LOCAL-JUMP MODELS FOR CHAIN DYNAMICS*+
W. H. SToCKMAYER, W. GoBUSH and R. NorvicH

Department of Chemistry, Dartmouth College, Hanover, New Hampshire
03755, USA

ABSTRACT

A previously developed simple stochastic model for the rate of conformational

change in freely-jointed chains is extended to a wider class of local processes,

and to chains containing atoms or links of several kinds. The long-time relaxa-

tion spectrum in every case is just the same as that given by the more familiar

beads-and-springs model, but the short-time behaviour depends in more
detail on chain structure.

INTRODUCTION

The main purpose of this article is to illustrate and extend a treatment of
chain dynamics which offers conceptual alternatives to and perhaps physical
advantages over the familiar bead-and-spring models for chain diffusion
which are recalled under the names of Rouse!, Bueche?, Kargin and Slonim-
sky?, Zimm* and others. It is shown that the slow time-dependent behaviour
of a flexible chain molecule is phenomenologically invariant to the fine
details of its molecular structure; but that for short times or high frequencies
the individual structural features can and must lead to differences in re-
laxation behaviour.

In previous papers®*® a simple stochastic model for chain diffusion was
described. The most elementary version deals with a freely-jointed chain,
there being no correlations in the directions of neighbouring links, and the
local jump process was of a specially simple and restricted kind. Models
were also treated which provide correlations between nearest-neighbour
links, and it was further shown that a certain kind of kinetic bias could
also be introduced without altering the nature of the results. In this paper,
while outlining the general nature of the model and recalling some of the
earlier results>, the treatment is extended to a broader class of local pro-
cesses and to chains whose elements need not all show equiprobable ten-
dencies to relaxation.

It should be mentioned that somewhat related studies have been published
by Monnerie and Geny’, by Iwata and Kurata®, by Verdier’ and by
Andersont®.

* The subject matter of this article formed part of a lecture delivered by W. H. Stockmayer
at the JIUPAC Symposium on Macromolecules, Leiden 1970, under the somewhat misleading
title of ‘Statistical Mechanics of Chain Molecules’.

t Work supported by the National Science Foundation, USA.
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BASIC MODEL

The close connection between the problem of random flights and the
process of diffusion has long been known'’, and it is thus a natural temp-
tation to contemplate models in which the translational, rotational and
deformational motions. of chain molecules result from repeated local
segmental rearrangements distributed randomly along the chain backbone!2.
It appears that G. W. King 3 first suggested the possibility of studying such
articulated chain motion by means of computer simulation, but it was
Verdier'* who first carried out such a programme to some incisive degree.
Since one of Verdier’s principal purposes was and has remained’® the
investigation of the dynamic effects of excluded volume interactions (non-
intersecting restrictions for lattice chains), no simple analytical approach
was feasible. The elementary results to be described here owe their sim-
plicity to the abandonment of any attempts to treat chains with excluded
volume. For further ease, we also ignore any hydrodynamic interactions
between chain segments.

Let a simple chain molecule consist of N + 1 beads, joined by N bonds
each of the same length | Number the beads from 0 to N and the bonds
from 1 to N. The direction of the bond from bead (i — 1) to bead i is des-
cribed by the unit vector ¢, If the spatial position of the zeroth bead is
ro. then the location and conformation of the molecule is specified by the
set of N + 1 vectors ry, 6,,6,,...,6y.

To vary the chain conformation, beads are allowed to move one at a
time. For interior beads (i # 0 or N) the motion of bead i consists of a
jump or ‘flip’ whereby the vectors ¢, and ¢, are changed to new values
a. and o, ,. Terminal beads would require a different specification, but
here we are content to deal only with long chains and thus do not trouble
with end effects, We shall thus ignore translational motions. A complete
treatment can be found elsewhere>*’.

Let the probability density in the a-space that the chain at time ¢ has the
conformation {6;, 65, . . ., ay} = {6"} be designated by p(c”, t). We must
now formulate a kinetic or ‘master’ equation for the rate of change of this
probability density. The nature of the treatment, though differing in trivial
details, is inspired by and similar to that of Glauber® for spin relaxation
on a linear Ising lattice. In the present example we shall ignore correlations
between neighbouring bond vectors, so that the basic jump process for
bead i depends only on the state of its two bonds to the adjacent beads. Let
the conditional probability per unit time that a pair of adjacent bond
vectors g}, and @}, , rotate through an angle ¢ to the new conformation a;,
0., | be denoted by w{6}, 6+ 1 | 6}, 64, The time evolution of the confor-
mational probability density then follows the master equation

