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ABSTRACT
The problem of numerical conversion of different viscoelastic material

functions is reviewed. A number of approximation formulae are given,
together with bounds for their errors.

1. STATEMENT OF THE PROBLEM

It is well known"3 that the linear viscoelastic behaviour of materials
obeying the superposition principle may be characterized by various material
functions, for instance:

(a) Creep compliance, J(t), defined as the strain as a function of time, t,
produced by a unit step in stress at time zero;

(b) Relaxation modulus, G(t), defined as the stress effected by a unit step in
strain at time zero;

(c) Storage compliance, J'fro), and loss compliance, J"(w), defined as func-
tions of angular frequency co; these are the amplitudes of the in-phase com-
ponent and the out-of-phase component of strain under conditions of steady
state response to a harmonic stress of angular frequency co and unit amplitude;

(d) Storage modulus, G'(w), and loss modulus, G"(w), defined as the ampli-
tudes of the in-phase component and the out-of-phase component of stress
under conditions of steady state response to a harmonic strain of angular
frequency co and unit amplitude;

(e) Retardation spectrum, f(r), as a function of retardation time, 'r; it is
defined by the equation:

J(t) = J0 + fir) {1 — exp(—t/r)} dt + t/ (1)

where J0 is the limit of the creep compliance for t —+0 and l/tj is the limit of
the rate of the creep compliance for t —* f(r) is assumed to be a non-
negative function of retardation time. This assumption is supported by over-
whelming experimental evidnce; it manifests itself experimentally by the
fact that the rate of creep is a completely monotonic function of time
[J(t) 0; J(t) 0; J(t) 0; etc.].
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(f) Relaxation spectrum, g(t), as a function of relaxation time, x; it is
defined by the equation:

G(t) = G + $ g(r) exp (—t/t) dt

where G is the limit of the relaxation modulus for t — c. If the retardation
spectrum is a non-negative function of the retardation time, the relaxation
spectrum will be a non-negative function of the relaxation time, and vice
versa2.

Now, one of the problems encountered frequently in the investigation of
relaxation behaviour is that of converting these characteristic material
functions from one into the other. Formally, these problems have been solved
by the theory of linear viscoelastic behaviour. According to this theory, the
interconversion of various characteristic functions may be performed by
application of (linear) integral transformations, or their inversions. However,
as has been shown elsewhere3, the actual application of those integral
transformations to experimental data gives rise to basic difficulties, and to
tedious calculations besides.

Therefore, we have recently studied the following questions :—
Assume that one of the characteristic material functions defined abovet

has been measured; that a finite number of measuring points is available at
discrete times (frequencies) extending over a finite range in the time axis
(frequency axis). Neither the behaviour at very short times (high frequencies)
nor that at very long times (low frequencies) will be known. Each measure-
ment has a finite experimental error.

1. Is it, under these assumptions, still possible to perform the conversion
into other material functions?

2. How much experimental information is really needed for this conversion?
3. What is the most simple numerical procedure for this purpose?
4. What are the truncation errors, i.e. the errors due to the fact that

information is only available over a finite range in time (frequency) scale?
5. What are the approximation errors, i.e. the errors due to the fact that

we use simple approximation formulae, instead of the integral transforms,
even within the limited range where the behaviour has been measured?

6. How, during the conversion process, is the experimental error trans-
mitted to the new function?

Answers to these questions have been obtained for some of the conversion
problems. Although the investigations are still in progress, it seems worthwhile
to report the results obtained so far.

2. CHOICE OF TIMES FOR MEASUREMENT OF TRANSIENT
BEHAVIOUR, AND CHOICE OF FREQUENCIES FOR

MEASUREMENT OF DYNAMIC BEHAVIOUR

In the early investigations of relaxation behaviour, the choice of measuring
times or frequencies was made more or less by chance within the time or

We exclude the spectra for the moment.
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frequency region where information was wanted. With modem techniques
of automation available, use of preselected sampling times for the creep or
relaxation experiment and use of preselected sampling frequencies for the
vibration experiment have gradually become the usual practice. The question
arises, therefore, which times or frequencies should be selected?

