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ABSTRACT

Theories of molecular light scattering (elastic, inelastic and non-linear scat-
tering) have been described, also the experimental procedures for light scattering
studies. An attempt has been made to compare theoretical and experimental
work in this field. It is concluded that the measurements of spectral distribution
of scattered light are capable of giving much new and additional information to
the theory of liquids. Light scattering will, it is hoped, form an important tech-
nique for investigating the structure of dense media as well as that of polymer
and colloidal solutions.

INTRODUCTION

In the history of light scattering it is evident that in its early days the
theory developed much faster than the experimental information could be
gathered. This situation was mainly the result of experimental difficulties
caused by the lack of suitable instrumentation, such as intense light sources
or highly sensitive photodetectors. By the rapid development of experimental
devices one would expect that the gap between the theory and experiment
would gradually disappear. The situation, however, seems to be just opposite.
Superspecialisation among scientists has led to a separation of the theoretical
and experimental work, as can be observed especially in the field dealing
with dense fluids. In studying these systems, most of which appear in the
liquid phase, it is not possible to formulate simple models as in gases or
crystals. This difficulty has compelled theoreticians to use more and more
refined mathematical methods, most of which are inadequate for direct
numerical evaluation. Even for the simplest liquids it is necessary to intro-
duce approximations which may cause such deviations from reality that
comparison with experimental data is often impossible. The theoreticians
are, therefore, devoting most of their interest to simple systems which are,
as a rule, experimentally hardly accessible. The experimentalists are, on the
other hand, working predominantly with complicated systems which are
not very suitable for testing theories. In doing so, they often work without
a sound theoretical basis, and the data collected are predominantly of an
empirical nature.
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Aware of this situation, Frisch and Salsburg' have recently undertaken

an important task to collect facts on the statistical mechanics of liquids.
Although their book is devoted primarily to simple liquids, it represents an
up-to-date compendium of theoretical and experimental data which are
useful for discussing other, more complicated systems. One chapter deals
with light scattering, and its scantiness, resulting from lack of experimental
data, is the best challenge for experimentalists to intensify their work on
liquids.

The aim of this lecture goes beyond the scope of the book of Frisch and
Salsburg. It is an effort of an experimentalist to apply the existing theories
on light scattering in liquids to systems which are much nearer to macro-
molecular chemists—to substances which, in normal laboratory conditions,
are liquids. In the growing field of light scattering investigations on macro-
molecules more and more attention is being paid to the problems of inter-
molecular interactions, as for instance in concentrated solutions or binary
and multicomponent mixtures. Satisfactory theories capable of interpreting
experimental phenomena encountered in these systems are still lacking.
Here, less complicated systems of similar properties, such as pure liquids,
may facilitate the theoretical approach and let us know how to handle more
complicated systems both theoretically and experimentally. A unified
picture of the present state of investigations in the field of molecular light
scattering will be given, and an attempt will be made to show to what extent
the theoretical results can be applied in experimental work on pure liquids.
There is another practical reason which makes the scattering in liquids quite
important. Pure liquids serve widely as standards in calibration of light
scattering photometers, and exact knowledge of light sca'ttering properties
of liquids should be a part of everyday practice in a light scattering laboratory.

THEORY OF MOLECULAR LIGHT SCATTERING

Theory of elastic scattering
The reason why optically homogeneous systems like liquids and gases

scatter light lies in the fact that molecules exhibit thermal motions. Thus,
the dense medium appears to be homogeneous only when observed macro-
scopically. A microscopic approach shows that this thermal motion produces
fluctuations in thermodynamic functions leading to fluctuations in the
refractive index. If we are considering a volume element V, small in com-
parison to the wavelength, but big enough to obey the laws of statistical
thermodynamics, then the Smoluchowski—Einstein2'3 theory gives as a
result

R(90) = (ir2/2))V <(A)2> (1)

where R(90) is the Rayleigh ratio measured at a scattering angle of 90 degrees
and defined as

R(90) = J(90)r2/J0V (2)

where J(90) is the intensity scattered by the volume V at 90 degrees, J0 is
the intensity of the incident unpolarized beam, and r is the distance between
the volume and the detector. Formula 2 can be replaced by a more convenient
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expression. If n is the number of scatterers (particles, molecules) in V, and
1(90) is the intensity scattered by a single scatterer, then J(90) = nt(90), and
with the number density N = n/V one obtains

R(90) = NI(90)r2/J0. (3)

This expression is more customary in single particle scattering and in the
work with macromolecules. The symbol in equation 1 stands for the
wavelength of light in vacuo, and <(Ac)2> is the mean-square fluctuation of
the dielectric constant c (measured at optical frequencies) about its mean
value.

The whole problem of solving the scattering problem is now to evaluate
the fluctuation term <(Ac)2> of a given molecular system. In general this
system exhibits optical anisotropy and the fluctuation Ac has to be regarded
as a tensor denoted by Ack.

As known4, it is possible to separate Ack into two parts:

ik Ajk + Acs, (4)

the first term belonging to the so-called isotropic fluctuations and the
second term being connected with anisotropic fluctuations. Here öik is the
Kroneker delta, and the components of Acs = 0 for i = k. The total
intensity of scattered light should therefore be proportional to

J <(Ac)> = <(Acis)2> + <(Acs)2> (5)

assuming that Acis and Ac are statistically independent.
Kielich5 was the first to give a convenient expression for the Rayleigh

ratio, written in a slightly different form:

R(90) (7t2/10))(5F + l3Fanis), (6)

where F and Fans are the isotropic and anisotropic molecular scattering
factors respectively. Factors F and Fanis are proportional to mean-square
isotropic and anisotropic fluctuations. This formula is valid if the incident
beam is unpolarized and the scattered intensity is measured without placing
a polarizer before the detector.

