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ABSTRACT

The article gives a new verbal formulation of the second law of thermo-
dynamics. It is claimed that the physical content of this statement as well as
the derivation of the mathematical consequences normally referred to as the
first and second parts of the second law are simpler and more easily grasped by
beginners than the standard formulations. The argument is so designed as to
be closely modelled on one which pertains to the derivation of the mathematical

formulation of the first law.

1. MOTIVATION FOR THIS AR11CLE
There is little advantage, from the point of view of advancing progress in

physics, in reopening the question of the optimal formulation of the second
law of thermodynamics. However, a case can be made for returning to this
fundamental topic in the interests of those who are engaged in transmitting
existing knowledge.

Regardless of which primary formulation of the second law is adopted, it
is commonly agreed that it must lead, by an easy logical and mathematical
derivation, to three statements:

(a) There exists a property called entropy, S, which is additive for sub-
systems and which possess the mathematical properties of a potential.

(b) There exists a variable, called thermodynamic temperature, T, which
has the mathematical property of being that integrating denominator, among
infinitely many, for an element of heat, dQ°, in a reversible process1 which
turns the latter into the perfect differential of entropy

dS = dQ°/T (Carnot's theorem) (1)

The thermodynamic temperature, T, is a unique function of any empirical
temperature, t.

(c) There exists a quantity called entropy production, 0, which is positive
in any irreversible process. In an adiabatic irreversible process between an
initial state 1 and a final state 2, we define

(2a)
and must have

0>0 (2b)
All symbols with the superscript ° refer to reversible processes.
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whereas in any quasistatic irreversible process we must find that

dS — dQ/T = dO with dO> 0 (3)
To the preceding three requirements one may add the pedagogical

desideratum that the plan of derivation should be as close as possible in
spirit and in the basic appeal to experiment (or intuition) to that of the
first law. The present article undertakes to sketch a development of this
kind for which the claim is made that it is easily grasped by beginners.

2. RECENT WORK WITH SIMILAR MOTIVATION
A similar concern is evidenced in the articles by L. A. Turner1, P. T.

Landsberg2, F. W. Sears5, and M. W. Zemansky6, as well in the latter's
recent book7. It may even be said to go back to M. Born8. In particular,
M. W. Zemansky67 ably proceeds to simplify the mathematical apparatus
needed in the development, thus considerably reducing the amount of prior
preparation required of the student. Questions of mathematical rigour
which must be answered in this connection, and which are evaded here
owing to present intent, have been investigated, and thoroughly answered
by P. T. Landsberg24' .

3. METHODOLOGY
A review of standard textbooks reveals that there exist two fully equiva-

lent24 and yet pedagogically divergent ways of leading the student to the
three conclusions. One stems from R. Clausius and Lord Kelvin, the other
from C. Carathéodory and M. Bornt. Broadly speaking, the first stream
makes the statement that a selected irreversible process is irreversible, and
develops the theory from a particular case by a discussion of reversible and
irreversible cycles. The common objection to this development is a sense of
artificiality and the impression of an unmotivated ad hoc reasoning given
by it to a beginning student. The second method starts with an abstract,
common characteristic of all irreversible processes, and derives the same
three statements as a result of Carathéodory's mathematical theorem. The
objection to this development turns on the fact that the theorem is not
normally expounded in courses in mathematics, and that the need to grasp
it diverts the student's attention from physics to mathematics.

P. T. Landsberg3 and, later, M. W. Zemansky6 achieved a 'reconciliation'
of the two streams of thought, and the object here is to suggest a further
simplification as well as a closer link with the development of the first law.
Thus, in addition to statements (a) to (c) above, we must also show that

(d) There exists a universal function for all systems, called their energy,
E, which has the mathematical properties of a potential.

For the sake of completeness, we must also mention the so-called postu-
lational method which starts with the equivalents of statements (a) to (c).
The common pedagogical objection to this mode of exposition is that it
expects the student to accept statements which are alien to him without first
creating an adequate intuitional and physical foundation.