It is well known that relaxation behaviour is best represented by using a
logarithmic time scale for plotting results of stress relaxation or creep
experiments, and by using a logarithmic frequency scale for plotting results
of dynamic measurements. Therefore, in order to avoid lack of information
on the one hand and an excess on the other, the sampling times (frequencies)
should be chosen in such a manner that they cover the logarithmic time scale
(frequency scale) as regularly as possible. Furthermore, considerable gain in
convenience for performing all calculations will be obtained by choosing
sampling times (frequencies) that are exactly equally spaced in logarithmic
time (frequency) scale. We have chosen the ratio of succeeding times (fre-
quencies) to correspond to a factor of two.

This binary type of sampling was selected with regard to the technique of
creep measurement employed at our research institute4. Using a logarithmic
clock5, the digital registration unit of the creep apparatus is activated at the
above mentioned logarithmic sequence of times: 2, 4, 8, 16 sec etc., after the
start of the creep experiment Therefore, the item of information needed for
the conversion is just the one obtained by the digital creep technique.

The system of approximations may also be used, if one starts with measure-
ments which are distributed in a different way. One should then first deduce
the results corresponding with binary sampling times (or frequencies) by
interpolation. Subsequently the entire system of approximative equations
can be applied without any further interpolation.

3. DERIVATION OF APPROXIMATION FORMULAE
AND ERROR LIMITS

The method that we used to derive all approximation formulae was that
of Ninomiya and Ferry6, who proposed the following formula for calculation
of J(t):

J(t) A(t) J'(l/t) + O4OJ"(O4O/t) — OO14J"(1O/t) (3)

To prove this formula, J(t) is written as an integral transform by using
equation 1. The integrand consists of the retardation spectrum times a
function of x = t/r, which is called the intensity function of J(t) and which is
equal to

X(x) = 1 — exp (—x) (4)

The intensity function X(x) is approximated by a linear combination of the
intensity functions of the expressions J'(l/t), J"(O40/t) and J"(lO/t), which are
respectively:

X'(x) = x2/(1 + x2)

X"(x/O4O) = (x/O40)/{1 + (x/O40)2}

X"(x/1O) = (x/1O)/1 + (x/1O)2}

221



F. R. SCHWARZL

in the following way:

X(x) X'(x) + 04OX"(x/Q40) — 0014X"(x/lO)

Multiplication of this equation by f(t) and integration with respect to t
from 0 to yields equation 3. If. the problem of the approximation of the
intensity function has been solved appropriately, it will be found that also
the terms outside the integrals in equation 3 are automatically accounted for.
In the resulting expressions for the approximation formulae, neither the
instantaneous compliance, J0, nor the viscosity, rj, occur explicitly. This is
important, as those quantities are not accessible within an experiment of
finite duration.

This method of deriving approximations was supplemented3 by a con-
sideration of the error of the approximation, which is defined as the difference
between the approximation and the exact value of the desired quantity. So,
in the case described above:

E(t) = A(t) — J(t)

We write the error as an integral transform of the retardation spectrum and
find for the intensity function:

= X'(x) + 040X'(x/Q40) — 0014X"(x/lO) — X(x)

We compare the intensity function of the error, /'(x), with the intensity
function of the quantity which is to be calculated, i.e. (x). The quotient,
(x)/(x), is bounded for all positive values of x between a small negative
lower limit and a small positive upper limit:

—0007 (x)/x(x) 0101

This inequality yields the following bounds for the relative error of the
approximation:

—0007 E(t)/J(t) 0401

It is also useful to compare the intensity function of the error, /i(x), with
the intensity function, X"(x), of J"fro). We thus find the inequality:

—0028 /i(x)/X"(x) 0096
which yields limits for the absolute error in terms of J"(co) with co = l/t:

—0028J"(co) E(t) 0096J"(a)
If we use the well-known inequality:

J"(w) = J'(w) (tan c5) J(t) (tan 5) (12)

we find limits for the relative error expressed as functions of the value of tan c5
at the angular frequency w = l/t:

