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Then how should I begin,
To spit out all the butt-ends of my days and ways?
And how should I presume?' T. S. Eliot

ABSTRACT
The paper outlines the current presentation of thermodynamic principles to
the combined Part I Engineering students at the University of Hong Kong.
By considering all bodies taking part in a process, the first and second laws of
thermodynamics are presented without the use of work or heat—terms which
cannot be generally defined without anticipating the second law. The experi-
mental data necessary to know substances thermodynamically are their
internal energy functions, their isotherm functions, and their equations of
chemical equilibrium—all in terms of pressure p. specific volume v, and the
degree of advancement of chemical processes c. Thermodynamic temperature
functions, affinity functions and entropy functions may be derived from these
data. The paper concludes with a discussion of interactions between bodies in

terms of work and heat.

1. INTRODUCTION

Neglecting metaphysical matters, we adopt the view that scientific prin-
ciples are economical descriptions of events and processes. A new phenome-
non is considered to be explained when it has been shown to conform to
accepted principles. Thermodynamics is best regarded as an extension of
rigid body Newtonian Mechanics, to deal generally with deformable bodies
and chemical processes. The methodology of thermodynamics is in terms of
simply measurable quantities, through relationships between functions of
such quantities to the prediction of future values of the simple quantities. It
is convenient to call the simple quantities coordinates. External coordinates
are best taken relative to the astronomical frame of reference and include
spatial coordinates x, y, z, and velocity coordinates q,q, q, with resultant
velocity q. Confining our attention to a simple fluid, internal coordinates
are conveniently taken as pressure (p) (specific force), specific volume (v) and
the degree of advancement of any chemical process . In addition we need
the mass of each chemical species m1, m2, etc. Internal and external co-
ordinates are conveniently embraced in the term thermodynamical co-
ordinates. To make useful predictions we must include changes in all bodies
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which influenced each other. An isolated system of bodies is one which does
not respond to changes in the environment outside the isolating wall.

2. FIRST LAW
A class of functions of the thermodynamic coordinates are called energy

functions. The kinetic energy function is defined by

Kin = çq2dm (2.1)

Any other functions which when added to the kinetic energy function give a
valid relationship between the coordinates are also called energy functions.
In a constant long range field of strength k parallel to the z axis, a potential
energy function is appropriate. This is defined as

Pot = kzdm (2.2)
A valid description of the motion of a rigid body c in such a force field is

[Pot + Kin]2 N = constant (2.3)

We note that Pot and Kin are relative to external axes, and their sum may
be called the external energy N. An imagined body so isolated that only
changes in its external coordinates occur is conveniently called a Newtonian
body.

When deformable bodies have relative motion of their parts (other than
isotropic rotations), or when deformable bodies interact, the numerical value
of their external energy changes. Experiment shows, however, that a valid
description of the variation of the thermodynamic coordinates of an isolated
system of bodies is obtained by introducing a function U of the internal
coordinates. U is called the internal energy function. The behaviour of two
interacting bodies , fi in an isolating envelope can be described by

[U + N] + [U + N]'3 = E + E = constant (2.4)

where E is the total energy function. The first law states that changes in the
thermodynamic coordinates of an isolated system of bodies can be described
in terms of constancy of the sum of the energy functions of all parts of the
system; or more succinctly, but less informatively, the energy of an isolated
system of bodies remains constant'. The functional form of the internal
energy must be found from experiments.

2.1. To find (óu/5p)
Let the specific internal energy be u. Let unit mass of fluid be divided into

two equal parts and let these be projected horizontally at each other with
equal and opposite velocities q, while contained in isolating envelopes. Let
v and remain constant and let the pressure rise Ap after the disturbance
has died away be measured. Applying equation 2.4

Lt (2.5)= Ap-O AP
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2.2. To find (öu/5v)
Let a small evacuated space Av be annexed to the fluid and let the fluid be

allowed to enter it. Let the pressure change Ap be measured when the distur-
bance has died away. Then the energy is unchanged and with d = 0 equation
2.4 gives

(5u\0= (—} Ap+ (—-j zXv (2.6)
\'5PJv

Proceeding to the limit( = — (± ( (2.7)
\VJp 'PJv

Since (5u/öp) has already been found from equation 2.5 and (5p/c5v) is
obtained from experiment, equation 2.7 evaluates (5u/5v).

