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ABSTRACT

A survey is given of some early and of recent descriptions of the origin of
barriers to rotation about single bonds. Special emphasis is given to general
theorems (virial theorem, integral Hellmann—Feynman theorem) which are very
helpful in analysing interactions between non-bonding atoms. The equivalence
of apparently different descriptions of the influence of lone pair electrons is

stressed.

If the energy of a molecule is considered as a function of nuclear positions
a number of minima can in general be established, corresponding to equili-
brium configurations of the nuclei. If the forces opposing the interconversion
of these configurations are neither large nor small the equilibrium configura-
tions are called conformations. The vagueness inherent in the words large'
and small' has the advantage of including a large number of investigators
(and a large variety of investigations) to their mutual benefit.

The barriers which separate different conformations are often closely
related to the barriers restricting rotation around single bonds. Bending
forces may be just as important as, for instance, in the pseudorotation in
cyclopentane. They are primarily responsible for the inversion phenomena
of ammonia and amines.

Steric hindrance is a third factor contributing to the occurrence and relative
stability of conformers.

Usually the same forces that are responsible for energy barriers also
determine the relative heights of the energy levels of conformers and thereby
their equilibrium distributions. Conformational analysis is therefore in
several respects served by an insight into the origin of these energetic inter-
actions. What one needs especially is a formulation of the interactions in
terms of quantities that appeal to one's chemical or physical intuition,
that are easy to employ and can be transferred from one molecule to the other.

There are rules of this kind, which seem to work excellently and suffice
for many purposes. They are based on extensive empirical data, but are
shaped according to theoretical expectations. Examples are found in the basic
work of Westheimer and in the important contributions by von Schleyer. One
may wonder whether more is needed by the conformational analyst. But it
seems that further insight into the origin of the pertinent forces is needed.
This applies especially to the forces of the type opposing free rotation
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in ethane. The need for more precise understanding of bending forces and
steric hindrance would appear to be of less importance.

I will therefore try to give a survey—-necessarily very incomplete within
the scope of this paper—-of the present ideas about the barriers to internal
rotation. A kind of state of the union': concealing what I want to hide,
because of ignorance, and displaying what appeals to me.

Let us start by considering some simple molecules that exhibit barriers to
internal rotation.

The potential barrier in ethane is well described by the function:

1 — cos 3 (p
v—v0 2

V0 is 29 kcal/mole, The same order of magnitude of V0 is found in many
comparable molecules where V mainly depends on the angle of rotation (
through cos 3 (p. The barrier in dirnethylether is 27, in dimethylmethane 34
and in trimethylmethane 39. These are average values since the energy
change by rotating one methyl group is not independent of the position of
other methyl groups. In methylcyclopropane the barrier is 29. A larger
number of more precise data are to be found in the review article by Wilson1
and in more recent papers by Dale2 and by Lowe3.

Comparing the barrier in ethane to the one in methylamine (20 kcal/mole)
and in methanol (11 kcal/mole) (cf. Figure 1) the first idea which presents itself
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Figure 1

is to regard the barrier as due to repulsions between non-bonded atoms or
between bonds. But the question that then arises is what kind of repulsion is
operating?

If it is due to long-range interaction between electric charges the extra-
polation to other, more complicated, molecules requires a technique which
differs from the extrapolation of short-range interactions of the type found
between closed shells of noble gases.

1. INTERACTIONS
At this point it may be appropriate to assemble a number of well-known

concepts which will serve to illustrate what kind of interactions will come up
for discussion. The starting point will be the Kekulé formulae displayed in
Figure 1. Each line may be thought of as representing an electron pair moving
according to a wave function in either valence bond or molecular orbital,
or an even more ingenious formulation.

(a) Coulomb and exchange interaction
If two atoms interact to form a chemical bond the binding energy can be

attributed—-in valence bond terminology—--to an exchange integral.
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In a simplified form, omitting overlap integrals where they are not essential,
the formula for the bond energy is:

E=C+J (1)

where C = coulomb integral and J = exchange integral. The coulomb inte-
gral represents an electrostatic interaction between fixed charge distributions
as they are present in separate atoms or in separate bonds. As compared to
the exchange integral its contribution to the bond energy is usually small.
This does not imply that its contribution to the magnitude of the barrier may
not be dominant. J has a large negative value. Its appearance is due to the
indistinguishability of electrons which implies a delocalization of all the
electrons present. According to the Pauli principle the total wave function
has to change sign if two numbers identifying the coordinates of two electrons,
spin included, are interchanged. For that reason the positive sign in equation
(1) is linked up with the presence of antiparallel spins in the electron pair
forming a bond. If the spins were parallel, as in a triplet state, the energy
expression would read:

E==C—J (2)

Spins of electrons in different pairs are uncorrelated and since the chance
of finding them parallel is (triplet state) whereas the chance of finding them
antiparallel is (singlet state), the average interaction between electrons in
different pairs is:

E=C—J (3)

The repulsive interaction of — -J is always present between bonds, between
bonds and lone pairs, etc.*

(b) Asymmefry induced in the pivot bond
If in ethane the carbon atoms participate in the total wave function with

s- and p-orbitals only, the p-orbitals with axes of quantization perpendicular
to the C—C bond will, because of symmetry, be equally occupied or working
with hybrids: the occupation of the sp3-hybrids involved in carbon—hydrogen
bonds will be equal. As a result the total coulomb as well as exchange inter-
action involving these orbitals has cylindrical symmetry and thus does not
contribute to the potential barrier.