A more generalized expression valid for light of arbitrary polarization
and various scattering angles has been deduced5'6 and can be written in
the form:

R(O) = (2/5)L4) [5F cos2 + (3 + cos2 iQs)Fanjs] (7)

Here fl is the angle between the electrical field vectors L and A of the
incident and scattered beams, respectively. The indices i and s in and
denote arbitrary orientation of both vectors.

Most of the light scattering experiments are performed by orienting
both F1 and ! perpendicularly and parallelly to the scattering plane defined
by the propagation vectors of the incident and scattered beams. By working
with linearly polarized incident beams and measuring linearly polarized
components of scattered radiation it is possible to measure four combina-
tions of Rayleigh ratios which we could name partial Rayleigh ratios":

VRh, hRV, hRh, where the indices v and h denote vertically and horizontally
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oriented electric vectors, respectively. Instead of using the notation 1R,
we may take a simpler and more customary set of symbols introduced by
Krishnan7: J/, H, Vh and Hh, where the indices denote the polarization
status of the incident beam, and the capital letter stand for the orientation
of the polarizer before the detector. It is easy to see that subsequent formulae
may be derived from equation 7:

—
V(O) = (it2'5A4) (5F1, + 4Fanis) = 0
i'u3 tj IIi\ 24\ E' ITh 0
VhU) — iiytU! = 7t /'LO aii is

Hh(O) (m15)) [5F cos2 0 + (3 + cos2 O)Fanjs] �2 = 8.
If the incident beam is unpolarized (index u) or the polarizer is not placed
in the scattered beam (capital letter R), four other partial Rayleigh ratios
can be measured:

V(6) R(O) I<(O) + Vh(O) = (7t2'5)L4) (5F1 + 7Fanis) (11)

H(O) = Rh(O) = Hh(O) + H(O)
(7r25)L4) [5F cos2 0 + (6 + cos2 0)Fanjs]

Finally, the total Rayleigh ratio R(6) can be represented as a sum of four
partial Rayleigh ratios:

R(O) = [Jç(8) + Vh(0) + H(O) + Hh(O)]/2
= (2/10,4) [5(1 + cos2 O)F + (13 + cos2 O)Fanis]

From equations 8 to 13 it is obvious that some of the partial Rayleigh
ratios are functions of the scattering angle (Hh, H, Rh, Re), whereas the others
are constants independent of 0.

The molecular scattering factors and Fan are of the greatest importance
in describing a molecular system, since they can be simply evaluated from
the absolute values of Rayleigh ratios. They can be theoretically evaluated
by the methods of statistical thermodynamics.

From equations 1, 5 and 6 one can deduce the relationships:

= V<(tc>
and

— 5j7/( anis2anis — 13 \ 8ik
From the two mean-square fluctuations the isotropic one can be readily
calculated. This was first done by Einstein3. The dielectric constant is taken
as a function of density and temperature, and the final result is8:

F5 = kTKT(N/aN) + (RT2/NC) (E/T),
where R is the gas constant, and C, the molar heat capacity at constant
pressure. Coumou et a!.9 have shown that equation 16 can be written with
a very good approximation as:

F5 =
where k is the Boltzmann constant, T the absolute temperature, KT the
isothermal compressibility, N the number density of molecules, and & =
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with n being the refractive index of the dense medium. Thus isotropic
scattering arises from density fluctuations, the fluctuations in temperature
being negligible. The result of this phenomenological theory is very con-
venient for numerical evaluation since equation 16 consists only of physical
constants which are measurable. There have been attempts to calculate
F in terms of mean molecular polarizability c. Kielich5 arrived at an
expression which in our definition of F has the form:

F1 = 16ir2N2 [(n2 + 2)'3] 2 1 + 4it [gfr) — N]r2 dr} (18)

with g(r) being the radial correlation function. As shown by Ornstein and
Zernike10, the expression within the brackets is equal to kTKTN and can
easily be determined experimentally. An important property of kTKTN is,
as the system approaches the ideal gas state, kTKTN —+ 1. Expression (18) is,
however, more difficult to handle than (17), since the molecular polarizability
in dense media is strongly influenced by internal fields which are not easy
to define at present. At low densities these effects may be neglected, but in
liquids they have to be taken into account. It has frequently been overlooked
that instead of c, which is valid for separate, noninteracting molecules, one
has to use , the effective polarizability of a molecule placed in an internal
field1 1• A correction for changes in average polarizability owing to the
increasing density of the system has also to be taken into account1 1

The derivation of Fan in terms of useful physical constants is more
complicated. Kielich5, and Pecora and Steele6 calculated <(Aes)2> and
arrived at simpler expressions only in the case of axially symmetric molecules.
This part of scattering can be explained as an effect of fluctuations in the
orientation of anisotropic molecules. As shown by Benoit and Stockmayer' 2,
in the case of dense systems with strong intermolecular interactions Fanis
is proportional to the mean value5 <fiqZ(3 cos2 0pq — 1)> where 0pq is the

angle between the axes of symmetry of a pair of molecules. This factor is
also connected with an integral function A containing the orientational
correlation function1 3 The whole effect of the orientational correlations of
the molecules may be condensed in a factor G which is related to A by:

G=1+JA (19)

For axially symmetric molecules A can be written in the form13:

=
JJ(3 cos2 0pq 1)g2 (rn, Tq) dr dtq (20)

where g(2) (tn, tq) is the two-molecule correlation function, and TpTq are the
variables determining the position and orientation of molecules p and q.
The important property of function A is that the value 1A = 0 indicates the
absence of angular correlation between molecules, whereas A <0 should
show a tendency to perpendicular orientation of the main molecular axes
and 1A > 0 a tendency to parallel orientation.