2.3. To fmd (óu/5)
Let a small quantity of the fluid be separated by a partition and let the

chemical process be catalysed in this quantity. Let the partititon then be
broken and thorough mixing permitted. Let Ap and A be measured. Then
with u and v constant

o = Ap + (.:—) A (2.8)
v PU

Thus

= — ( ('\ (29)

2.4. The internal energy function
Having obtained the derivatives experimentally we have

du =(i dp + dv + d (2.10)
\PJv 5vj

By repeating the experimental process a table of u — u0 in terms of p, v,
may be enumerated or if simple, the function u(pv) may be found. For gases
of low density experiment shows that

U = m[pv(a + b) + u0(1 + c)] (2.11)

where m is a measure of quantity; v is the volume per mole and a, b and c
are constants for given atomic content, and over a useful range of the variables.
If ç is constant

+ 0 = pV + 0 (2.12)
y—1

where y is a. constant.

3. THE SECOND LAW

We may imagine many impossible processes which would satisfy the
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energy accounting system of the first law. The admissibility or otherwise of
processes may be expressed as an inequality. A burning match does not
reconstitute itself, so that the process may be described as d 0. If otherwise
in equilibrium with a constant environment, the air pressure in an inflated
motor car tyre never rises so that dp 0. A blackboard duster freely sliding
on a horizontal table does not draw from its internal energy and increase in
speed, so that dq 0, or du 0. The second law states that not all imagined
processes actually happen and that not all imagined future states are realizable
even though they would satisfy the energy accounting system of the first law.

Following Guggenheim', let us suppose that for any system of interacting
bodies cc /3 etc. there is a possibility function S of the thermodynamic co-
ordinates such that for an isolated system

dS dS dS—=----+----o
dt dt dt

Here t is time, and it is in the second law that later and sooner enter scientific
principles. Unfortunately Clausius gave S the confusing name of entropy.
S would be much better called the Clausius function. Our proposition is
illustrated in Figure 1.

a

Impossib'e Possible
0
U

Q

S

Figure 1. Possible future states of an isolated system.

Possible future states lie to the right of the line S = constant. Considering
states on the line itself, any state (a) can be reached from any state (b) and
vice versa. The line dS = 0 therefore represents reversible processes. Ex-
perience suggests that interchange in forms of external energy is unrestricted.
We therefore guess that S is a function of internal coordinates only. Our
statement of the second law then becomes changes in the internal coordinates
of an isolated system of bodies are such that the sum of the entropy functions
of all bodies is stationary or increases'.

As the entropy approaches a maximum, a time invariant state is reached,
which is called equilibrium. We proceed to discover the entropy function, by
considering a fairly general system approaching equilibrium.

Consider a fluid (a), filling a constant volume isolating cylindrical vessel,
mounted on a frictionless axial vertical pivot, and in a gravitational field of
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strength k. Initially, let q p v all be irregular. Then changes occurring are
such that the entropy of increases to a maximum, subject to its energy,
its angular momentum about the pivot, and its mass remaining constant.
Taking the z axis as vertical, and using cylindrical coordinates r 0 z, the
author2 has shown that the equilibrium state is described by maximizing

dVI = JdV = [s + A(u + (q + q + q) + kz} + q0r + v]—
310 310 V

(3.2)

where %, t and v are Lagrangian multipliers, and the lower case letters are
specific quantities. A stationary value entails equating to zero the partial
differentials of J with respect to the independent variables conveniently
chosen as qs and v. Differentiating with respect to the velocities yields

qr=qz=0; —-— —=o (3.3)

where w is angular velocity. We therefore see that the final state is a rigid
body rotation. Differentiation with respect to internal coordinates yields:

ÔJ ii IotA 1 IOu\ 1
—=—i1 +,(—J 1=0; (—1 = —— (3.4)
Os v \iSJvJ

OJ )(Ou\ (Ou'\= = 0, = 0 (3.5)

= —+() =0 (3.6)0!) V V

These three relationships define three components of equilibrium. Equation
3.4 defines thermal equilibrium, and it is convenient to give (0u'0s) the
symbol T, and to call T the thermodynamic temperature function. We
see that at equilibrium the temperature is uniform. Equation 3.5 defines
chemical equilibrium. It is convenient to give —(c5u/O) the symbol a
and —m(Ou/O the symbol A and to call A the affinity function. Chemical
equilibrium is described by A = 0.

