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ABSTRACT

Some general principles of constructing molecular theories of polymer systems
are discussed. The theories based on statistical mechanics combined with
simplified concepts in molecular structure comprise the following fundamental
equations: equation of continuity in an N-dimensional configuration space,
kinetic equations describing the motion of the structural units involved,
dynamic equations, i.e. relations between the local tension and configuration
characteristics, kinetic equations describing the rates of formation and dissocia-
tion of structural units in the system. Some simplified concepts in intra- and
inter-molecular interactions in macromolecular systems are given. Two
examples of model systems are analysed systematically; a dilute solution of
flexible chain-macromolecules, and an entangled network system typical for
concentrated polymer solutions and melts.

INTRODUCTION

The importance of molecular considerations in polymer rheology is
rather obvious and hardly need be argued. The theory of mechanical (as well
as any other) macroscopic characteristics of polymer systems formulated in
terms of molecular structure leads to a deeper understanding of the
mechanisms responsible for the observed phenomena, and enables one to
predict the physical behaviour of various materials, and to design new
materials with modified structure and properties. Molecular theories seem
to make the best basis for physically reasonable assumptions in the
derivation of constitutive equations from continuum considerations.

The term ‘molecular theory’ is. however, far from being unequivocal.
There are in the polymer literature many treatments claimed to be, and
(even worse) considered by many readers as, ‘molecular theories’ while
based on quite arbitrary or unfounded model assumptions. So, for example,
in attempts to reproduce the empirical ‘3.4 power law’ (shear viscosity
proportional to the 3.4th power of the molecular weight of polymer) Bueche*
assumed some “rigid rotations’ of macromolecules in entangled systems; for
the same purpose Graessley? postulated a kind of ‘slalom motion’ of a
macromolecule through entanglement loops of other chains, while Hayashi?
and Pokrovskii* assumed special forms of frictional coefficients. None of
these concepts was based on systematic molecular considerations or had a
clear physical significance.

Various criteria can be considered in the comparison of individual
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theories. Let us discuss the following three: fundamentality, generality, and
tractability. '

The first criterion requires that the theory involves a minimum number of
assumptions and those as close as possible to first principles. The best
theoretical basis for molecular rheology is provided by statistical mechanics
though, as will be shown below, introduction of some additional concepts
and simplifications is unavoidable.

The generality of molecular theories should concern first of all the boundary
conditions (geometry and time-régime of deformation, external fields etc.)
so that a broad range of physical phenomena could be analysed. On the other
hand, molecular theories cannot be too general with respect to the structures
considered. They are usually rather specific and cover narrow classes of
molecular models corresponding to the different structures of real systems.

Tractability of a theory requires that the results be presentable in a
transparent and simple form convenient for interpretation of observed
phenomena and description of technical processes. It is my feeling, however,
that a really fundamental molecular theory can hardly yield results tractable
enough for application in routine experimental methods and solution of
technical problems. Of course, every theory should be tractable enough for
physically significant conclusions to be drawn from it, but an improvement
of tractability at the cost of fundamentality or generality would not be
advisable for molecular theories.

The aim of the present paper is to discuss some general principles for the
construction of a molecular rheological theory of polymer systems and to
define the pos1t10n which such theories occupy in the framework of the
physical sciences. Some of the views expressed in this paper were formulated
by the author (in a more crude and primitive form) two years ago®.