For a parallel exposition of these two streams, the reader may consult Chapters 9 and 10
in ref. 10.
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4. EXPERIMENTAL BASIS
In order to provide an easy intuitive grip on the subject we propose to

root the exploration in a single experiment, the famous experiment per-
formed by J. P. Joule. The result of this experiment can be expressed in
precise thermodynamic terms as follows:
A. Given two arbitrary states of equilibrium 1 and 2 of any closed system it is

either possible to reach state 2 from state 1 or state 1 from state 2, but not
both, by an adiabatic process involving the performance of work only. The
work so performed is independent of the details of the process.

B. If the process is performed at constant volume in a simple system or, gener-
ally, with constant initial and final values of the deformation coordinates,
work must be performed on the system. (Such a process cannot be carried
out without work or in a manner to produce work.)

5. THE FIRST LAW
We consider a space of the n independent thermodynamic properties,

x1,.. . ,x, of a system. For ease of illustration, we assume in Figure 1 that
x, y are deformation coordinates and that the third coordinate is the empirical
temperature, t. We now centre attention on an arbitrary state 1 and say, by
definition, that any state 2 which can be reached from 1 or from which state 1
can be reached adiabatically without the performance of workt (W12 =0),
is called isoenergetic with it. For definiteness, we shall assume that the
natural direction of all processes considered henceforth is 1 —* 2.

We now examine all states for which the deformation variables have given
values x = x2 and y = Y2; they lie on the vertical line 3. It follows immedi-
ately from statement A that there exists only one state 2 on 3, denoted by e2
in Figure 1, which is isoenergetic with state 1. If a second such state existed,

ft I

A
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y

Figure 1. Uniqueness of isoenergetic point.

say at e, it is clear from statement B that process e2 —÷e or e —+ e2 would
require the performance of work. For the sake of being definite, suppose that
negative work is associated with process e2 — e. It follows that process
1 —* e2 — e would require the performance of work. Therefore, state e2
would not be isoenergetic with 1. By continuity, we now reach the con-
clusion that the locus of all states which are isoenergetic with an arbitrary

t We follow the convention that the work performed on the system is negative and that
performed by the system is positive.

The full implications of the assumption of continuity—understandably evaded in an
elementary exposition—are treated rigorously in refs. 2, 3, 4 and 9. Ref 2 examines this problem
in depth.
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state 1 form a surface or, more precisely, a hypersurface of n — 1 dimensions
in the space of states of n dimensions.

Varying the temperature of state 1 along the line c for which x =x1 and
= Yt, we can classify all such states according to the quantity of work

required to reach them adiabatically from 1 or, for negative work, according
to the work required to reach state 1 from them. With each such state,
1', 1",... ,there is associated an isoenergetic hypersurface of n — 1 dimensions,
Figure 2.

I

The preceding argument proves the existence of a potential function for
any closed thermodynamic system which we can define as

E(t,x1 x_1) — E(t*,xi,. . . ,x_) = (4)

This proves statement (d). Here the parameters t, x, . . . , n in all,
describe an arbitrary reference state, and '4'd is the work needed to perform
the adiabatic process to (or from) the current state from (or to) the reference
state. This latter is always possible, as asserted by postulate A.

The existence of a single point on a line of constant values of the deforma-
tion coordinates which is isoenergetic to a given state proves that surfaces of
constant energy cannot intersect.

The generalizations

Q12=E2—E1+W12 (5)

dQ=dE+dW .(5a)
to non-adiabatic general and non-adiabatic quasi-static processes, respec-
tively, are standard and require no further comment.

6. THE SECOND LAW
Having acquired the concept of energy, we can establish an equivalent

formulation of postulate B in terms of it:
B'. It is impossible adiabatically to reduce the energy of a system when its

deformation variables retain constant values.
The equivalence follows at once from equation 4 applied to two states for
which the deformation coordinates have equal values.

514

Figure 2. Surfaces of constant energy.



UNIFIED APPROACH TO THE LAWS OF THERMODYNAMICS

7. CARNOT'S THEOREM
In order to prove statement (a), we apply statement B' to a reversible

process (first part of the second law) for which

dQ° = dE + dW° (6)

and define any state 2, denoted by 2 in Figure 3, which can be reached from
a given state 1 reversibly and adiabatically as isentropic with it. It is now
easy to show, by an argument modelled on the one used earlier in conjunction
with Figure 1, that there exists only one isentropic point on a given line I.
Before we do this, however, it is necessary to point out to a beginner that an
isentropic point s2 is different from an isoenergetic point e2. They are both.
reached by adiabatic processes, a reversible process now and an irreversible
process before. However, the work is zero for an isoenergetic point, being
different from zero, as seen from equation 6, for an isentropic point.