In principle the participation of d- and j-orbitals should not be excluded.
This idea was put forward by Gorin, Walter and Eyring6 and has been recon-
sidered by Pauling7. Pauling estimates the amount of d- and fparticipation

*
Very often this repulsion is named after van der Waals, as a counterpart of the van der Waals

attraction. There is good reason for this, because both, repulsion and attraction, were introduced
by van der Waals in his famous equation to account for the non-ideal behaviour of gases. The
van der Waals attraction, however, has a different origin. It is a second order effect linked with the
polarizabilities of atoms and of molecules. Since it is convenient to have a separate name for the
repulsive interaction between closed shells one could follow the example of inorganic chemists
who use the term Born repulsion. Born4 introduced the expression Bjr to account for the
repulsion between closed shell ions in inorganic crystals and later (together with Mayer5)
investigated the repulsion described by b exp (— r,p).
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from the additional strengthening of the C—-H bonds which may result, using
the concepts of bond strength and promotion energy. The f-character of the
carbon valence state obtained in this way seems large enough to account
for the experimental barrier height. Unfortunately Pauling calls this result
hcompletely unreliable'. A somewhat related, but otherwise formulated,
asymmetry in the C—-C bond due to anisotropic polarizability has been
discussed in a qualitative way by Dale2.

Interaction through the carbon—carbon bond has, just as exchange
interaction, the advantage of a short range and could for this reason be
considered as a bond property which in one molecule would be the same as in
another.

(c) Resonance
Within the scope of localized bond models one might also consider

resonance with other Kekulé-like structures:

Iji II _____
H—H

H—C—C—H - H—C=C—H - etc.
I IHH HH

Figure 2

but this would lead to the eclipsed form being the more stable and can
presumably be neglected.

2. AB INITIO CALCULATIONS

Another approach, which does not lean on familiar valence bond pictures,
makes use of the Hartree—Fock or Self-Consistent Field method.

Starting from atomic orbitals, approximated by Slater functions or
Gaussians, molecular orbitals are constructed and the product of molecular
orbitals, including spin, is antisymmetrized according to the Pauli principle.
The energy is calculated with the complete (non-relativistic) Hamiltonian
and all the integrals are determined without invoking empirical parameters.

The first ab initio result obtained along these lines is due to Pitzer and
Lipscomb8. They used the smallest set of basis functions: on each hydrogen
atom a is-function, on each carbon atom a is-, a 2s-, and three 2p-functions.
The value of the energy difference between the staggered and eclipsed con-
figurations was 33 kcal/mole. This is quite a satisfactory result, somewhat
surprising in view of the error in the total energy of the molecule which
appeared to be 160 times as large. Evidently there was a large cancellation
of errors in subtracting the total energies of the two configurations.

Other ab initio calculations by Clementi and Davis (1966) (362 kcal/mole),
by Fink and Allen9 (252 kcal/mole), by Pedersen and Morokuma1° (288
kcal/mole) and by Pitzer1' (35 kcal/mole) also gave results close to the
experimental value of 29. Moreover these values seem neither to depend very
much on the extension of the basis set nor on the precise form of the basis
functions. Since the correct magnitude of the barrier is calculated with one
determinantal wave function only, correlation effects do not seem to be
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essential for the explanation of the barrier height. These observations suggest
that it should be possible to paraphrase the results in fairly simple terms.
This has indeed been tried in several directions, as will be discussed in Part
4 of this paper after various general theorems have been reviewed.