STATISTICAL MECHANICS AND SIMPLIFIED
MOLECULAR THEORIES

Statistical mechanics, considering individual atoms (or simple molecules)
as kinetic units provides the most fundamental basis for any molecular
theory. The positions ¢ and momenta p of the atoms considered form the
set of configuration variables, and the interatomic potentials U lead to the
interaction forces and ‘local’ stress dyadics a,,.. The local stress averaged
over the entire ensemble of kinetic units yields the average (= macroscopic)
stress tensor &. Such an approach has been successfully applied to the
molecular theory of monatomic fluids®’. The basic system of equations
includes the Liouville equation for the density p

dp/0t + 47(0p/0q) + H(0p/0p) = O 1)
and the kinematic equations for the velocities § and momentum rates p
obtained from the energy considerations:
P = b(g. p)
The interatomic potentials defined for every pair of atoms (i, j) separated by
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the vector R;; yield the interaction forces f;; and corresponding stress
dyadics o;

f,; =gradU;(1 +..) (3)
o, = f,R], = grad U,R], )

The macroscopic stress tensor consists of two parts
o =0 + o) (5)

The kinetic part (important for gases but negligible for condensed systems)
reads

o) = (c/m) [<pp™> — <p)> <p>"] (6)
and the interaction part
0w = c{fR™) ~ (grad URT) (7

In the above ¢ denotes the concentration of kinetic units in the system, m is
their mass and ¢ > denote averaging over the entire ensemble of particles.

Application of this approach to more complex systems meets with serious
difficulties. Dahler and Scriven® discussed the case of fluids with polyatomic
molecules as kinetic units and assumed single interaction potentials. It is not
certain, however, if such potentials (assumed in general to be non-central
but not defined explicitly) have clear physical significance.

Many more difficulties arise when macromolecular systems are considered.
Large chain molecules having many internal degrees of freedom can hardly
be modelled as simple kinetic units with single interaction potentials. If, on
the other hand, we choose as kinetic units the individual atoms forming
macromolecules (and solvent molecules, if present in the system) we are
faced with a number of non-equivalent interacting atom pairs: two atoms
belonging to the same macromolecule, two atoms from different macro-
molecules etc. All this excludes the possibility of building up a molecular
theory of polymer systems on the basis of ‘pure’ unchanged statistical
mechanics without introducing any additional, simplified concepts.

The theories involving a number of additional model assumptions and
simplifications will necessarily be less fundamental than those based on ‘pure’

Continuum Continuous media
theory
averaging
Simplified Model polymer systems
molecular
theory theory of
interactions

Statistical Monoatomic fluids,single macromolecules
mechanics

Figure 1.
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statistical mechanics, and will occupy an intermediate position between
statistical mechanics and the theory of continuum (Figure 1). If such an
intermediate theory is still to be considered a really molecular theory, the
simplified structural model should be physically realistic, i.e. consistent with
the actual structure of corresponding real systems and each simplified
interaction concept should possess a clear physical significance, if possible
derived from statistical mechanical considerations. Unfortunately many
published theories of polymer systems do not conform to these requirements ;
they include arbitrary and unverifiable assumptions about the structure of
the system and interactions within it.

In the simplified molecular theories some structural units specific for the
considered system are chosen to replace atoms in the statistical mechanical
treatment. The role of such units can be played by individual macro-
molecules, chain segments, molecular clusters etc. The configuration of every
unit is described with the aid of N variables, u = (u;, u,, ..., uy) replacing
variables q and p in pure statistical mechanics. A time-dependent distribution
function for the single structural unit is determined by the equation of
continuity in N-dimensional configurational space

ov/ot + (0T /0wy (Ph) = ¥y t)]

It may be noted that in equation 8 there appears, beside the usual transient
and divergence terms, a kinetic term, equal to the net rate of production of
structural units within the system. The basic equations of the theory include
also the kinematic equations

i =i ¥,1) ©)
and the equation describing the kinetics of formation and dissociation of
structural units

¥ o = Puialn 0, ¥) (10)
both to be formulated on the basis of independent considerations.