Fanis depends also of what is called the optical anisotropy 52 of isolated
molecules and is defined as:
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( \2 i

(52 —
— r k2 3! r —

—

2(c1 + c2 + L3)

where 1' o2 and stand for the polarizabilities in the directions of the
three principal molecular axes. Expressed in terms of the fluctuation theory
and defined as in equation 6 Fanis can be written as14:

Fanis = ((52 GIN) (Nê/ôN). (22)

In the practice of light scattering it is also customary to measure ratios
of scattered light intensities measured with certain combinations of polaroids
in the incident and the scattered beams. One can define:

D(6) = H(O)/V(6) = 3Fanis/(5Fis + 4Fanis) (23)

Dh(8) Vh(O)/Hh(O) 3Fanis/[5Fis cos2 6 + (3 + cos2 O)FanisI (24)

D(O) = H(O)/V(O) = [5F5 cos2 6 + (6 + cos2 O)Fanis]/(5Fis + 7Fanis) (25)

These quantities are frequently called depolarization ratios, although the
term 'polarization ratios' would appear to be more appropriate15. From
all polarization ratios D is the most suitable for detection of optical aniso-
tropy, since it is not dependent of scattering angle, and D—÷0 if (52

It is also useful to define an apparent optical anisotropy:

A2 Fanis/Fis = (52G/1TKTN = 5D(9O)/[6 — 7D(90)] (26)

which passes into (52 as the system approaches the ideal gas state, i.e.
kT,cTN — 1 and G — 1.

From the foregoing formulae it is obvious that the isotropic light scattering
cannot be measured directly. By using one of the polarization ratios it is
possible, however, to eliminate Fanis and obtain the isotropic part. Equation
13 may be written as:

R(O) = R(O) + Ranis(O) (27)

with

R15(6) = (2/2A4) (1 + cos2 O)F15 (28)

and

Ranis(O) = (m2/10)) (13 + C052 6)Fanis (29)

It is customary to eliminate Fanis by using D. For 0 = 90 degrees one
arrives at the expression

R15(90) = R(90)

where [6 + 6D(9O)]/[6 — 7D(90)] is the well-known Cabannes factor.
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R values determined from (30) may serve now for comparison with the
theoretical values derived from:

R1(90) = (72/2))kTKT(NaS/aN) (31)

If the liquid is a multicomponent mixture of molecules exhibiting different
polarizabilities, then additional fluctuations in the dielectric constant have
to be taken into account. It was shown by Einstein3 that the additional
scattering effect is due to the fluctuations in concentration. As a first approxi-
mation, it is possible to suppose that the concentration fluctuations are
statistically independent of both the density and anisotropic fluctuations.
In the case of a binary mixture the isotropic part in equation 27 can be separa-
ted into two parts, as shown by Kirkwood and Goldberg16:

R(O) = Rd(8) ± R(O) (32)

where Rd stands for density fluctuations and R for concentration fluctua-
tions. In order to evaluate R one has to determine Rd and subtract it from
R calculated by equation 3017. Rd can be calculated by18:

R — R KT(N?/0N)T 33d — d, 0
KTo(N/äN)T,o

(

where the subscript zero denotes the pure solvent and other nonsubscripted
values stand for the solution. It has been proposed by Bullough19 that an
extra term has to be included in the isotropic Rayleigh ratio of mixtures
leading to an expression of the form

= Rd
[1 + 4(nNcr/Nc;PT1

+ R (34)

Generally R depends on the interactions between molecules and deviates
from linear mixture rules, so we can write:

Kc/R = (1/M) + 2Bc (35)

with

— 2 2i 2 i4T— floUflIUCp,T/1o1A
where M is the molecular weight of the solute, c is the concentration of the
solute in g/ml, and NA Avogadro's number.

A satisfactory theory explaining the anisotropic part of scattering in
multicomponent systems is not available at present. Although experimental
data indicate2022 that in binary systems Fan factors of both components
are additive, it is difficult to give an exact solution of the problem since
useful theoretical models for internal fields in multicomponent dense systems
have not been developed explicitly.

Theory of inelastic scattering
Soon after the basic principles of Rayleigh scattering in dense systems
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were delineated by Einstein, it became apparent that scattering effects in
liquids should produce some spectral broadening of incident radiation
frequency. Those effects, predicted first by Brillouin23 and Madelstam24,
were experimentally confirmed by Gross25 and others4. Brillouin made his
prediction by assuming that light in dense media is scattered on inhomo-
geneities resulting from the propagation of sound waves, and arrived at the
result that the scattered light should consist of a doublet with components
symmetrically shifted from the incident frequency v0 by8:

= ±2v0(v/c) sin (0/2) (37)

where v and c are the velocities of sound and light in the medium, and 0 is
the scattering angle.

Experimental work has revealed, however, that this doublet is only a
part of the whole scattering. It has become obvious that some of the scattering
occurs also at the incident frequency v0, and also that there is always some
background scattering, symmetric around v0, whose frequencies normally
extend over much of the range Brillouin's doublet, the so-called wings of
Rayleigh scattering'.

It is not intended to give here a review of the theory of inelastic scattering
since this has been done very thoroughly in the book by Fabelinskii4, but
only to discuss some important points necessary for understanding recent
experimental data.

The first successful approach to explain the fine structure of Rayleigh
scattering was done by Landau and Placzek26. They started with the iso-
tropic fluctuations <(&ls)2 > but instead of taking as a function of density
and temperature, they chose entropy and pressure as the independent
variables. In this way, they were able to separate isotropic fluctuations into
isobaric entropy fluctuations which do not propagate in liquids and are
the source of the central, unshifted Rayleigh component of the scattered
light, and into isentropic pressure fluctuations (sound waves) which are the
source of the Brillouin doublet. The isotropic molecular scattering factor
can be written as:

RT2=
NC

(ac/aT) + kTk5(N36/0N) (38)

where ic5 is the adiabatic compressibility and C, the molar heat capacity
at constant pressure. Here the first term describes the unshifted Rayleigh
component and the second belongs to Brillouin components.