—0028 (tan 5) E(t)/J(t) 0096 (tan 5)

A number of useful approximations has been derived in this way; they are
listed in Tables 1, 2, 3 and 4. In the last columns of those tables, limits for the
relative errors are expressed in percentages.
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4. DISCUSSION

Figure 1 gives an illustration of the interrelationships treated so far. The
quantities that are experimentally accessible have been placed in large blocks;
furthermore the relaxation spectrum and the retardation spectrum, which
could be known from the prediction of a molecular theory, are shown. Arrows
between accessible functions indicate the existence of numerical methods for

Trivial

* Forlow damping

Figure 1. Experimentally accessible response functions, spectra, and numerical relationships
between them.

conversion in the corresponding directions, which can be error bounded.
The adjectives easy or difficult are used in connection with the amount of
information needed for the conversion concerned. Arrows which are inter-
rupted by interrogation marks indicate that the corresponding problem has
not yet been treated in detail.

1. Calculation of storage compliance from the time dependence of the creep
compliance

Approximation formulae for calculation of the storage compliance from
the time dependence of the creep compliance have been treated elsewhere in
full detail7. A list of these formulae, together with their error limits, is repro-
duced in Table 1. Whenever the damping, tan ô (or the double logarithmic
slope of the creep compliance with respect to time), is small, a very simple
formula will be sufficient:

J'(w) J(t) — O86{.J(2t) — J(t)} (14)

Bounds for the relative error of this equation are: —1 5(tan c5) per cent and
+ 15(tan 5) per cent. Therefore, formula 14 will have a relative error smaller
than 1 per cent in all cases where tan 5 is smaller than OO7.

Knowledge of two measuring points of the creep compliance suffices to
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calculate one point of the storage compliance. If the creep compliance is
known at n successive times of the binary series, formula 14 will allow
calculation of (n — 1) values of the storage compliance at successive fre-
quencies. These values may be used for furtherm calculations within the same
frame of approximations. This will demonstrate the advantage of the a priori
choice of logarithmically equidistant measuring points.

For larger values of the damping, more involved formulae, also given in
Table 1, should be used. It will always be possible to find formulae with a
relative error smaller than 1 per cent, even at extremely high values of the
damping. In the worst case, the last formula of Table 1, which is always
within 1 per cent, would involve knowledge of the creep behaviour between
t/8 and 32t for calculation of J'(1/t).

To summarise, we can state that calculation of the storage compliance
from creep is extremely simple for low values of the damping; it might be
somewhat more involved for higher damping values, but the adjective easy
is then still justified. No serious truncation problems will occur in connection
with this conversion.

2. Calculation of loss compliance from the time dependence of the creep
compliance

Approximation formulae for calculation of the loss compliance from the
time dependence of the creep compliance were discussed in detail elsewhere7
and are reproduced in Table 2. The calculation of the loss compliance from
creep is much more difficult than the calculation of the storage compliance.
Moreover, the error limits of the formulae of Table 2 are decreasing functions
of the damping. Consequently, the calculation of the loss compliance from
creep is the more difficult, the lower the value of (tan ö).

There is a formula that only involves knowledge of the creep compliance
at two successive times, viz.:

J"(w) 2'12{J(t) — J(t/2)} (15)

But this formula will be a very rough approximation. Even at high values of
the damping, viz, for (tan 5) = 1, the error limits of this formula are 16 per
cent and —16 per cent.

To reach higher accuracies, more complicated formulae have to be
applied. If we want a formula with a relative error smaller than 3 per cent, the
second formula of Table 2 may be used for values of (tan ) between F5 and
cc; the third between 045 and cc; the fifth between 0'2 and cc and the sixth
between 0'075 and cc. There is a formula which is within 3 per cent for all
values of (tan 6), namely:

J"(co) — — O.470{J(4t) — J(2t)} + 1'674{J(2t) — J(t)}
+ 0198 {J(t) — J(t/2)} + 0'620{J(t/2) — J(t/4)}
+ 0'012{J(t/4) — J(t/8)} + 0472{J(t/8) — J(t/16)}
+ 0'043{J(t/32) — J(t/64)} + ... (16)

This formula is assumed to consist of an infinite number of terms. Each term
following the one with coefficient 0043 will be shifted a factor of 4 in time
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scale into the direction of shorter times relative to its predecessor, and will
have a coefficient which is exactly 1/4 of the coefficient of its predecessor.