Consideration of the interactions between some ‘interaction centres’ in the
structural units, yields the interaction tension

f =flu\, P) (11)
which, multiplied by the corresponding vector R, yields the local stress dyadics
6,,. = cfR” (12)

The macroscopic stress tensor (like any other macroscopic, configuration-
dependent characteristics of the system) g is obtained through averaging
of the local characteristics over the distribution function ¥

o= <aloc> = ,‘. e ,[ Gioc T(“’ t) du (13)

The equation of continuity, the kinematic, kinetic and dynamic equations
(equation 11) make the fundamental system of the theory and should be
solved simultaneously with proper initial and boundary conditions. The
above scheme enables one to allow for very different external conditions
including non-homogeneous and non-steady-state deformations, fime-
dependent parameters etc.>. In later sections of this paper we will formulate
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the fundamental equations of the theory of dilute polymer solutions and
entanglement networks.

SOME SIMPLIFIED CONCEPTS IN
MACROMOLECULAR INTERACTIONS

For the construction of molecular theories of polymer systems the complex
molecular interactions must be simplified to obtain the more tractable
relations required for the dynamic (equation 11) and kinematic equations.
It would go beyond the scope of the present paper to give a full review of all
possible interaction concepts in this field ; we will discuss only some examples
which will be used later in deriving the theories of solutions and networks.

Intramolecular interactions within chain macromolecules

Statistical considerations can yield quite exact conformation distributions
for linear macromolecules with given bond angles, o, bond lengths, z, and
rotation-dependent potentials U(¢p). The appropriate calculation methods
and results may be found in the literature®!!. The conformation problems
for electrically charged macromolecules (polyelectrolytes) have also been
treated statistically (cf. ref. 12 and the references cited therein).

When the theory of polymer systems, rather than of isolated macro-
molecules, is to be constructed, the more exact (and more complicated)
conformation distributions must be replaced by simplified models. One of
the more popular models of this kind is the so-called ‘freely jointed chain’
whose end-to-end vector distribution ¥(h) can be described with the aid
of the two-parameter formula!?

o) = Cexp [—(l/a)h_fL*(x)dx] (14)

where I*(x) = 3x + 2x® + ... is the inverse Langevin function, C is a
normalization constant, / is the contour length of the macromolecule (i.e.
the length of the fully extended chain), a is the length of the statistical (Kuhn)
chain segment. The latter characteristic can be related directly to the
molecular data z, « and U(g). For symmetrical and not very high poten-
tial barriers and for sufficiently long chains the Taylor formula holds'*

alz, o, U(@)] = z(1 + cosa)(1 — cosa) 1 (1 + {cos @) (1 —cos @)™ '  (15)

where the average cosine of the rotation angle ¢ is related to the potential
function U(gp)
2n

2n
{cos ¢ = g cos ¢ exp [— Ulp)/kT] dg/ g exp [~ Ulp)kTlde  (16)
From the definition of the contour length it follows that

Il =nzcosa (15a)

where n is the number of bonds in the chain.

The simple two-parameter distribution (equation 14) allows for the bond
lengths, valence angles and rotation hindrances of the macromolecular
chain. The natural consequence of this distribution is the elastic force which
appears in equilibrium in the deformed chain

f, = — kT grad In ¥, = (kThy/ah) E(h/]) = GkTh/la) [1 + 2 (h¥1%) + .. ]
485 (17)
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The above model does not predict, however, the elastic force arising due to
the energy differences between various rotational isomers.

The existence of some rotational energetic barriers to be overcome in the
process of chain deformation (ie. dU/d¢p # 0) also leads to some non-
equilibrium force f, when the chain is subjected to some deformation rate
(dh/dt # 0)

f, = const. [(dh/dt) + a,(dh/dt)® + ...] (h/h) (18)

This effect was first proposed by W. Kuhn and H. Kuhn'® who called it
‘internal viscosity’. Taking into account that the constant in equation 18 is
inversely proportional to the number of chain segments capable of rotation
(i.e. inversely proportional to the contour length, ), confining ourselves to the
consideration of small deformation rates only (linear term in equation 18),
and writing the deformation rate in vector form, we obtain from equation 18

f, ~ y/"'(h"h/h*)h (18a)

The constant y in equation 18a is determined only by the chemical structure
of the macromolecule but is practically independent of its molecular weight.
In principle 7 can be found (or, compared for several polymers) experi-
mentally, using flow birefringence techniques®®.