Attempts have also been made to develop theories from the standpoint
of the molecular theories of liquids. Pecora and Steele6 have developed a
theory valid for fluids consisting of nonspherical molecules and have arrived
at expressions for the elastic and inelastic scattering expressed in terms of
angular moments of the generalized pair distribution function of the fluid.
It was shown that simply, if an additional time dependence of the electric
vectors is considered, this leads to formulae containing frequency dependent
variables. However, the time dependent g(2) (tn,tq) functions could not be
explicitly obtained so far in terms of some measurable quantities. Mountain27
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showed that essentially the same results as obtained by Landau and Placzek
can be derived if density fluctuations are considered to be time dependent.
Other theories28'29 did not elucidate the situation further, so a proper
connection between theory and experiment remains a problem for future
investigations.

Although the general theory of Pecora and Steele includes orientational
scattering, some more approximate theories seem to be useful in explaining
experimental results. Among these, one has to mention the first theory
of orientational scattering given by Leontovich3° who calculated the time
dependence of <(As)2> by assuming that small disturbances from equi-
librium are linear. The basic result from his theory is the prediction that the
shape of Rayleigh wings should be Lorentzian, and that the ratio of intensities
of vertical and horizontal components in the wings, 'H and should be:

I I — 39H! V — 4

Later theories were developed predominantly by the Russian school4,
and together with the theories of Pecora and Steele6 and the recent work of
Pinnow et al.29 all predict the Lorentzian form of spectra and 1H/'v =

Theory of nonlinear scattering
Buckingham31 was among the first to suppose that intense light beams

might induce optical birefringence in isotropic media. This idea was further
developed by Kielich5 in his theory of molecular light scattering and sub-
sequent papers, but was experimentally confirmed only a few years ago by
several authors32' who used an intense laser beam. The whole topic was
recently reviewed by Kielich34, so only a few of the more important points
will be mentioned here.

If a molecular system is illuminated with an intense light beam, the scattered
intensity J becomes a nonlinear function of the incident intensity Jo:

I = S110 + S2I + S3I + ... (40)

Here S1 defines the normal linear Rayleigh scattering, and S2, S3,.., are
the factors defining higher order nonlinear scattering due to reorientation
of molecules and nonlinear polarizability. The basic process in nonlinear
scattering35 consists of irradiating a molecule with two quanta of frequency
v and scattering a single quantum of frequency 2v. This process could be
observed in H20, CCI4 and CH3CN by Terhune et a!.33 by means of a
giant-pulse focused ruby laser beam.

Kielich36 has shown that nonlinear scattering can be treated formally
in a similar way to linear scattering. He could estimate the molecular scatter-
ing factors for nonlinear second harmonic light scattering and showed that
it is possible to separate them into isotropic and anisotropic parts. Second
order polarization ratios could be deduced for various types of molecules.
Thus, for example, for liquid CCI4 the theory gives DV =4 in the case when
the action of the molecular field was neglected. The measured value33 was
about . If the effect of the molecular field was taken into consideration,
the theoretical value could be lowered and brought into a better accordance
with the experimental value.
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It is important to note that in dense media there exist strong molecular
fields which can produce not only linear, but also nonlinear polarization
of molecules, even if the external fields are weak37. Therefore, the nonlinear
scattering appears to be very sensitive to molecular interactions and structure.

The investigations of nonlinear scattering are connected with many
difficulties, most of them arising from the experimental side. The effects in
molecular systems are mostly small (of the order of 10—13 of the incident
intensity3 3) and one has to work with extremely intense laser beams, which
in turn can provoke some complications (e.g. shock waves and dielectric
breakdown34). However, in colloid and macromolecular systems the effects
are much more pronounced and therefore the nonlinear light scattering
appears to be a promising field for future studies.

EXPERIMENTAL PROCEDURES AND RESULTS

The most important part of the efforts in experimental light scattering
work with liquids belongs to the determination of absolute Rayleigh ratios.
Seven years ago Kratohvil et al.38 gave a critical survey of Rayleigh and
polarization ratios found in the literature in connection with the calibration
of light scattering photometers. A part of this discussion was dealing with
the reliability of the so-called high' values of Rayleigh ratios for liquids.
The suggested best values for benzene at 20° are R(90 465 x 10_6 and
(155—160) x 10' cm1 for 436 and 546 mt, respectively. Kratohvil et al.
arrived at these values after careful critical examination of calibration
procedures applied in every particular case of the reported Rayleigh ratio
for benzene. Since then the great majority of reports on Rayleigh ratios of
liquids have confirmed the reliability of the above data.

Although the discussion on proper calibration procedures of light scatter-
ing photometers can be regarded as practically concluded, papers occasionally
still appear which do not satisfy the requirements of a reliable calibration.
It is therefore assumed that a short review of these problems might be of
value for future work.

There are two methods which are predominantly used for the determination
of Rayleigh ratios: (a) the Brice working-standard method39, and (b) the
standard scatterer method. Although it is frequently recognized that Brice's
method leads to reliable absolute intensities41, the experience from author's
laboratory has shown that this method can lead to systematic errors, if
the geometry of the apparatus has to be changed, and this is not made
properly. In some cases, it is difficult to track the sources of these deviations,
and calibration with a standard scatterer appears to be the best and most
straightforward method. One of the most suitable standard scatterers is
liquid benzene, which can be easily prepared in a pure, water- and dust-free
form. Rayleigh ratios are obtained from

R1(O) = C C, f(O) (41)

where C = Rj90)/15(90) is the calibration constant. Here I denotes galvano-
meter deflections, the subscript s stands for the standard (in this particular
case it is benzene), and C is a complex relative optical correction factor
consisting of corrections for differences in the refractive index, volume and
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reflections. It is always necessary to determine C when the refractive index
of the measured liquid differs from that of the standard.

