ conjugation¹. The term $\sigma-\pi$ transformation implies nuclear movement which is non-vertical whereas $\sigma-\pi$ conjugation is electron delocalization and is a vertical stabilization like that of $n-\pi$ conjugation. More accurately, we should say that $\sigma-\pi$ conjuga-

tion is as vertical as $n-\pi$ conjugation because our definition is an empirical one based upon this comparison.

Methods of estimating vertical stabilization

We have used ionization potentials of olefins or aromatic compounds to probe the vertical effect of an M— $C\sigma$ -bond (Y = $-CR_2M$) upon a positively charged carbon.

It is well established that ionization potentials of mono-substituted benzenes follow the Hammett equation^{14, 15}

Ionization Potential (eV) =
$$1.31 \sigma^+ + 9.24$$
 (3)

or in terms of charge-transfer frequencies of benzenes with tetracyanoethylene in methylene chloride, follow the equation 13a :

$$v_{\rm CT} \,({\rm cm}^{-1}) = 9\,300\,\sigma^+ + 26\,200 \tag{4}$$

As a calibration of the size of the effect of Y on chemical reactions, consider the reaction^{13d}

$$\bigvee$$
 Y + CF₃COOD \xrightarrow{k} D \bigvee Y + CF₃COOH (5)

where a change in σ^+ of one unit (corresponding to changing v_{CT} by 9300 cm⁻¹ or I.P. by 1.31 eV) changes the rate by a factor of 10⁸.

Magnitude of $\sigma - \pi$ conjugation

The following table lists the charge-transfer frequencies of a few benzyl metal compounds which illustrate just how large the effect can be

syanoethylene in methyle	the chloride and the	e derived $\sigma_{\tilde{Y}}$ constants
Ph—Y	$v (cm^{-1})$	σ_Y^+
PhH	25840	(0.0)
PhCH ₃	24330	-0.2
PhCH ₂ CPh ₃	23700	$\sim (-0.2)^*$
PhCH ₂ SiPh ₃	22 220	-0.42
PhCH ₂ GePh ₃	20660	-0.60
PhCH ₂ SnPh ₃	18760	-0.81
PhCH ₂ PbPh ₃	17060	-1.0
PhCH ₂ SnMe ₃	(26 700)†	-0.91
PhCH ₂ HgC ₆ H ₁₁	(24150)†	-1.2
PhCH ₂ CH ₂ PbPh ₃	24700	$(-0.16)^*$

Table 1. Charge-ti	ransfer freq	uencies of	f Ph—Y	compoun	ds	with tetra-
cyanoethylene in	methylene	chloride	and the	derived	σ_Y^+	constants

* These are maximum negative values. The tetracyanomethylene could be complexing with the wrong phenyl group. This problem does not arise in the PhCH₂MPh₃ compounds with lower ionization potentials.

+ The tetracyanomethylene complex is unstable. These values refer to dichloromaleic anhydride charge-transfer spectra.

T. G. TRAYLOR, H. J. BERWIN, J. JERKUNICA, AND M. L. HALL

The data in this table clearly indicate that $\sigma - \pi$ conjugation increases as the metal becomes more electropositive. Notice that the -CH₂PbPh₃ group provides enough stabilization for 10⁸ rate acceleration in equation 5. However, insertion of one methylene group (PhCH₂CH₂PbPh₃) insulates the $\sigma-\pi$ conjugation removing the effect of the -PbPh₃ group completely^{13a}.

We have also shown that changes in the metal substituent (X) have a very large inductive effect upon this conjugation¹³*j*.

Compare this effect (slope and intercept) with the much smaller effect of CH₂X

$$v_{\text{TCNE}}^{\text{PhCH}_2 X} = 4\,300\,\sigma_X^{I} + 24\,250 \tag{9}$$

Notice also the inductive order of the charge-transfer frequencies of $-CH_2M(CH_3)_n$ versus $-CH_2MPh_n$ in Table 1.

Stereoelectronic effects

The most spectacular demonstration of the requirement that the C-M σ -bond be parallel to the aromatic system is shown in Table 2.

Table 2. Charge-transfer frequencies of organometallic and related

Conditions given in Table 1.