There is no exact theory which could relate the phenomenological concept
of internal viscosity to primary molecular characteristics. In the approxi-
mation of the absolute reaction rate theory!” one could expect the co-
efficient y to be related to the difference of maximum and minimum values
of the potential function, AU = U, —~U,, , acting as an ‘activation energy’
for the deformation process

y & const. exp (—AU/kT) (19)

Intermolecular interactions in polymer systems

In systems containing both polymer and low-molecular substances, the
solvent, having molecules several orders of magnitude smaller than the
macromolecules of polymer, can be treated as a viscous continuum. In this
approximation the discrete polymer—solvent interactions can be described
by the continualized concept of polymer—solvent friction. Such a frictional
force per macromolecule with contour length ! may be written in the form

£, = CAV[1 + ay|Av| + ay(AV)? +...] (20)

where Av is the actual velocity difference between the macromolecule and
solvent, and { is the molecular friction coefficient per unit contour length of
the macromolecule surrounded by solvent. { depends on the molecular
structures of polymer and solvent, as well as on the temperature of the
system. The concept of polymer—solvent friction was introduced to polymer
physics by W. Kuhn and H. Kuhn'® and has since been widely used in the
theory of dilute polymer solutions. In principle, the coefficients { can be
determined experimentally for any combination of polymer and solvent
from viscosity or diffusion measurements.

According to the assumption of continuity, the interactions between
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solvent molecules are usually considered to produce linear stress effects, as in
any Newtonian, viscous fluid.

The interactions of distant parts of the same macromolecule, or those of
two different macromolecules in a rather dilute solution are often treated as
disturbances of the velocity field in the viscous' continuum (solvent).
According to the well known Oseen theory the velocity disturbance Av, at
some point p is determined by friction forces in all points (friction centres) q
within the system!°. Such a type of intermolecular interactions (so-called
‘hydrodynamic interactions’) was widely discussed in the theories of dilute
polymer solutions; in concentrated systems, however, it seems to be negligible
in comparison with polymer—polymer contact friction. For two polymer
molecules (or various parts of the macromolecule) coming into close contact
one with another, one can write, in an analogy to equation 20

f,, = EAV[1 + By |Av| + By(AV)? +...] (21)

where ¢ is the molecular friction coefficient per one polymer—polymer
contact. Such a mechanism could be responsible for the behaviour of very
concentrated systems of rigid asymmetrical particles, but apparently
contributes to the behaviour of all concentrated polymer systems.

Quite a different kind of polymer—polymer interaction is provided by a
localized (energetic) junction, ie. a chemical or quasichemical bond
[Figure 2(a)]. If we neglect the small oscillations within the range of such a
bond, the energetic junction may be considered to be strictly localized in a
definite position with respect to both the participating macromolecules and
their relative velocity, Av (sliding velocity) is equal to zero [Figure 2(b)].
The junction is assumed to have a finite dissociation energy : when the critical
energy level is attained (due to the supply of thermal, mechanical, etc. energy
from outside) the junction breaks instantaneously and Av — .

Av

(@ (b

Dissociation

Figure 2. Localized (energetic) junction: (a) schematic, (b) delocalization rate versus applied
energy (or tension).

A different behaviour can be expected for the system of interpenetrating
loops forming entanglement junctions (Figure 3). This kind of interaction,
specific for long, flexible chains, leads to junctions which are not localized
but capable of sliding (with some contact friction) along the chains involved.
The dynamic behaviour of entanglement junctions is anisotropic: in the
direction corresponding to the tightening of the loop (y) the junction is
practically localized and behaves like an energetic junction with dis-
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sociation energy determined by the breaking of the chains. Along the chains
(direction x) chain sliding with contact friction (cf. equation 21) can be
observed. This situation is drawn schematically in Figure 3(b).

