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ABSTRACT

This expository paper discusses how the equilibrium thermodynamics of an
ideal elastic solid differs from that of a fluid. Because at least some species are
immobile, there is no unique Gibbs energy. There are six independent finite
strain parameters, n, referred to a chosen reference state. Thermodynamic
manipulations are straightforward if stresses t are defined conjugate to the i,
but these can be identified with the Cauchy stresses, c., only in the reference
state. Typical experimental conditions are described directly by the tr, which
have to be related to the tA before experimental quantities like C, can be related

to formally derived quantities like C.

1. INTRODUCTION
This paper discusses the thermodynamics of ideal solids which can sustain

a permanent shear stress. The theory is now well established, and is of
increasing importance in solid state physics. However, rigorous discussions
are available only in some specialized texts"2, which are not always easy to
read. In addition to results given in such texts, this account presents some
new results relating experimental quantities to ones of theoretical application.

A rigid solid must contain a framework of atoms in which neighbours
remain neighbours throughout any deformation (although mobile species
can also be present). Processes in which there is transport of the immobile
atoms, including exchange with another phase, are forbidden. Consequently
the solid need not be in a state of thermochemical equilibrium; in general a
chemical potential can be defined only for mobile species. There is therefore
no unique Gibbs energy G, although it may be convenient to define analogous
functions (see §2). True thermochemical equilibrium is reached only under
isotropic stress (hydrostatic pressure). Consequently, normal fluid thermo-
dynamics can be applied to solids under isotropic stress (e.g. a solid immersed

t McLe1lan has derived a chemical potential by assuming thermochemical equilibrium.
His result thus appears to be valid only under hydrostatic pressure.
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in a fluid). However, care is needed, especially for non-cubic solids. For
example, the relation C = C, — f32VT/ic,4 gives not the heat capacity of a
solid whose dimensions are kept constant, but that of a solid whose shape
changes to keep the stress isotropic at constant volume4.

When transport is negligible during the time of an experiment, a solid
under shear stress is in a metastable state with a well defined entropy S and
Helmholtz energy A, which are functions of the strain and temperature. The
thermodynamics of this state is our main topic. We deal only with thermo-
elastic properties, omitting electric and magnetic effects.

2. THERMODYNAMIC THEORY FOR SOLIDS
Description of strain

We treat the solid as a continuum, and consider only strains which are
effectively uniform over distances of several atomic spacings. The strain can
be specified by the displacement of each point in the solid from its position( x2, x3) in some reference configuration. A superposed circle will denote
properties of this configuration. For a uniform strain the new positions are
given in tensor notation5 by

x, = (ö1 + (1)

where summation from 1 to 3 is implied over a repeated suffix. If the displace-
ments u, are small, their symmetric and antisymmetric parts give, to first
order, pure strains and pure rotations

-(u + w —
u31) (2)

Thus infinitesimal strains are specified by the six
However, finite strains are not specified by the An arbitrary vector in

the reference configuration which becomes the vector r in the strained
configuration changes in length by6

2 02 00r — r = (u + u + UkUkJ) rr (3)

where the second-order terms depend on the üiLJ as well as the We can
thus specify arbitrary strain by the symmetric Lagrange finite strain tensor

{Uj, + Uj + UkUkJ) (4)

which can be reduced to for infinitesimal strains. We shall use the Voigt
abbreviated notation7

'li = 111,112 = 122'13 = 1133' (5)

= 2ij23, 1?5
= 21131, 16 = 2112

the factors of two in equation 6 are introduced for later convenience. Voigt
subscripts will be denoted by Greek letters A, etc. (A = 1, . . 6). A similar
scheme defines infinitesimal strains e.

is used for the volumetric expansion to avoid confusion with the Grüneisen function y.
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Description of stress
The stress is most directly described by the well-known Cauchy stress

tensor8, which in the absence of couple stresses is symmetric9. However, the
Cauchy stress has the disadvantage for thermodynamic purposes that it does
not determine the strain unless the orientation is specified (or unless the
stress is isotropic). We therefore define other stress parameters, t, which are
thermodynamically conjugate to the strain parameters i, and so depend on
this prior choice of strain parameter.

The energy U and Helmholtz energy A are functions of the strain and one
other variable. The stresses t are defined by

= (A/ij2)T (7)

where the subscript j' denotes that all the except are kept constant
during differentiation. The t have the dimensions of (negative) pressure, and
are sometimes called the thermodynamic tensions" 2• One may also retain
tensor notation to define stresses t1 by equations like 7, with this
for differentiation with respect to the components of a symmetric tensor.
Write the function to be differentiated symmetrically in and ij and then
differentiate treating all nine as independent. The resulting tensor is
symmetric, and is related to the t by a scheme like equations 5 and 6 without
the factors of two.

The relation of to the Cauchy stress r is discussed in §3.

Energy functions and Maxwell relations
We define quantities analogous to the enthalpy and Gibbs energy

H' U — l'tij, G' A — i't,i', (8)

where the primes remind us that these cannot be identified with the functions
H and G defined under hydrostatic pressure. The repeated subscript )
denotes summation from 1 to 6; by virtue of the factors of two in the abbrevi -
ated notation for strains but not for tensions, t,,ij,, is equal to t,ij13.

The differentials of the functions U, A, H' and G' are given to first order by

dU — T dS = Vt dA + S dT (9)
dH' — T dS = — l' dt = dG' + S dT (10)

Maxwell relations follow as for fluids, e.g.