The correction factors have been thoroughly reviewed41—43, and it has
been noted that both the refractive index correction44 and the volume
correction42 are important for the determination of Rayleigh ratios by the
standard scatterer method. For the special geometry when the detector 'sees'
within the edges of the incident beam Hermans and Levinson45 have shown
that the total correction should be equal to the ratio of the squares of the
refractive indices. Most authors simply use the n2-correction of Hermans
and Levinson without further checking. It could be shown41 that the n2-
correction really consists of a product of relative refractive index and volume
corrections. Data in Table 1 may be taken as an example. They were derived

Table 1. Relative optical correction factors for the Oster-Aminco
photometer at 25 using a rectangular cell. n1 = refractive

index of water n2 = refractive index of benzene.

0(m1t) (n2/nl)2 C C e;c
546 1268 1171 1083 1270
436 1282 1181 1087 1283

C;, = C, 2:C, calculated from the formula of Carr and Zimm. J. Chess.
Phys. 18, ll6 ('1950).

C:. = C2:C C calculated from the forula of Kerker et al.. J. Pa/veer
Sci. A2, 303, case 11(1964).

for the geometry of the Aminco photometer from equations given in previous
papers41'42. It has been proved14 that the geometry of this photometer
satisfies the requirements for the n2-correction. If the detector sees' past the
edges of the incident beam, the n2-correction appears to be too low. So, for
example, in the case of the Brice-Phoenix photometer with standard apertures
when working with the standard scatterer method the real correction should
be 2 per cent higher than the n2-correction for the system benzene—water
at 436 mt. Since this method of determining Rayleigh ratios is a relative
one, the reflection correction43'46 is normally cancelled out41. It can be
concluded that in the case of a proper geometry (i.e. when the detector 'sees'
within the edges of the incident beam) equation 41 can be simply written as:

R1(O) = (n/n)2 R(9O)/I(9O) 1(O) (42)

When polarized Rayleigh ratios have to be determined, one can proceed
in various ways. With the Brice working-standard method one can use the
Brice original formula, but because of definition 13 there should be an
additional factor in the formula40. Another method consists in measuring
the attenuation factors of the polarizing filters (or prisms) placed in both
the incident and the scattered beams14. One can measure it directly or from
the scattered intensities of any liquid by adding galvanometer readings.

Another correction appears to be important when working with the
standard scatterer method. That is the correction for the different sensitivity
of the detector to light beams polarized in different planes. CD is defined41
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as the ratio of galvanometer readings for light directly incidenting onto the
detector, i.e. CD = I(O)/I,(O). Therefore all readings made with a horizontally
oriented polarizer before the detector should be multiplied by CD. This
correction factor varies for different detector tubes and wavelength, and in
our experience it can take values between O9 and 11. This difference in
sensitivity might influence Rh values, a fact not taken into consideration
in the past. It can be deduced that the polarization correction factor for Rh
amounts to [1 + D(9O)]/[1 + D(9U)/CD]. In the case when Dh(90) = 04
and CD = 11 this factor is 103 and may play a role in precise determination
of Rh. In most cases, however, the differences in polarization sensitivity
are 2 per cent or less, so that correcting R becomes unimportant.

It is interesting to note that several years ago Rozhdestvenskaya and
Vuks47'48 described a different method for the determination of Rayleigh
ratios of pure liquids. They combined lateral scattering measurements with
transmission measurements made both on pure liquids and polymer solu-
tions with the same liquid as the solvent. From the ratio of laterally scattered
intensities and from the difference of the logarithms of the transmitted
intensities Rayleigh ratios were determined. The authors obtained data
nearer to the group of 'low' values. On the basis of these results Vuks49
has recently made some theoretical considerations in trying to prove the

E
U

x
0
0
.0
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>,0

Figure 1. Angular dependence of the Rayleigh ratios R(O), H(fi and H1(O) of benzene at 25C
and 546 and 436 mp. Points are experimentaL curves theoretical.
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GJURO DEELR

exactness of Slow' values. It appears, therefore, to be important to examine
the reliability of their experimental procedure. Their method has the advant-
age of eliminating the n2-correction, but one can deduce easily that the
precision of the method is mainly influenced by the precision of transmission
measurements. In this particular case the main part of the error arises from
the transmission measurement of pure benzene. For a cell of 100 cm path
length which was actually used one can estimate an error of at least 10 per
cent. Since it may be assumed that the other three intensities have an error
of several per cent, the total error might be about 20 per cent which by far
exceeds the precision of the methods discussed previously and puts some
doubt on the reliability of their results.

By studying the angular distribution of the scattered intensities it can be
shown that for fluids formulae 8—13 and 23—25 hold without any exception.
This behaviour was observed frequently on gases and liquids'8' The
only deviation noted56 could later be attributed to remarkable experimental
errors57. An illustration of the angular distribution of all measurable light
scattering quantities can be seen in Figures 1 to 3. The points are the values
measured on benzene14 and the curves are theoretical. The calculation of
theoretical values will be discussed later.

By concluding this discussion it should be emphasized that Rayleigh
ratios discussed here represent the integrated intensities of the whole
spectrum of scattered light. Mostly, experiments are performed with no
special precautions for elimination of Raman frequencies, since the amount
of those is normally below the experimental error58. Therefore, all Rayleigh
ratios are a measure for the integral electromagnetic energy scattered with
a spectral distribution around the incident frequency v0.