Chain sliding

Av X y

(@) (b)

f
Chain breakage

Figure 3. Non-localized (entanglement) junction: (a) schematic, (b) delocalization rate versus
applied tension.

EXAMPLES OF APPLICATION TO VARIOUS
POLYMER SYSTEMS

The general lines of procedure outlined above form a framework on
which theories of various polymer systems can be constructed. Of course, it is
not the only approach possible in this field, but it seems to provide a rational
and convenient basis for simplified molecular considerations.

The number of structural systems studied along these or similar lines is
rather small, however. One can name here dilute suspensions of rigid
particles?®2® and dilute polymer solutions with various kinds of intra-
molecular interactions but neglected interactions between individual
macromolecules?®*~*°, The other extreme case is a permanent, macro-
molecular network analysed by many authors since the early thirties (cf.
ref. 41 and the literature cited therein). ‘Hauberk’ networks (i.e. systems
formed of closed, interpenetrating loops) were recently discussed by Frisch
and Prager*? and by Edwards*>. Both the above models provide a basis
for the molecular interpretation of rubber elasticity.

The theory of ‘temporary’ networks with localized junctions as developed
by Green and Tobolsky**, Scott and Stein*’, Yamamoto*® and Lodge*’
seems to be appropriate for systems with strongly polar interactions (polar
gels, vulcanized rubbers with chain scission etc.).

There is no adequate theory for concentrated polymer solutions and melts
where entanglement interactions and chain sliding seem to play the
determining role. The papers published by Bueche®, Graessley?, Hayashi?,
and Hoffmann*® cannot be discussed here as examples involving arbitrary
assumptions®' 2 or formal errors* %, Extension of the Rouse theory of dilute
solutions®®> to cover concentrated systems with entanglement inter-
actions*®~3! is physically incorrect and will be discussed below in detail.
Recently, more systematic studies on the theory of entanglement networks
were started in the author’s laboratory. Some results have been published®#-%4
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and will be discussed in the next section; completion of the theory still
requires much work to be done.

The theory of dilute solutions and entanglement networks

Proceeding along the lines set out above we will discuss now the molecular
theory of two polymer systems: dilute solutions containing flexible macro-
molecules in a viscous solvent, and entanglement networks formed of
similar macromolecules in a highly concentrated system. The comparison of
these two systems seems to be especially interesting. The theory of dilute
solutions is well developed and widely appreciated thus making a good
example for the illustration of more general considerations. In spite of some
formal similarities between the molecular models involved in these two
theories (see Figure 4 below), the macromolecules in network systems behave
quite differently to those in dilute solutions. Nevertheless several papers have
been published in which the Rouse theory of dilute solutions corrected for
‘limited mobility’ or ‘effective friction coefficients’ was applied to the
description of network systems*°31,

The first difference between the two molecular systems involved lies in the
way in which external forces applied to the boundary of the sample are
transmitted to the individual macromolecules. In systems with separated
macromolecules (dilute solutions) forces are transmitted through the viscous
continuum (solvent) as friction forces. In a coherent network system formed of
macromolecules connected at some junctions, the force is transmitted
through the junctions and friction forces, if present, contribute to the dynamic
reaction of the individual macromolecules or their parts.

In contrast to dilute solutions where all ‘subchains’ [see Figure 4(a)] had
ex definitione the same molecular weight (and contour lengths, I), network
chains, ie. portions of the primary macromolecule contained between
adjacent entanglement junctions, have different and time-dependent lengths,
L. Therefore the molecular theory of such systems should consider the
distribution of contour lengths, I, as independent variables, and allow for
sliding rates, [, as kinematic characteristics in addition to the usually
considered junction-to-junction vectors, h, and junction velocities, h.

Last, but not least, the temporary network systems involve some kinetic
processes of junction breakage and re-formation, absent from dilute solutions
with separated macromolecules.