Formula 16 constitutes the first example of a short time truncation prob-
lem. Calculation of J"(w) at w = 1/t is strongly influenced by the behaviour
of the logarithmic derivative of the creep compliance at short times. The
corresponding coefficients decrease only weakly, namely inversely propor-
tional with the distance. Therefore, experimental evidence on the magnitude
of the short time creep behaviour is needed before these terms can be rejected
on the argument of their smallness.

In summary, we state that calculation of the loss compliance from creep
is always difficult but will be especially cumbersome at small damping values.

3. Calculation of the creep compliance from the frequency dependence of
storage and loss compliance

This problem has been treated in detail elsewhere8. We first remark that
the knowledge of the frequency dependence of the loss compliance only is
insufficient to calculate the creep compliance, because the value of the
instantaneous compliance, J0, is not contained in J"(w). For this calculation
one should in addition know at least the value of the storage compliance at
one frequency. Formulae of this type are listed in Table 3.

In cases where the damping is small, a very simple (2-point) formula will
be sufficient, viz.:

J(t) J'(w) + O566J"(w/2) — O2O3J"(w) (17)

Limits for the relative error of this formula are —8 (tan 5) per cent and
+ 8 (tan ) per cent. Therefore, this formula will have a relative error smaller
than 1 per cent in all cases that (tan c5) is smaller than 0125.

For large values of tan 5, more involved formulae are available. It will
always be possible to find a formula with a relative error smaller than 1 per
cent. In the worst case, the last formula of Table 3, which is always within
1 per cent, would involve knowledge of the loss compliance between w/16
and 8w for calculation of J(1/w).

In summary, we state that calculation of the creep compliance from the
value of the storage compliance at one frequency and the frequency de-
pendence of the loss compliance is an easy problem. It will be extremely
simple for low values of the damping. No truncation problems will occur.

It is also possible to calculate the creep compliance from the value of the
loss compliance at one frequency and the frequency dependence of the
storage compliance. Formulae of this type are given in Table 4. These
formulae all have a very low bound for the relative error at large damping
values. They will, therefore, be especially appropriate for use in the region of
higher damping. However, when applying these formulae in the case of low
damping8, some caution should be taken. Under these circumstances it will
be safe to use the last formula of Table 4:

J(t) J'(w) + 0496J"(w/2) — 0065{J'(w/4) — J'(w/2)}
— 0073{J'(w/2) — J'(w)} — 0111{J'(w) — J'(2w)}
— 0030{J'(8w)} — J'(16w)} — 0007{J'(32w) — J'(64w)}. . (18)
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This is assumed to consist of an infinite number of terms. Each term following
the one with coefficient OO07 will be shifted a factor of 4 in frequency scale
into the direction of higher frequencies relative to its predecessor, and will
have a coefficient which is exactly of the coefficient of its predecessor.

In general, the high frequency truncation problem in formula 18 will not
cause serious trouble, as the corresponding coefficients are very low.

Finally, it is possible to give formulae which make use of the frequency
dependence of storage and loss compliance. A useful example will be:

J(t) J'(w) + 0496J"(w/2) — 0027J"(8w) — 00583{J'(co/4) — J'(co/2)}
— 00906{J'(w/2) — J'(w)} — O0854{J'(w) — J'(2w)} (19)

It has these error limits: —32 (tan (5)per cent; — 1 0 per cent and + 32 (tan (5)
per cent; 1'O per cent.