3. GENERAL THEOREMS
a) Virial theorem

Fr'om Schrodinger's equation a very general theorem can be derived,
which obtains a very concise form if applied to systems of particles with
electrostatic interactions. If in a molecule the total force on each nucleus
is zero, i.e. the nuclei are in a stable or metastable equilibrium configuration,
the kinetic energy of the electrons is equal to one half of the negative of the
potential energy V:

T— —V (4)

It was pointed out by Clinton12 that calculations which aim at an explana-
tion of the origin of the barrier from differences in electrostatic interaction
between fixed charge clouds, are necessarily at variance with the very
fundamental virial theorem. Unfortunately it has turned out that one does
not gain much insight from bringing a calculation into line with the virial
theorem. The condition imposed by the virial theorem can always be
satisfied by multiplying all the coordinates by a common factor. This scaling
of the wave function therefore hardly contributes to the understanding of
the origin of the barrier.

b) Variation principle
If 1 is a wave function, which deviates from a correct solution of

Schrodinger's equation /i by a small but arbitrary function ( a small
number ; an arbitrary function) then the corresponding energy E', calculated
as the expectation value of the Hamiltonian operator fi:

E= (5)
<1,11' liP'>

differs from the true energy E by terms that are at least second order in . E
is then said to be stationary; conversely, if the difference E' — E is at least
second order in c for arbitrary variations i/i' = i/i + , then E and ti are a
solution of the Schrodinger equation.

The variational method uses these statements to determine approximate
solutions i/i by requiring that the corresponding E values are stationary for a
restricted, appropriately chosen, set of functions .This makes it understand-
able why the total energy is rather insensitive to deviations of the approximate
wave function from the correct one, whereas other quantities like the kinetic
energy or potential energy separately are not, as is seen when applying the
virial theorem.

It is not to be expected that the difference between the energies of two
configurations of nuclei will be rather insensitive to changes in wave functions.
Nevertheless, when this observation has been made in a number of calculations
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it probably means that the origin of the barrier can be formulated in fairly
general terms.

On the other hand one may wonder whether rather different wave functions,
like those discussed by Pauling, containing non-negligible contributions of
d- and f-functions are just as acceptable on the basis of the variation method
and will also give the correct value of the barrier. It also makes it somewhat
doubtful whether an analysis of the wave functions determined up to now will
result in the correct interpretation of the barrier.

c) Hellmann—Feynman theorem
An important tool in interpreting the wave function has been introduced

by Parr13 as the integral form of the original differential Hellmann—Feynman
theorem. The derivation can be given in a few lines. One writes the Schrodinger
equation for both nuclear configurations, staggered (denoted as x) and
eclipsed (denoted as y):

HX = E [> (6)
PP y) = E y>

In the present problem the wave functions x> and y> describe the correspond-
ing ground states. From these equations one derives:

<yIH'x> =Ex<yx> (7)
<xlHIy> = E)<xy>

or, because of the hermitean character of H,

<yIHIx> = EY<yx)
Subtraction yields

<yIH'— HXI x> = (E — EX) <y (8)

This equation has the advantage that the sought-for energy difference
= E — EX is expressed with the difference operator AH = PP — HX in

which only one electron operator occurs. This follows from inspection of the
Hamiltonians, which can be written as:

H = T+ Oee + Va,, + V,, (9)

where Tstands for the kinetic energy operator, Vee for the electron—electron
repulsion, v,,,, for the nuclear—nuclear repulsion and Vne for the electron—
nuclear attraction. The difference between the configurations x and y only
shows up in v,,, and v,. and therefore:

EE <yx> = <y AH x> = <Y L\Vnn + iVneI X> (10)

ithA —t— X ndA —
fin — nn nn

—
Une Dne.

The barrier height AE can thus be calculated with the potential energy
operators Av and A which either do not contain the electronic coordinates
at all or only as one electron operator. This simplifies the calculations provided
the wave functions are known. The wave functions should even be known
precisely since the derivation of (10) starts from exact solutions of the
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Schrodinger equations. If only approximations to the exact wave functions
are known, correction terms should be added to (10), since otherwise EE
calculated with(10) maydiffer from E — EXcalculated with the values obtained
with formula (5).

The advantage of this method of analysing the origin of the barrier is the
elimination of kinetic energy or electron—electron repulsion operators which
are difficult to handle.

The factors determining the barrier height are reduced to electrostatic
interactions between nuclei and between nuclei and electronic charge
distributions. A disadvantage is the knowledge required of the overlap charge
distribution, obtained by multiplying the wave functions y> and x>, which
is often difficult to assess accurately and which is not always easy to vizualize.

4. ANALYSIS OF AB INITIO RESULTS

The application of the integral Hellmann—Feynman theorem has certainly
revealed interesting views on the origin of barriers to rotation about single
bonds. Since I do not feel able to give a simple explanation of the results
within the limited scope of this paper and an extensive discussion can be
found in the review article by Lowe (1968), I would rather restrict the present
discussion to two ways of analysing the outcome of ab initlo calculations,
one followed by Allen14, the other by Sovers, Kern, Pitzer and Karplus15.

Allen splits up the total Hamiltonian operator (9) into a repulsive com-
ponent T + J' + l' and an attractive component F and compares the
expectation values of each part when the angle of rotation about a single
bond changes. It turns out that in ethane the attractive component favours
the eclipsed configuration and the repulsive component the staggered one
with the repulsive component dominant. This picture is very similar to those
which are obtained when analysing in a similar way the interactions between
two He atoms or between two H2 molecules. From this similarity Allen
concludes that the barrier can be regarded as strongly influenced by the
Pauli principle.