Let us proceed with the systematic discussion of both theories. We will
consider the configuration distributions for a primary macromolecule
consisting of N subchains [dilute solutions, Figure 4(a)], or, N network chains
[entanglement network, Figure 4(b)].

Figure 4. Molecular models of chain macromolecules: (a) in dilute solutions, N subchains with
friction centres; (b) in concentrated solutions or melts; N network chains with entanglement
junctions.
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Thus, the set of independent configuration variables for dilute solution
theory includes 3N components of subchain vectors h; while the contour
lengths of all chains are equal to [, = L/N (Lis the contour length of the
entire macromolecule). In the network system there are 4N — 1 independent
variables: 3N components of vectors h; and N contour lengths, I, together
with the normalization condition

zjj =L (22)

The distribution function for dilute solutions is defined as the probability
density in 3N-dimensional configurational space

¥(h, f)dh = dn/n, (23)
whereas that for entanglement networks
P*(h,1, t) dhdl = dn/n, (24)

where the asterisk denotes the characteristics related to network systems and
h,1 are vectors

h=(x;,y1,20,X2,.--52y)
l=(ll,lz,...,lN)

The tension in the ith subchain of the macromolecule in a dilute solution,
f; consists of the elastic, statistical and internal viscosity terms

f, = kT[(Ghy/la)(1+ 2 hZ/? + ...) + (6/0h)In¥P] + (/) (WTh/MHh;  (29)

For simplicity, the hydrodynamic interactions, usually considered in the
theory of dilute solutions, have been omitted.

Similar tension in the ith network chain of an entangled system includes,
beside the above terms, also the contributions of chain sliding, 1

ﬁ = f - IK(C é)h; Ul + écul (26)

where K is the total (polymer-solvent and polymer—polymer) contact
friction coefficient and the matrices are associated with contact friction along
the network chain (B) and friction in the entanglement junctions alone (C)>>.

The kinematic equations for dilute solutions are obtained directly from the
force balance condition for the ith friction centre (bead) joining the ith and
(i + Dth subchains. In our notation the force balance condition assumes
the form

for = — fé‘r =L+ — fi (27)
or
fio, =6+ f:’r =0 (27a)

where £, is the external force and f, is the friction force acting on the ith bead
{cf. equatlon 20). f, f; . ; are the tensions of the chains i and i + 1 respectively
as defined in equatlon 25. Using a linear (Stokesian) approximation for the
friction force and expressing the effective velocity difference at the ith bead
through junction velocities h; one obtains the well known result
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Bi = éOhi - (Cl)_ 1Aijfj (28)
and, from the definition of the subchain model,
[=0 (29)

e, is the macroscopic relative velocity gradient and A is the matrix

1 -1
A 71 2 0 30 .
= -1 2 -1 (30)

For the network system, where external forces are transmitted through
network chains rather than through the solvent, the force balance condition
for some ith junction reads>?

ﬁx:=f?+1"f?=f*_f*+1 (31

J J

where f¥, £}, , are full tensions (cf. equation 26) of the network chains 7,7 + 1
belonging to the macromolecule considered, and f}, f%, , are similar tensions
of the other chains belonging to a different macromolecule participating in
the junction. Note that unlike f,, the tensions in network chains, ff include
some frictional terms. In an analogy to equation 27a, instead of equation 31

we may write
fo,—f -1 =1, (31a)

where £} is the total friction force in the junction 7.