4. Calculation of storage modulus from the time dependence of the relaxation
modulus

There exists a well-known parallelism between formulae which connect
compliances and the corresponding formulae which connect moduli with
each other. The reason is the far reaching similarity of the intensity functions
of the compliances when written as integral transforms of the retardation
spectrum, on the one hand, and those of the moduli when written as integral
transforms of the relaxation spectrum on the other.

Consequently, each approximation formula between compliances may be
transformed into one between moduli by performance of the simultaneous
substitutions:

J(t) — — G(t); J'(w) - —G'(w); J"(w) —* G"(co)

However, the error limits of the new approximation for the moduli, which is
obtained in this way, will generally differ from the error limits, that were
valid for the approximation for the compliances. It is therefore not possible
to translate the optimized systems as given in Tables 1, 2, 3 and 4 by means of
this substitution into optimized systems for the conversion of moduli. The
problem of the conversion of moduli has to be considered separately.

It is only for small damping values that, by means of equation 20, a useful
approximation for compliances can be translated into a useful approximation
for moduli.

We derive from equation 14 a formula for the calculation of the storage
modulus for small values of the damping (or the negative double logarithmic
slope of the relaxation modulus with respect to time):

G'(w) G(t) + O86{G(t) — G(2t)}

Limits for the relative error of this equation will be —15 (tan (5)per cent and
+ 15 (tan (5) per cent. It is also possible to translate the second formula or the
fourth formula of Table 1; they will have these error limits: —8 (tan (5) per
cent, +8 (tan (5) per cent and —21 (tan (5) per cent, 21 (tan (5) per cent respec-
tively, and will constitute still better approximations.
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Finally, we can construct approximations for G'(w) which will be accurate
for arbitrary high damping values. An example is the following equation:
G'(w) —0145{G(4t) — G(8t)} + O729G(2t) — G(4t)}

+ O.00288{G(t) — G(2t)} + 0.111{G(t/2) — G(t)}
+ O.102{G(t/4) — G(t/2)} + O.0074{G(t/16) — G(t/8)} + (22)

The limits for the relative error in this approximation are: —11 (tan (5) per
cent; —82 per cent and 11 (tan c5) per cent; 82 per cent. Equation 22 is
assumed to represent an infinite series. Each term after the one with coefficient
00074 will be shifted a factor of 4 in time scale into the direction of shorter
times relative to its predecessor and will have a coefficient which is exactly

of the coefficient of its predecessor.
Though equation 22 presents a short time truncation problem, this will

not be serious in practice. The coefficients of the short time tail decrease
strongly, namely inversely proportional to the square of their distance.

We may conclude, therefore, that calculation of the storage modulus from
the relaxation modulus will be easy for all damping values; it is extremely
simple for low damping.

5. Calculation of loss modulus from the time dependence of the relaxation
modulus

Calculations of the loss modulus from stress relaxation will be even more
difficult than that of loss compliance from creep. The only formula for this
purpose that can be error bound is the transposed form of equation 16:

G"(w) —0.470{G(2t) — G(4t)} + 1674{G(t) — G(2t)}
+ 0198{G(t/2) — G(t)} + 0.620(G(t/4) — G(t/2)}
+ 0012{G(t/8) — G(t/4)} + 0172{G(t/16) — G(t/8)}
+ 0043{G(t/64) — G(t/32)} + ... (23)

The limits for the relative error of equation 23 will be: —27 per cent and
+ 27 per cent, irrespective of the value of (tan (5).

For creep it was possible to truncate equation 16, if the value of tan (5 at
angular frequency w = lIt was sufficiently high. For stress relaxation, a
truncation of equation 23 is not possible. Every truncated formula will have
a lower limit for the relative error equal to — 100 per cent for all tan (5 values.