(S/t1)T = —(02A/â = —- Ikt2/T) (11)

= (2H'/t0S) = — V(,,/äS), (12)

and two similar expressions derived from dU and dG'. Relations of this type
also establish the symmetry of the isothermal elastic stiffnesses, analogous
to the bulk modulus B for fluids:

CT — (at 1( 32A T
1T v T

C (3)
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and similarly for the adiabatic stiffnesses C and the compliances S
= (1)j3t,L)t'. The same full symmetry is possessed by simple higher-order
elastic constants, e.g.

C (eCr/7V) = (03A/8t
but mixed constants like (C/JV)'T have lower symmetry11.

From these generalized energy functions a selfconsistent thermodynamic
theory can be developed"2 in much the same way as for fluids. The develop-
ment again depends strongly on the elementary theory of partial differenti-
ation, suitably extended to seven independent variables instead of two. For
instance, just as (/aT) is equal to —(öp/ V)T(a V/aT),

(0tJiT)q —(t/0ij,1), T(fl,4/ôT)t
where it should be recalled that by the summation convention the RHS is a
sum of six terms. In the present brief account this example must suffice; it
is used in obtaining equation 32.

3. USE OF THE CAUCHY STRESS TENSOR

The problem
We come now to a major source of difficulty and confusion. Although the

t are by their definition convenient for thermodynamic analysis, it is the
Cauchy stresses a which are most simply related to experimental conditions.
We have therefore to relate properties defined in terms of the a to the
thermodynamic results obtained in terms of the t, which can require rather
complex expressions.

Elementary treatments8 attempt to avoid this difficulty by always choosing
the instantaneous (often unstressed) configuration for the reference con-
figuration and considering only infinitesimal strains. Then

dU(e, w, S) = T dS + V de
Since to first order de2 = dlh we see from equation 7 that = t°. We may
then define coefficients of thermal expansion

stiffnesses

(oJöe,j w, T

and other properties directly related to physical measurements. The difficulty
is that since these relations hold only at the reference configuration, we
cannot differentiate a second time with respect to strain or Stress. So, for
example, there is no Maxwell relation like equation 13.

Relation of r to t
By treating the configuration reached by displacements as a new

reference configuration and then applying the result & t, we can show2"°
that

= (V/l) (5k,, + u) ('5jq + ujq) tpq
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To first order in the displacements this gives

= + P1e,1 + Qfk,wkl (20)

where

'ijkI = {OJl5ik + 0iöjk + ikji + ffJkc5jj) — flijökl (21)

= {&J,öik + i1jk — &ikölj
— &jkj1) (22)

This result, together with the observations that to first order

de d, (dt),7 (da)e (23)

can be used to derive thermodynamic relations for measured quantities.
A particularly simple example following directly from equation 20 by

differentiation with respect to strain relates cI,L [equation 18] to C [equa-
tion 13] by

cL = CL + P, (24)

where P14 = P1123, etc. Hence CTM = C only for a solid under zero stress6.
Examination of equation 21 shows that P is symmetric only when
represents a hydrostatic pressure, so that for an anisotropic stress cL c.
The compliance sL = (ae/0a, T is inverse to cT, (i.e. sLc = &av), so

that s too is symmetric only under isotropic stress.

Maxwell relations
Because of equation 23, the analogues of equation 11 and the similar

relation deduced from dU remain valid:

(aS/ie)e' ü,,T = — 1,jaT)e c, (25)

(T/ae2)e,s = J1/0S)e,U) (26)

Let us now try to derive the analogue of equation 12. We have

(aT/aoja, w,S = (T/ae,j w,S (27)

= ae,1/&r, (28)

by equation 26. The RHS of equation 28 will equal —V(0e/8S)ew if the
compliance s, is symmetric, that is, if the stress is isotropic. So the
analogue of equation 12 is valid only under hydrostatic pressure. It follows
that expressions derived assuming the validity of this Maxwell relation under
anisotropic stress involve errors of the order of the fractional difference
between s and s,. Similarly, the analogue of the relation like equation 12
derived from dG' is valid only under isotropic stress.

Some further results
The heat capacity most readily measurable is that at constant stress,

C T(S/8T)g . It differs from its analogue at constant tension, C, by a
power series in the stress components. To first order in an isotropic pressure
cr = —pö, when C C,, the result becomes

C — C = pVT(f32 — 2) (29)
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for cubic solids C C, but for non-cubic solids C may be less than Ca.
Although in general analogous quantities defined in terms of the physical

variables e and a differ from those in terms of the thermodynamic variables
ij and t, some quantities are the same in both systems, and so form an im-
portant link between them. One such quantity is the heat capacity at
constant strain, Cq T(S/T) = T(S/T)e, as follows from equation 23.
C is related to C and C by4

C = Ca — TVcT,cc = C — TCa.a,L (30)

where the a are thermal expansion coefficients Another unique
quantity is the Grüneisen function defined by'2

T/Cq = (S/0eA)e', o, T/Cq (31)

Through the Maxwell relations 11 and 25 and equation 15 these equations
can be transformed to

= = Vcf,Lc/C9 (32)

which can be shown to be equal to

= l'GLa/C = V4,,c/Cg (33)

4. CONCLUSION
In general, an extended thermodynamic theory is required for solids. It is

most naturally developed in terms of the conjugate variables ij and t, but
experiments are often more readily described by e2 and a2. Analogous
quantities in the two systems differ by amounts depending on the magnitude
and anisotropy of the stress. Consequently, care is needed in comparing
theory and experiment at high pressures, particularly for highly compressible
solids like helium.
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