It is evident that, while in dilute solutions the frictional force ff, acted as
the external force transmitted through the solvent from the boundary, in the
network system f¥ is simply a part of the response of the chain to the external
force applied through the other network chains connected by the junction.
Both these situations are illustrated schematically in Figure 5.

f; +1

_f/

(a) (b) (¢)
Figure 5. Force balance for the ith interaction centre: (a) in dilute solutions; (b), (c) in entangled
systems. f.,, is an external force, f;, is a frictional force, f, f;, ,, (%, £} ,) arc tensions of the
subchains (network chains).
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The difference between the force balance equations leads to quite different
kinematics of macromolecules in dilute solutions and networks respectively.
Junction velocities h; for the network system cannot be obtained from the
force balance (equation 31 or 31a) because f., is not defined explicitly and the
equation involves two unknowns: h and [. We will note, however, that due to
the coherence of the network system the local velocity gradients e; must be on
average equal to the macroscopic velocity gradient e,. We will assume in a
first approximation that all e, are identical

& =~ e, (32)
and therefore
h; = éoh; (33)

The other kinematic variable, i can be obtained from the simplified force
balance equation, putting h from equation 33 and averaging the interactions
with other macromolecules®*. The sliding rates result in the following form

I = Dy|f} (34)

where D = D(K, £, B, C) is a matrix depending on the contact and entangle-
ment frictions and f; are chain tensions including no friction terms (cf.
equations 25 and 26).

In the extreme case when the entanglement friction can be neglected as
compared with contact friction (¢ < Kh) one obtains

D =K 'Er! (35a)
and in the other case (contact friction negligible, ¢ > Kh)
D=¢1A (35b)

with

E={ 4 -4 2 (36)

The kinematic equations for network systems (equations 33 and 34) are
quite different to those for dilute solutions (equations 28 and 29), even
although in the ‘purely contact’ case (equation 35a) there appears the same
transformation matrix A known from the theory of dilute solutions.
Accordingly, the physical behaviour of both systems may be expected te
differ.

The other element of the theory is the kinetics of formation and dissociation
of structural elements. There is no such process in dilute solutions and one
can write:

Yin=0 37
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On the other hand, in entanglement networks, the existence of free chain ends
makes possible sliding-out and sliding-in processes forming the basis for a
non-zero kinetic term (Figure 6). The kinetic terms include the net change of
the distribution function, ¥}, and the rate of variation of the number of

w:}fi %

Figure 6. Sliding-in, sliding-out, mechanism of kinetic processes in entanglement networks
with free chain ends.

junctions per primary macromolecule, N. The theory of these processes is
not yet complete but the general form of ¥,,, may be expected to involve
several integral expressions

Px mLhL P = Y [ FOELL.L i) P*h + B,1 +T) P*®,T)dhdl (38)

where *F(h,..) is the frequency factor for the kth molecular process
responsible for dissociation or re-formation of a network junction. The
breakage or formation of a junction is a cooperative process involving
several network chains belonging to two different macromolecules. Hence
the convolution forms in equation 38. It is worth noting that similar kinetic
expressions for energetic networks were obtained by Scott and Stein*®.

Now, the equations of continuity for both molecular models can be
written in the form

oY/ot + (0%0h) (Yh) =0 (39)
for dilute solutions, and
oW*/ot + (8Yoh) (P*h) + (37/A1) (P*i) = W, — (BP*/ON)N (40)

for network systems. With kinematic characteristics from equations 28, 33
and 34, equations of continuity assume the form

0 /ot + (97oh) [Péoh + (kr /LD A{(3Ph/al) + (0¥/oh)}] =0 (39a)
and
op*  oT " |:3‘P*|h|

Z_[P*a il
3t + ah [P*éoh] + kT i D

+ |6'P*/6h|]
a
. op*
=¥Prhl)— —— 40
km(h ) 5N N ( a)
for dilute solutions and networks respectively.
To find the local and macroscopic stress tensors we will consider the
individual beads (subchain model) or network junctions (entanglement
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network) as the ‘interaction centres’. The tensions f; and f* as given by
equations 25 and 26 can thus be identified with pair-interaction forces for
the centres ‘7" and ‘i — 1. The interactions of distant elements are included
in f* as frictional contact terms. At the same time, the junction-to-junction,
or subchain, vectors h; can be identified with vectors R from equation 12.
Thus the local stress dyadics for the models considered assume the form