ople™, t)jot = — z ,“_[P(O'Ns w0}, 6, 11 | 6,6} +,)dg; do}
+ X ”P("] e er G By gs ., O, DWHG, O 4y | 6.0;.)dg;da; ., (1)
This is simply an expression of the fact that the rate of change of configura-

tion of the bond vectors in time is the difference between the rates of creation
and annihilation.
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At equilibrium we have the condition
P65 ... 6,8, 41, ...,0n OW,(6..0; | 6:,0,.1)
= pla", 0)W{0;, 6; 11 \ 6,0, ()
Also, at equilibrium the probability density p(e¢”, oc) for a freely-jointed

chain must be a constant, having the same value for all possible sets of the
bond vectors. Thus equation 2 shows that

Wi(a;’a;+llo.i’oi+l) = wi(aisai+1|6/i’6;+l) (3)
Now let us describe the local jump process more precisely as a rotation of
bead i about an axis passing through beads i — 1 and i + 1. The old and
new bond vectors are then connected by the relations
o) = 6,c08> 5 + 0, sin* 1 + (6, x 6, ,)sin ¢/\/2(1 + 6,.6;,,)
~ =fl6,0;.1.¢) (4)
6,1 = 6;8in* 1 + 6,,;c08> 3¢ — (6, x 6;,))sin ¢/ J2Al + 6,°6,4,)
= f(6; 1.0, 9) (5)
If the flip rate for rotations through angle ¢ to within d¢ is expressed as
ag(¢)deg, we then have
wi(o,.0; 1, ' 6,0 +1)

= “f 3(a; — {6, 06, +y, P))O(0; 1, — {(6; ., 0, $)g(d)do (6)

1

It is seen that equation 3 is consistent with equation 6 provided that g(¢)
is an even function, as of course is also necessary on physical grounds.

To extract simple results from the master equation it is convenient, as
earlier’:®, to work with the average values of bond vectors. Let

q,t) = {ajt)) = f f ajp(aN, t)de, ...dey 7

To evaluate the time-dependence of this quantity, multiply the master
equation 1 by ¢ (t) and integrate over all configuration space. Since ¢; may
only be reoriented by rotation along with either o,_, or a;,,. we obtain
the following general expression : '

dg;/dt = — ¢;ffw;-1(6;-1,0;(0}-1,07) do}_,, daj
- q;{{wie; 0;.1 |0}, 0} .,)do;da]
+{...{de,...doy[fep(6,,...,05-1,0)...,651)
x W1 (051, o;|6;_y,6)de;_ do; + [...[de,...doy [

/

x pl@y,...,6,67,,...,68,)Wid},6),,|6,06;,,)ds;dd;,, ®)

Now using equation 6 for the jump probabilities, and making use of the
fact that g(¢) is an even function, we find

dgydt = — a'q; — q;-1 — 4 +1) 9)
where
o = of”, g¢)sin® (34) dd (10)
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or in matrix form
dq/dt = - oc’Aq (11)

in which ¢ is a column matrix with the g; as elements and 4 is the familiar*
square matrix with elements 2 on the diagonal, —1 just off diagonal, and
zero otherwise. This matrix is diagonalized by the transformation Q ~14AQ =4,
where

Q;, = (2/N)"/* sin (jpr/N) (12)
and the eigenvalues of A are
A, = 4sin® (pn/2N) (13)

The normal coordinates &(f), as defined by the orthogonal transformation
¢ = Qgq, thus relax exponentially with relaxation times

1, = 1/a'4, (14)

in exact mimicry of the bead-and-spring model results!. In our earlier work.,
the flip process had been restricted completely to 180° rotations, i.e. to
g(®) = 8(¢ + m), which gives « = o in equations 10; but now we see that any
mixture of rotation processes will produce the same behaviour. At another
extreme, for example, we could pass to the diffusion limit by making g(¢)
sharply peaked around the origin, which would lead to o’ = a{¢2)/4.
Although we have avoided direct consideration of the displacement of the
chain as a whole, it is easy to relate the model parameters to the translational
diffusion coefficient D, of the chain. The mean square displacement per unit
time of the centre of mass as a result of repeated flip processes, taken over an

equilibrium ensemble, is

N
Y. w{Ar)*> (N + 1)* = 6D, (15)
i=0
in which the displacement of bead i at a flip is
Ar; = l(o; — @) (16)