* Part of this table appears in reference 13j.

Notice that the substitution of $-HgC_6H_{11}$ for H in PhCH₂Y changes the frequency by 9300 cm⁻¹ or 10⁸ change in the rate of reaction! However, this same substitution in the benzyl position of the bicyclic system is without effect. Rotating the σ -bond 90° turns off an effect equivalent to 10⁸ in rate!! This is a very large and stereoelectronically rigid resonance effect¹⁶.

The effect of changes in the hyperconjugated group may be summarized in the following sequence of effects on the ionization potentials of $PhCH_2R$

 $R = H < CX_3^a < SiX_3^b < GeX_3^b < SnX_3^b < PbX_3^b \sim HgX^b < CdR$ etc.

a. Resonance stabilization of $\overset{+}{C}X_3$ is not important here, but inductive effects are. Thus $CMe_3 > CPh_3$ as hyperconjugating group. However $\sigma -\pi$ conjugation of C-C σ -bonds

b. Resonance effects in X are also absent in C-Metal conjugation. However, inductive effects are very large. For example, R = HgBr and $R = SiMe_3$ give about the same amount of $\sigma - \pi$ conjugation. Strain in the C-Metal bond should also increase electron donation just as in the case of strained C-C bonds.

Hydride abstraction and σ - π conjugation

A perusal of the σ^+ values in *Table 1* reveals that many of these CH₂M groups are as stabilizing as MeO towards carbonium ions. But we know from solvolysis data¹⁰ that CH₃OCH₂ is more stable than Ph₃C⁺. This means that vertical stabilization by, e.g. the -CH₂SnMe₃ groups should be sufficient to make the ion ⁺CH₂CH₂SnMe₃ more stable than the Ph₃C⁺ ion.

We have tested this idea by allowing trityl fluoroborate to react with $EtSn(CH_3)_3$ and have discovered a reaction which may have some utility. The reaction follows the stoicheiometry

$$(CH_3)_3SnCH_2CH_3 + Ph_3C^+BF_4^- \rightarrow (CH_3)_3Sn^+BF_4^- + CH_2 = CH_2 + Ph_3CH$$
(10)

and is first order in each reagent with a second-order rate constant of $1 \times 10^{-2} \text{ mol}^{-1} \text{s}^{-1}$ at 30°C in acetonitrile. This reaction is quite general for all organometallic compounds having a properly aligned β -hydrogen. Thus Et₂Hg¹⁷, Et₄Pb, Et₄Sn, PhCH(CH₃)SnMe₃, PhCH₂CH₂SnMe₃ all react rapidly to give the olefin. Compounds not having β -hydrogens such as Me₄Pb, (PhCH₂)₂Hg, PhCH₂SnMe₃, [PhC(CH₃)₂CH₂]₂Hg do not

electronically oriented for σ - π conjugation.

Evidence for vertical stabilization in this reaction is seen in the plot of log k_2 for reactions of HCH₂CH₂M(Et)_n against the charge-transfer frequencies of PhCH₂MPh_n in *Figure* 2^{13m}. This reaction depends greatly upon the nature of the metal and is well correlated with ionization potentials.

Figure 2. Plot of log k_2 for hydride abstraction from Et_nM [reaction (10) (30°C, CH₃CN)] against charge-transfer frequencies of Ph_nMCH₂Ph with tetracyanoethylene.

In addition to this correlation, we also notice that a second CH_2SnMe_3 group accelerates the reaction more than does a phenyl group.

This result leads us to the conclusion that the two Me_3SnCH_2 - groups are behaving similarly.

We have therefore written the reaction as

in which the transition state is vertically stabilized by $\sigma-\pi$ conjugation^{*}. The stereochemistry of this reaction is shown to be *anti* as indicated in equation 11 by the following rate comparisons.

The faster reaction of the axial-trimethyltin group indicates a preference for *anti* elimination which is consistent with deoxymetallation reactions.