COMPARISON OF THEORY AND EXPERIMENT

The crucial point in the evaluation of theoretical light scattering data is
the calculation of molecular scattering factors F and Fanjs.

For comparison with experiments F can be derived from equations 28
and 30:

= (24/1t2)R(90) (43)

may be derived directly from the measured values of V,(8) or H,(O)
by equation 9.

In calculating F one can start from the approximated equation 17 with
the parameter (N8e/N)T which can be best determined from the measured
(5/P)T values, as it follows from thermodynamic relationships. A very
convincing proof of this was given by Coumou et al.9 and by others40' 59
In the past, however, owing to the lack of experimental N3e/ÔN data, this
quantity was usually determined by one of the relations between the refractive
index and density. Einstein3 used the Lorentz—Lorenz function;

(n2 — 1)/(n2 + 2) = eN (44)
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LIGHT SCATTERING IN DENSE MEDIA

c being a constant containing the polarizability of molecules, and arrived
at the expression:

(N8/ôN)T = (,2 — 1) (n2 + 2)73 (45)

At that time the experimental values of Rayleigh ratios were systematically
too low because the refractive index correction was not applied. As the ratio
between these incorrect experimental values and the theoretical ones
calculated by equation 31, with NE1s/N calculated from (45), amounted
in most cases to roughly the factor (n2 + 2)2/9, Ramanathan6° and Rocard61
were led to an artificial assumption that the factor (n2 + 2)29 arises from
the presence of the medium surrounding a molecule and that the properties
of this medium do not undergo changes from fluctuations in small volume
elements. Therefore, this factor should be regarded as a constant during
the differentiation process62. So they actually made use of the so-called
Newton—Laplace function:

n2lcN (46)
and obtained

(NE/N)r = fl2 — 1 (47)

It is interesting to note that Vuks49 has recently tried to derive (Nle/N)T
using a similar assumption, i.e. by assuming the reacting field fluctuations
to be zero, and arrived at the expression:

(N!NT = (n2 — 1) [3n2/(2n2 + 1)] (48)

Equation 47 gives too low values of Ncc1aN if compared with the experimental
values. The values from equation 48 are somewhat higher, but still signifi-
cantly low. On the other hand, equation 45 tends to give higher values.
From other relations between the refractive index and the density the
Gladstone—Dale function yields:

(Ne/0N)T = 2n(n — 1) (49)

and leads to lower values. The best results could be obtained from Eykman's
empirical formula44'63' which gives after differentiating:

(N8/8N)T = (n2 — l),[1 — (n2 — 1)/2n(n + 04)] (50)

The values of N1'N obtained by different formulae are compared with
experimental values in Table 2. It is obvious that none of these derivations
leads to fully satisfactory results.

The main shortcoming of all the preceeding formulae seems to be in the
supposition that the molecular polarizability is constant. More refined
theories64'65 show that in dense media molecules are compressed and the
result is a decrease in c at high pressure. If the density dependence of polariz-
ability is taken into consideration, functions of the form66:

(n2 — 1)j'(n2 + 2) = N[1 + S(N, T)] (51)

are obtained, where S expresses the density and temperature dependence
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LIGHT SCATTERING IN DENSE MEDIA

of . The density dependence of the Lorentz—Lorenz function is confirmed
by the experiment. One of the first empirical forms of equation 51 was given
by Rosen67:

(n2 + 2)/(n2 — 1) = (a/N) + b. (52)

Here a and b are constants for a given temperature and frequency. Theoretical
work68'69 could show that b is associated with the radial correlation function
g(r) discussed before.

Recently Eisenberg70'71 has shown that the changes in the refractive
index with pressure and temperature can be represented by a function of
the form:

(n2 — 1)/(n2 + 2) = ANBe_CT (53)

where A, B and C are constants.
By differentiating equation 52 one obtains1 1:

(N/aN)T = (n2 1) (ii2 + 2)3(1 + bN/a). (54)

and from equation 53 it follows:

(N0c/f3N)T = B(n2 — 1) (n2 + 2)3 (55)

Table 3 gives values of (N3/N)T calculated from both equations. The
agreement between the calculated and the measured values is generally
better than for the functions without the density correction. In view of the
fact that functions (52) and (53) can be associated with the theory of refractive
indices in dense media, they seem to be superior to other refractive index
functions. Thus it is apparent that the derivation (N?ic!ÔN)T is less sensitive
to internal field changes and models, but mostly to density effects on the
polarizability c. This is indicated by the results of calculations with polariz-
ability functions having differently defined internal fields but no density
dependence. Thus, for example, by taking the Lorentz ellipsoidal field72
the polarizability function can be written in the form:

— 1 = [1 + (n2 — 1)A1]1 (56)

where the summation has to be performed over three axes of the polarizability
ellipsoid, and A are the shape factors73. One gets the result:

(NEIâN)T = (n2 — 1) [1 + (n2 — 1)A]1
(57)

From this formula, by taking the values of the parameters from literature74,
the value (N5/aN)T = 174 is obtained for benzene, a value near the value
calculated for the Lorentz spherical field (Table 3).

An additional proof of the validity of the fluctuation theory of isotropic
scattering combined with the idea of density dependent polarizability can
be found in temperature dependence of P. in Figure data alcuhted
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Figure 4. Variation of experimental and calculated isotropic Rayleigh ratios of benzene at
546 mt with temperature.

from equation 31 with (N8s/ôN) derived from equation 54 are compared
with the experimental data derived from the paper of Ehi et al.7. They are
in excellent agreement within the experimental error.