Performing the calculation, and neglectihg the trivial difference between
N and N + 1, we get

D, = «'I?)/3N (17)

Since the equilibrium mean-square end-to-end displacement of the freely-
jointed chain is just

(r?> = NP (18)

the slower relaxation times, i.e. those for which p < N, may be expressed in
the form

‘ A, = <r?*»/3D,n*p? (19)
which is exactly the same as the Rouse result!, in terms of the observable
quantities {r?>> and D, The force constants of Hookean springs and the
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friction constants of the beads do not appear, any more than do the flip
rates of individual bond lengths of our freely-jointed chain model. The two
models are both unreal in many ways; but for large scale motions, such that
the precise details of chain structure are much smaller than the wavelengths
of the low low-p normal coordinates, these unrealities are invisible. As an
analogous case we may cite the Debye theory of crystal heat-capacity, which
works well for low temperatures where the only important vibrational modes
of the crystal are those with wavelengths many times the atomic separations.

A much more elegant formulation has been offered by Iwata®, who con-
siders more general local conformational rate processes in more realistic
chains. After a ‘coarse-graining’ operation on his basic master equation, he
obtains, for sufficiently slow motions, precisely the diffusion equation of the
bead-and-spring model. Thus the physically-based assertions of the previous
paragraph can apparently be substantiated quite generally.

HETEROGENEOUS CHAINS

When we abandon the long-time region of the relaxation spectrum and
proceed to higher frequencies, any of the models previously described begins
to display features that depend on the structural details assumed. In this
region, local-jump models would appear on physical grounds to be more
attractive than beads and springs. It was shown earlier>® that at high
frequencies the existence of correlations between neighbouring links, ie. a
departure from the strict freedom of the freely-jointed chain, causes
systematic deviations from the bead-and-spring relaxation spectrum. We
now briefly discuss local-jump models for heterogeneous chains, again
finding agreement with Rouse behaviour at long times but systematic
differences at short times.

As an elementary example, we consider a freely-jointed chain of two regu-
larly alternating kinds of atoms, with the structure... ABABAB.... All N
bonds have the same length I, but the two kinds of atoms can have different
jump rates, « and f respectively. Ignoring end effects, we can proceed as
before and find for even-numbered bonds

quj/dt = —(a+ B)q, + ﬂqu“‘l + 0qaji1 (20)
and for odd-numbered bonds
dgyjsi/dt = — (@ + B) g2j41 + 042 + B3+ (21

To find the relaxation times, we can imitate closely the procedure for finding
the vibrational frequencies of a linear diatomic lattice'”-*®. The problem
differs only in the appearance of first rather than second time-derivatives.
Assume solutions of the form:

gy = Aye Mothr g 2ik 22)
d2j+1 = A e AP o Q2jt ik (23)
where k = np/N with integral p, and i = — 1. Substitution into the relaxa-

tion equations 20 and 21 leads to two linear equations in the amplitudes
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A; and A,. The condition for a non-trivial solution is that the determinant
of the coefficients of 4; and A, shall vanish, and this leads to the relation

(1—2)2=1—46(1 — O)sin’k (24)

where 0 = o/(a« + B). This equation possesses two solutions for 4, and thus the
A(k) curve will have two branches, in exact analogy to the acoustical and
optical branches of the lattice-vibration problem. It is easy to verify that for
the special case « = f§ the two branches coalesce and the earlier results of
equations 13 and 14 are recovered. The greater the disparity between
o and B, the greater the gap in time scale between the slow and fast branches
of the relaxation spectrum, as could be seen by generating numerical examples.

The longest relaxation times, obtained when k < 1, are specifically given by

T, = {(a + p)20p} {N*/n’p*} (25)

and we see that if one kind of atom is much more sluggish than the other
(e.g. B < a), the slowest chain motions are limited by the slowest backbone
motions. This result is more comforting than surprising.

The method used earlier for the homogeneous chain to evaluate the trans-
lational diffusion coefficient D, does not lend itself to the present case, and we
shall not pursue this question further in this paper.

The general method of Brillouin'® may be followed in treating chains of
any backbone complexity, provided the structure be periodic. A Rouse-type
spectrum always obtains for long times, and is clearly a consequence just
of the linear connectivity of the chain.

CONCLUSION

The results displayed in the present paper are little more than didactic
exercises. We believe, however, that models of this type can lead to more
realistic results than beads and springs in the treatment of short-time
relaxation processes, and we hope to confirm this belief in later work.
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