REFERENCES

- ¹ A. N. Nesmeyanov and I. F. Lutsenko, Dokl. Akad. Nauk SSSR, 59, 707 (1948).
- ² A. N. Nesmeyanov, I. F. Lutsenko, and S. V. Ponomarev, *Dokl. Akad. Nauk SSSR*, **124**, 1073 (1959).
- ³ (a) R. S. Mulliken, J. Chem. Phys. 7, 339 (1939).
- (b) R. S. Mulliken, Tetrahedron 6, 68 (1959).
- ⁴ C. N. Muller and R. S. Mulliken, J. Am. Chem. Soc. 80, 3489 (1958).
- ⁵ J. W. Baker and W. S. Nathan, J. Chem. Soc. 1844 (1935).
- ⁶ J. W. Baker, W. S. Nathan and C. W. Shoppee, J. Chem. Soc., 1847 (1935).
- ⁷ M. J. S. Dewar, *Hyperconjugation*, p. 48, Ronald Press, New York (1962).
- ⁸ R. A. Alden, J. Kraut and T. G. Traylor, J. Phys. Chem. 71, 2379 (1967); J. Am. Chem. Soc. 90, 74 (1968).
- ⁹ W. M. Schubert and D. F. Gurka, J. Am. Chem. Soc. 91, 1443 (1969).
- ¹⁰ See A. Streitwieser, Solvolytic Displacement Reactions, p. 103, McGraw-Hill, New York (1962) and P. D. Bartlett, Nonclassical Ions, p. 6, Benjamin, New York (1965) for references.
 ¹¹ C. A. Grob and F. Ostermawer, Holp. Chim. Acta 45, 1119 (1962).
- ¹¹ C. A. Grob and F. Ostermayer, *Helv. Chim. Acta*, **45**, 1119 (1962).
- ¹² G. E. Coates, M. L. H. Green and K. Wade, Organometallic Compounds, Vol. II, p. 211, Methuen, London (1968) and references quoted there.
- ¹³ (a) W. Hanstein, H. J. Berwin and T. G. Traylor, J. Am. Chem. Soc. 92, 829 (1970).
 - (b) T. G. Traylor and J. C. Ware, Tetrahedron Letters, 1295 (1965).
 - (c) T. G. Traylor and J. C. Ware, J. Am. Chem. Soc. 89, 2304 (1967).
 - (d) W. Hanstein and T. G. Traylor, Tetrahedron Letters, 4451 (1967).
 - (e) J. A. Mangravite and T. G. Traylor, ibid. 4457 (1967).
 - (f) T. T. Tidwell and T. G. Traylor, J. Org. Chem. 33, 2614 (1968).
 - (g) T. G. Traylor, Accounts of Chemical Research, 2, 152 (1969).
 - (h) N. A. Clinton, R. S. Brown, and T. G. Traylor, J. Am. Chem. Soc. 92, 5228 (1970).
 - (i) T. T. Tidwell and T. G. Traylor, ibid. 88, 3442 (1966).
 - (j) W. Hanstein, H. J. Berwin, and T. G. Traylor, ibid. 92, 7476 (1970).
 - (k) W. Hanstein, unpublished results.
 - (1) R. S. Brown, unpublished results.
 - (m) J. M. Jerkunica and T. G. Traylor, J. Am. Soc. 93, 6278 (1971).

^{*} This interpretation should be contrasted to the non-vertical stabilization suggested^{18, 19} for similar reactions of ethyl iron compounds in which the acceleration was attributed to π -complex formation.

- ¹⁴ D. W. Turner, Advances in Physical Organic Chemistry, Vol. 4, p. 57, Academic Press, New York (1966).
- ¹⁵ A. Streitwieser, Jr., Progress in Physical Organic Chemistry, Vol. 1, p. 1 Interscience, New York (1963).
- ¹⁶ See G. G. Pitt, J. Organomet. Chem. 23, C35 (1970) for similar studies.
- ¹⁷ See O. A. Reutov, E. V. Uglova, V. C. Makhaev and V. S. Petrosyan, Zh. Org. Khim. 2153 (1970) for another example of hydride abstraction from R_2Hg .
- ¹⁸ M. L. H. Green and P. L. I. Nagy, J. Organomet. Chem. 2, 58 (1963).
 ¹⁹ C. E. Coates, M. L. H. Green, and K. Wade, Organometallic Chemistry, Vol. II, p. 216, Methuen, London (1968).