The only way to reject terms of the short time tail of equation 23 is by use
of experimental knowledge about the order of magnitude of those terms. For
this purpose it is necessary to know upper bounds of the negative value of
the slope of the relaxation modulus with respect to the logarithm of time in
the entire time region left to point t = 1/w,where the calculation is performed.
A measure for this slope may be found in the value of the loss modulus at
angular frequencies higher than w, because of the inequality3:

—dG(t)/d in t G"(w) (24)

We conclude that calculation of G"(w) from G(t) will always present a cumber-
some truncation problem.
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6. Calculation of relaxation modulus from storage and loss moduli
Three types of formulae may be considered:
(a) calculation from the frequency dependence of the loss modulus and the

value of the storage modulus at one frequency;
(b) calculation from the frequency dependence of the storage modulus and

the value of the loss modulus at one frequency;
(c) calculation from the frequency depedence of the storage modulus.
The optimized systems have not yet been developed. However, the follow-

ing remarks may be important:
For small values of the damping we may transpose equation 17 to:

G(t) G'(w) — O566G"(w/2) + 0203G"(w) (25)

The limits for the relative error of equation 17 had been: —8 (tan (5)
per cent and +8 (tan (5) per cent; they had been derived from limits for the
absolute error of equation 17, which had• been equal to —008J"(w) and
+ 008J"(a)). Consequently, we find as limits for the absolute error of equation
25: —008G"(w) and + 008G"(w). These may be transposed again into limits
for the relative error of equation 25, which become complicated functions
of tan (5;for small values of tan (5 these are again: —8 (tan (5) per cent and
+ 8 (tan (5)per cent; for higher values of (tan (5),however, the limits will tend
to — and + and increase much faster than in proportion to (tan (5).

As an example of type (b), we may transpose equation 18 into:

G(t) G'(w) — O.496G"(w/2) + 0065{G'(co/2) — G'(co/4)}
+ OO73{G'(w) — G'(w/2)} + O111{G'(2w) — G'(w)}
+ 0030{G'(16w) — G'(8w)} + OOO7{G'(64co) — G'(32w)} + (26)

Limits for the absolute error of this approximation will be: —0014G"(co)
and +0014G"(co).

In contrast with the problems which have been considered so far, it is not
possible to derive formulae for calculation of G(t), which can be error bound
for all (tan (5)values. Every formula will have limits for the relative error which
tend to — and + cc for large (tan and, therefore, every formula must
finally fail in the high (tan (5) region.

We conclude that calculation of G(t) from G'fro) and G"(co) will be easy for
low damping, cumbersome for intermediate value of the damping, and
impossible for very high values of the damping.

7. Calculation of loss modulus from frequency dependence of storage modulus
and vice versa

In view of the existence of the Kramers9—Kronig'° relations, one would
expect that the loss modulus could be calculated from the frequency depend-
ence of the storage modulus, and that the storage modulus could be calcu-
lated, apart from an arbitrary constant, from the frequency dependence of the
loss modulus. The corresponding numerical relations, however, have not yet
been investigated.
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8. Calculation of relaxation and retardation spectrum from experimentally
accessible functions

The famous problem of calculating the relaxation and retardation spectrum
may be reconsidered at this stage. If we try to apply the same methods that
have been used to derive the numerical relations between experimentally
accessible functions, we immediately discover that no approximations for
the spectra can be found which could be error bound.

The intensity functions of the spectra are delta functions that are infinite
at one value of r and zero elsewhere. Such a 'function' can never be approxi-
mated with finite accuracy by means of the intensity functions of measurable
quantities, which are all finite and differentiable functions of time. Therefore,
each approximation formula for the spectrum will have limits for the relative
error , which are —cc and + x

We believe that the spectra as defined in equations 1 and 2 are not experi-
mentally accessible functions in a unique sense: Each finite set of experimental
data can be described by a large number of spectra that are very different.

It is possible to redefine the spectra by an additional smoothing condition
in such a way that the redefined spectra become experimentally accessible.
The redefined spectrum fre(t) can be written by a formula:

fred(t) = j S(t/t) f(t) dt (27)

where s(x) is a function which approximates the delta function, i.e. it has a
maximum at x = 1, tends to zero for x —+ 0 and x —* cc, and is normalized.
The 'value' of the redfined spectrum, however, will then depend on the choice
of the smoothing function s(x).

The reader will appreciate that about 16 years ago functions of type 27
were developed as 'approximations to the spectra" .
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