For the calculation of Fans the data for 52and G should be known. There
are two methods which may be used for the determination of the optical
anisotropy ö2. The first method is based on the measurements of polarization
ratios on vapours and the evaluation from the formula:

= 5D(90)/[6 — 7D(90)] (58)

which follows from (25) and (26). This method was frequently used in the
past58, but data found in the literature are hardly satisfactory. Most of the
data may be regarded as obsolete and new measurements with modern
instrumentation are urgently needed. In particular the wavelength depen-
dence of D and ö2 should be measured. It was estimated'1 that ö2 might
differ as much as 10 per cent for wavelengths 546 and 436 mt and this may
produce remarkable errors in determination of Fanis.

The second method consists of measuring H in diluted solutions with a
solvent of low optical anisotropy. This method was developed and extensively
used by Bothorel and collaborators76. Here the molecules of the solute are
assumed to approach the gaseous state when the solution is sufficiently
diluted. It is supposed that the molecules of the solute do not interact with
the molecules of the solvent.
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LIGHT SCATTERING IN DENSE MEDIA

The orientation correlation factor G can be derived in principle from
any of the physical quantities which depend on optical anistropy of mole-
cules. This can be done by measuring the depolarization of scattered light,
electric, magnetic and streaming birefringence. Generally speaking, all
methods consist in comparison of the data measured with the same substance
in liquid and vaporous states. In some special cases (benzene, carbon
disulphide11) it could be shown that agreement with experiment can be
obtained. As an illustration, data for benzene are given. In Table 4 physical
constants and scattering factors necessary for the evaluation of all scattering
quantities from equations 8—13 and 23—26 are given14. The calculated data,
compared with the experimental ones in Table 5 are in remarkable agreement.

Table 4. Physical constants and scattering factors for benzene at 25C

G calculated from Kerr constants
G calculated from polarization ratios.

The same method was applied for calculating curves in Figures 1—3. The
differences between the theoretical and the experimental values vary from
2—12 per cent. A part of this can be ascribed to rather high experimental errors
resulting from the use of polaroid discs which, as known, allow results of
only 5—10 per cent accuracy. The other part of the differences comes from
different values of G obtained by different methods. It is probable that
improvement of experimental techniques would lead to a far better agreement.

For most other liquids, however, neither 2 nor G are known with much
reliability. Light scattering measurements may provide, however, much
information about the apparent optical anisotropy L\2 and the product ö2G.
Especially useful is the quantity C52G, since, if we suppose that ö2 is a molecular
constant, it is possible to get information on changes in G, and thus gain
more insight into the orientation correlation and structure in liquids. A
compilation of data from various sources9' 14,41,59 for a series of liquids
is presented in Table 6 together with 52G values evaluated from polarization
ratios and anisotropic Rayleigh ratios by expressions:

= kTKTN
6 -.-7D(90) (59)

and

— 102NRanis(90)
(60)13(N/'N)

where Ranis is calculated either from equations 27 and 31, or directly from:
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GJURO DEZELR

Ranis(90) R(90) 6 ±6D,(90)
One can see that good agreement is obtained for highly anisotropic liquids
with D5 > 04 where Ô2G values vary less than 5 per cent. For liquid with
low anisotropy the variations are appreciable which is mainly caused by
rather low precision of D5 data.

With known ö2 one could determine G. However, literature data on are
rather incomplete, and if found, mostly without known wavelength depen-
dence. So the determination of G can be performed at present only semi-
quantitatively. An attempt is shown in Table 7. Here ö2 values are taken
from various sources. The data of Stuart58 are based on measurements
with vapours with white sunlight, those of Massoülier17' 78 were measured
with white light of a mercury lamp but corrected to 546 m.i, and the data of
Clement and Bothorel79 were measured at 546 mi in cyclohexane solution.
G was calculated from ö2G data obtained by equation 59. If we consider
Stuart's data to be a little too high for strongly anisotropic liquids because
the wavelength correction was not applied and since it seems to be well
established now that ancient data are as a rule too high, mostly owing to
stray light, we can expect G values to be in reality somewhat higher. Here

Table 5. Rayleigh ratios', polarization ratios and apparent optical anisotropy of
of benzene at 0 = 90° arid 25°C

calculated experimental
G = 053 G = 058 sentioctagonal cell cylindrical cell

0=546mt s%

R, 155 164 161 162 15
T' 221 230 232 225 14
Fl, 89 98 97 95 26
V 176 181 183 184 27
V 45 48 48 51 22
H5 4•S 48 45 48 44
H,, 45 48 48 47 19
D, 040 042 042 040 20
D5 025 027 025 026 38
Dh 100 100 100 108 25
A2 064 070 069 063

R 435
= 436mj.t
461 465 465 03

V 615 642 686 655 24
H, 256 279 300 260 26
T' 487 501 53.5 508 11
V, 128 140 140 146 14
H5 128 140 140 140 14
Hh 128 140 138 136 13
D, 042 044 044 042 19
D5 026 028 026 029 21
D,, 100 100 102 104 16
A2 067 074 075 069

° All Rayleigh ratios are in cm and have to be multiplied by 10.6.
4 standard deviation of angular measurements.
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LIGHT SCATTERING IN DENSE MEDIA

Massoulier's data for benzene and carbon disulphide seem to be the most
reliable at the moment. A puzzling effect can be observed with normal
alkanes. Here Clement and Bothorel's data seem to be the best since they
are nearest to the G values (G > 1) which could be expected for those chain-
like molecules76. Massoulier's data indicate augmented D values in n-alkane
vapours which cannot be explained without assuming a strong interaction
between molecules. It is interesting to note that D data. preceeding Mas-
soulier's data80'81 are even higher.

An interesting method of determining G has recently been proposed by
Lalanne82. He has applied Kielich's method83 which corrects for differences
in the internal field of both the pure liquid and dilute liquid solution and
has arrived at some preliminary results which are in accordance with the
data for carbon disuiphide presented in Table 7, but differ much in cases
of benzene and n-decane. It seems that Lalannes results are afflicted with
the same difficulties as the data in Table 7, i.e. they are based on inprecise
physical constants.