01 = cfh] (41)
for dilute solutions, and
ot = v(t) fFh (42)

for network systems. ¢ denotes the concentration of subchains, and w(t) is the
time-dependent concentration of network chains in the system considered.
Averaging over the corresponding distribution functions yields the macro-
scopic stress tensor for dilute solutions

¢ '[o + ckTI] = (3kT/al) (hh™(1 + ..)> + (y/]) <hTh@®bT)/hZY  (43)

In the case of networks with non-localized junctions two additional terms
appear gssociated with chain sliding 1

v 1[e* + vkTI] = (3kT/a) <bh™(1 + ...)/I> + y<hTh@hT)/Ih?)
— $K(BibhT) + &CIhTY  (44)

The other difference between the stress temsors ¢ and o* concerns the
averaging which in the case of dilute solutions involves only variables h
whereas for networks both hs and s are considered.

SOME COMMENTS ON THE THEORY OF DILUTE
SOLUTIONS AND NETWORKS

Since the ultimate solutions of the continuity equation for entanglement
networks is not yet available, the averages in equation 44 cannot be given in
an explicit form and the detailed discussion of the stress tensor is not possible
at the present moment. However, the comparison of the network theory
with the theory of dilute solutions enables one to draw several general
conclusions.

(1) Network theory with non-localized, entanglement junctions predicts
non-linear viscoelastic behaviour, stress relaxation and steady-state flow
effects dependent on the molecular weight of primary macromolecules and
polymer concentration.

(2) The continuity equation for dilute solutions (equations 39 and 39a) is
linear and separable into time and space parts. Therefore the time dependence
of the distribution function ¥ (and all the configuration-dependent physical
characteristics) can be discussed in terms of the linear theory of viscoelasticity.
This is not true for network systems where non-linear terms appear in the
kinetic contribution; in general, the linear viscoelasticity theory is not
applicable to such systems unless some additional simplifications are
introduced.

(3) In the range of Gaussian chain statistics and with neglected internal
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viscosity, the stress tensor in dilute solutions, ¢ is uniquely related to the
optical and electric polarizability tensors, all linear functions of the average
dyadics hh”. In network systems in the same approximation other stress
contributions appear due to chain sliding and the relation of stress to
polarizability is not unisignificant.

(4) Within the Gaussian range and with neglected internal viscosity the
continuity equation for dilute solutions can easily be normalized through
linear transformation of the independent variable h. Assume the orthogonal
transformation

h— Qpn (45)
such that
Q'Q =1
QTAQ = M>(diag) (46)

Application of this transformation to the variable h in equation 39a yields the
equation of continuity in normal coordinates (the matrix M is diagonal)

oy or . kT 3y oY
—37+% [‘Peon+fl'M<ﬁn+E):|-0 (39b)

Let us examine the possibility of a similar transformation in the case of
network theory. We will assume for the time being that the kinetic terms on
the RHS of equation 40a are linear, and that the matrix D in_ the kinetic
equations can be diagonalized by some orthogonal transformation P

PP =1
PTDP = S(diag) (47)
Now, both the configuration variables, h and 1 must be transformed with P
h- Py
1-Pi (48)
With these transformations equation 40a yields
ow* o o [39’*P|11| P ]
Z(P*é kT—PTD ' P
o oy (Feon) + kTP i oy
X aql* .
= ¥lu(Pn.P2) — (G NPy, P2)  (40D)

Even putting aside the kinetic terms (which in general are non-linear) and
assuming D to be diagonalizable (which is not always true; D may be
unsymmetrical, see equation 36), the transformation of the continuity equation
using the method of normal coordinates is not possible because of the
non-linear terms

PTD(P|y|/P4)
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appearing as the result of simultaneous transformation of junction vectors
h and contour lengths L. The normal coordinates method, so fruitful in the
(essentially linear) theory of dilute solutions, appears to be inapplicable
for network systems.
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