This conclusion is very much in line with the analysis of the results of
Pitzer and Lipscomb8 by Sovers, Kern, Pitzer and Karplus15. They have
used the atomic orbitals occurring in Pitzer and Lipscomb's calculations to
construct bond wave functions for the C—C and the six C—H bonds.

The energy calculations for staggered and eclipsed ethane were carried
out once without antisymmetrizing the total wave function (Hartree
procedure) and also with complete antisymmetrization (Hartree—Fock
procedure). Within the Hartree calculations the barrier is due to electrostatic
interactions between fixed charge distributions. The Hartree—Fock treatment
introduces a change in the wave function by delocalizing the electrons
according to the requirements of the Pauli principle. Since the Hartree—Fock
calculations yield a reasonable value for the barrier whereas the Hartree
calculation does not, it is concluded that the repulsion due to the Pauli
principle—-compare equation (3)—can be regarded as responsible for the
barrier. It is the same type of repulsion that operates between closed shell
atoms or molecules, e.g. between He atoms or between H2 molecules.

This idea has been put forward several times in the past, but it had to
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await the quantification made possible by present-day computing techniques
before it could be accepted on firm grounds.

5. RECENT REFINEMENTS
A Hartree—Fock calculation with a much larger basis set which presumably

yields energy close to the limit that can be reached with this type of calcula-
tion has been carried out by Veillard1 6 His barrier value is 36 kcal/mole if
the nuclei are allowed no other displacement than is implied in rotating one
methyl group with respect to the other. If allowance is made of other dis-
placements as well the barrier can be lowered to 30 kcal/mole. Then the
C—C distance in the eclipsed configuration (1570 A) is larger than in the
staggered configuration (1.551 A) and the C—-H bonds are displaced slightly
away from the other methyl group, the HCH-angle being 107.00 in the eclipsed
as compared to 1073° in the staggered configuration.

This is an important observation in view of a transfer of ethane results
to a molecule such as cyclopentane. Here a displacement of the C—-H bonds
from a neighbouring CH2 group would be unfavourable with respect to the
other neighbour, which could result in a higher barrier value.

6. LONE PAIRS
Although ab initio calculations have been carried out for many more

molecules than ethane, it seems more difficult to arrive at a clear rationaliza-
tion of the results in terms similar to those used for ethane. It may nevertheless
be opportune to make a few remarks on the way the effects of lone pairs are
often illustrated. If one adopts a certain hybridization at the nitrogen atom
in methylamine or at the oxygen atom in methanol to account for the observed
bond angles, the atomic wave function of the single lone pair in methylamine
is fixed. For convenience let us assume sp3 hybridization. Then the lone pair
in methylamine occupies an sp3 hybrid. In methanol, however, the situation
is ambiguous. One could just as well say that of two electron pairs each
occupies an sp3 hybrid (Figure 3a) or that one pair occupies a pure p orbital
and the other an sp hybrid (Figure 3b).

Figure 3

For the purpose of calculating coulomb interactions or exchange inter-
actions both descriptions are entirely equivalent. If excitation or ionization
of one of the four lone pair electrons or charge transfer to an antibonding
orbital of a neighbouring bond has to be considered, then there is a difference
and the second representation (Figure 3b) has to be preferred. One must be
careful when considering a situation where a neighbouring C—-H bond is in
a staggered position with respect to the two lone pair orbitals in Figure 3a as
representing for this reason a stable configuration, whereas the same bond
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would eclipse the sp hybrid in Figure 3b. It would be better to regard the two
lone pairs together as forming one system with a charge distribution such
as shown in Figure 1 c.

7. CONCLUDING REMARKS

It would certainly be helpful to know whether the barrier in ethane can
be obtained additively from the repulsive interactions between pairs of CH
bonds or if higher order interactions in which three or more bonds are
involved are important as well. If the first situation holds it would be desirable
to deduce from ab initio calculations rules for the computation of the energy
of repulsion from the distances between bonds and from their relative orienta-
tion.

Moreover, if it is correct to regard the overlap of bond wave functions—-
together with the Pauli principle—- as the origin of the barrier to rotation
about single bonds it might be worthwhile to re-evaluate the ideas put forward
by Pauling7. The introduction off-orbitals into the description of the C—H
bonds concentrates the wave functions more in the bond direction. It may be
that the diminishing overlap between bonds emanating from neighbouring
atoms is replaced by interaction between f-orbitals, leading to the same
barrier, but capable of a different interpretation. Until further work has been
done it will be wise to look at barriers restricting rotation about single bonds
as originating from the familiar repulsion between closed shells.
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