Equation 3.6 which includes w2 may be identified as describing dynamic
equilibrium. Applying Newtonian mechanics to this steady state forced
vortex we obtain

(Op\ k (op\
)r= — v(_)=w2r (3.7)

Comparing 3.7 with 3.6, it may be shown that identity is obtained for
= — p + p. The constant Po arises as only pressure differences

occur in dynamics. Putting Po 0 defines absolute pressure.
From these identifications the generating function for S with constant

quantity of matter is

TdS m[du + pdv + add] dU + pdV + Adc (3.8)
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and to generate the function S it remains to discover A and T as functions
of the coordinates. We do this by considering cases of partial equilibrium.
For many substances, chemical equilibrium may be indefinitely delayed,
and experimental sets of values of pvc for which thermal and mechanical,
but not chemical, equilibrium exist, may be described by 6(pv) =constant.
Then T(pv) is a function of 6 and can be found from an expression due to
Planck3.

in
T = f° (öp/56)4 dO

(3 9)
T0 J0(5u/5v)e +

For perfect gases not undergoing chemical processes, the isotherm function
is found to be 0 pv = constant. From 2.12 and 3.9 we easily find:

T = S = in pv + S0 (3.10)

where r is chosen so that the triple point of water—ice—vapour is allotted
the temperature T = 27316°. Considering a non-ideal gas defined by 2.12
and 0 = pv, equations 3.8 and 3.9 yield:

T = B(pv)1; S =
B(y —i)(i— /)) + S0 (3.11)

where B is a constant chosen as for r above.
By encapsulating different parts of the rotating fluid in light, flexible,

thermally insulating walls, we may inhibit thermal equilibrium. Sets of
experimental values of pv for which chemical and mechanical but not
thermal equilibrium is attained may be described by a function c4pvc) =0.
Then A must be chosen so that dS is an exact differential, and subject to
A = 0 when 0. These conditions are (J = Jacobian):
i (A'\ 1 (TU\ 5 (A'\ 1 (TU'\ c (p

() = J() (3.12)

Whiie generation of A from x is conceptually important, at present the entropy
function with ç as variable is not found. In current practice values of S
at constant are found by integration from T = 0. This process is made
viable by the third law which states that (s/5)TP 0 (T -+ 0). At standard
pressure we may consider the entropy of all perfectly crystalline substances
to approach zero as T —* 0. When matter is introduced from outside a body
the function 3.8 does not apply, but it may rigorously be extended to show
that variation in total quantity of each chemical element is accommodated
by the relationship due to Gibbs

TdS=dU+pdV—>/2dm (3.13)

where t is chemical potential and m1m2 are quantities of each chemical
substance.
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So far we have only considered deductions from a statement of the
stationary value of I. For a maximum in many variables see Apostol4.
Important deductions from maximizing I are:

T>0; T(t >T( >0; ( <0; ( <( <o
\,5TJ \5TJ 5 VJ7.

(3.14)
If we have a body isolated from interaction with other than Newtonian
bodies, we see from 3.1 and the first and second sets of 3.14, that only equal
or higher temperatures are possible in the future, under conditions of p
constant and v constant.

4. INTERACTIONS BETWEEN PARTS OF A SYSTEM

it is useful to partition interactions into work and heat, and the distinction
between these quantities is the province of the second law. A heat inter-
action necessarily changes the entropy of a body, and thus affects the limits
of its future states when subsequently isolated from other than Newtonian
bodies. A work interaction may or may not generate entropy, depending on
whether or not the processes occurring in the body as a result of the work
interaction are reversible or not.

We may define the heat component (Q) of an interaction with an opaque
body () of constant number of atoms and having surface temperature T as

dQ = [T(dS — dS*)]2
where dS 0. dS is all the entropy increment additional to that due to
the heat interaction at the surface. Among factors which contribute to
dS are surface frictional effects, temperature gradients within the body,
viscous effects, plastic deformation of solids, irreversible chemical processes
and diffusion of chemical substances.

The work component of the interaction may then be defined as the
difference between the energychangeand theheat component. Formechanical

work, it may be shown that the above definition can be reduced to the scalar
product of a vector force and its vector displacement.
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