Referring to Figure 3, we suppose that states s2 and s are both isentropic
with state 1. Further, for the sake of being definite, we suppose that

E(s) > E(s2) (7)

It is now clear that the system would be capable of performing some adiabatic
reversible process as well as its reverse process, both symbolized by the full
lines in the diagram. In the first case the energy of the system would increase
at constant values of the deformation coordinates. However, in the second
case, its energy would decrease with x2 and Y2 reverting to their original
values in contradiction to statement B'. Owing to the assumption of reversi-
bility, the contradiction can be removed only by recognizing that states s2
and s must be identical. Again, by continuity24 , it follows that with any
state 1, 1', 1",... along cx we may associate a coherent hypersurface, Figure 4.
The set of such hypersurfaces defines the potential. The resulting family
must consist of non-intersecting hypersurfaces, because no point 1', 1",...
on cx can be reached reversibly from point 1 without exchanging heat, as is
easy to prove from equation 6 and the definition of energy. Indeed, for such
points we must have dW° = 0 but dE 0.
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We can call the resulting potential the empirical entropy, a, and assert
the existence of a family of non-intersecting hypersurfaces

a =a(t, x1,..., x_1) = const.
for any system whatsoever, as shown in Figure 4.

Figure 4. Surfaces of constant entropy.

This family of hypersurfaces intersects the family of hypersurfaces
E(t, x1,. . . , x_) from equation 4 along entities of n — 2 dimensions,
proving the existence of reversible isothermal—adiabatic processes6, as well
as of intersecting isentropic lines whenever the number of independent
variables, n, equals or exceeds three.

In the preceding derivation, unlike those in some textbook presentations,
we expressly refrained from making an appeal to the statement that it is
impossible to design a cycle which consists of two isentropics and one iso-
thermal. Such cycles are possible if n 3, as shown elsewhere6.

To complete the argument, it is now necessary to show that the existence
of non-intersecting isentropic surfaces, a, leads to statement (b) above. The
proof can be modelled on that of Carathéodory, and we refrain from giving
the details, because a simple version can be found in the literature35. This
reasoning leads naturally to equations I and 2.

8. THE SECOND PART OF THE SECOND LAW
Statement (c), or the second part of the second law, follows when we extend

our inquiry to irreversible adiabatic processes. Thus, we consider an arbitrary
adiabatic process which ends at point i2 in Figure 5. We also consider the
point s2 which is isentropic to 1 together with the reversible process. An
examination of the combined process (the reverse of which is impossible) in
the light of statement B' convinces us that

E(i2)> E(s2)
Reference to equation 1 permits us to integrate for entropy along the re-
versible path and reference to equation 6 with dW° =0 shows that only
positive elements of heat, dQ° > 0, must be summed. This proves that

S(i2)> S(s2)
516
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Generally, we write

S2—S1>O (lOa)

and define the entropy produced as in equation 2a, so that equation 2b
follows. This is the principle of entropy increase for adiabatic processes. The
generalization to equation 3 is again standard. It suffices to note that —dQ/T
is the change in the entropy of the immediate surroundings, so that
dS — dQ/T is the total change in the entropy of an adiabatic system con-
sisting of the system proper coupled with its immediate surroundings.

Figure 5. Characteristics of irreversible adiabatic process.

Finally, we note that equation 9 combined with equation 5 and the
condition that Q12 0 proves that of all adiabatic processes which occur
between a given initial state and prescribed values of the deformation co-
ordinates at the final state, an isentropic process yields the maximum positive
(or minimum negative) work. Indeed, along 1 —÷ s2

W?2 = — E(s2) (ha)
whereas along an arbitrary adiabatic irreversible process for the same
x2, Y2' we have

= E1 — E(i2) (lib)
Reference to equation 9 shows that

W2 > W12 (12)
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