Although the absolute G-values cannot at present be determined with
enough accuracy, much valuable information about molecular interactions
and structuring in liquids can be obtained by measuring the temperature
dependence of ö2G. Recently, Schmidt84 has reported on measurements
performed for a series of liquids, and could show, in accordance with previous
data1 1, that ö2G, and consequently G, rises with temperature in case of
benzene and other aromatics. This may indicate a gradual disordering with
increasing temperature for liquid aromatics, since it can be supposed with
much certainty that for these liquids G < 1, indicating a prevalence of per-
pendicular orientations between benzene molecules. For n-alkanes, however,
G is decreasing with increasing temperature, and that could again be explained
with gradual disordering of prevalently parallel intermolecular orientations
if we suppose that in the beginning G> 1.

o G from polarization ratios
• G from kerr constants

13 Benzene

60
T, °C

Figure 5. Dependence of G on temperature for benzene. G derived from polarization ratios and
from Kerr constants.
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o ExptL.

• Coic. R35-(Na
Ca[c. Rn1-(N IaN) NG const
Benz ene

11

T (°C)

Figure 6. Variation of experimental and ca'culated anisotropic Ray'eigh ratios of benzene
at 546 mj.t with temperature.

This situation can be observed for benzene in Figures 5 and 6. Here again
the experimental values are based on the data of Ehi et a!.75. It is interesting
to note the divergence in G values calculated from polarization ratios,
equation 59, and from Kerr constants. The molecular theory of liquids
leads to the following expression for the Kerr constant5 corrected for
density dependence of polarizability1 1:

K — (n2 — 1)(n2 + 2)(c — 1)( + 2)52G
(62)—

12Ozn2kTN(1 + hN/a) (1 + bN/a)
where index s stands for parameters measured in static fields. The curve
derived from the Kerr constants measured by LeFêvre and LeFèvre85 looks
unrealistic in view of the above discussion on the temperature dependence
of molecular orientations. This may be proved by calculating the temperature
dependence of anisotropic scattering. Figure 6 shows that good agreement
of theoretical data calculated by equation 60 with experimental values can
be obtained only if a temperature variation of G is assumed.

Finally, a few words on the scattering from multicomponent systems.
A series of papers was devoted to this problem (e.g. t7, 18.2263.8687.97)
and the most important result of these investigations is the possibility of
determining activity coefficients and the excess free energy of mixtures.
Experimental data based on high' values of Rayleigh ratios are in very good
agreement with theoretical relations and the data from other experimental
techniques (like vapour pressure'' 22 and electrolyte activity coefficients87).
The only point which is not fully elucidated is the validity of the Bullough
extra term C in equation 34. While Sicotte'8'88 considers that this term
explains correctly his experimental data, Pethica and Smart87 claim that
it is incorrect to include C in addition to equation 32. The final word has to
be left to future experimental work.
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The experimental achievements in the important field of spectral distribu-
tion of scattered light will also be only touched here. These light scattering
techniques started to expand rapidly after the invention of lasers. After
the first report of several groups89—91 some authors tried to perform more
quantitative checking of existing theories.

One of the important points of the theory of nonelastic scattering is the
ratio of intensities of the central component, I. to the sum of intensities of
Brillouin lines, 'B' the so-called Landau—Placzek ratio. Landau and Placzek26
predicted the expression:

'C/21B = (icT — 1C5)/K5 (63)

which followed from the approximated equation 38. It was found8' 92 that
equation (63) should be corrected for dispersion of the quantities s and
(NoiaN)5, as derived by Fabelinskii4. It was also found that both the
Rayleigh and Brillouin lines are fully polarized93 which is proof that they
belong to the isotropic part of light scattering.

The measurements of the spectral distribution of scattered light render
information on the sound velocity (so-called hypersonic velocity) in liquids
and on relaxation times of vibrational degrees of freedom in liquids94'95.
Laser measurements of the anisotropic part of spectrally displaced scattered
light are rather scarce. Shapiro and Broida96 measured the wings of Rayleigh
scattering in carbon disulphide and arrived at results in agreement with
theoretical predictions. For 'H/'v they found the predicted value . The
measurement of the orientational relaxation in liquids can be interpreted
as a diffusion process depending both on the temperature and the structure
of molecules29.

It may be concluded that the measurements of spectral distribution of
scattered light are capable of giving much new and additional information
to the theory of liquids. They will certainly be an important technique in
future for studying the structure of dense media as well as of polymer and
colloidal solutions.

In view of all the facts presented here we can see that very good agreement
exists between theory and experiments for the isotropic part of light scatter-
ing. However, in treating the anisotropic part some difficulties still remain.
It is difficult at present to give much credit to the values of G calculated from
the data available in the literature. One reason is certainly the incompleteness
of physical constants which makes it almost impossible to calculate theoretical
light scattering quantities, except for a few liquids. Another reason is the
inadequacy of present theories of anisotropic scattering. So, for example,
it is not possible to give an explicit expression like equation 22 for calculating
the anisotropic scattering factor of spherically symmetric molecules (such
as carbon tetrachioride) with 52 = 0. It is not advisable to make far reaching
conclusions about the liquid structure and the intermolecular correlations
from present G data since it might be possible that the experimentally
determined G data do not only consist of the functions of the form of equation
19, but might include some terms arising from the nonlinear effects due to
remarkable internal fields. It would certainly be possible to improve this
situation by collecting more data on more liquids. Complete sets of physical
constants measured at the same temperatures and wavelengths, and carried
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out with increased precision, would allow additional improvements in
the theories of light scattering in dense media.
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