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ABSTRACT
An outline is given of an approach to thermodynamics in which entropy is
derived directly, from a simple postulate of direct experimental significance,
without reference to temperature or thermal equilibrium. The author first shows
how the irreversibility of a natural process may be quantitatively measured;
entropy is then defined so that its increase in any process equals the irreversi-
bility. Lastly equilibrium states are defined and absolute temperature is derived

from entropy by differentiation.

1. INTRODUCTION
The following is an outline, necessarily very condensed, of the initial

stages of a one-term course in thermodynamics which was offered for several
years to the honours class at Glasgow University. The characteristic feature
of the treatment is that entropy is the first and not the last of the basic
thermodynamic quantities to be formally introduced; and it is not introduced
ad hoc, but derived from a very simple and plausible postulate (4.1 below)
having a direct experimental meaning. In this way its fundamental significance
is made apparent and it gains for the student an aura of reality which is
often not realized by conventional treatments. Another didactic advantage
is that instead of having to obtain entropy from temperature and energy
by a process of integration we use differentiation—to the average student
a much simpler procedure—to define temperature in terms of entropy.

The treatment can be regarded as a very much simplified version of that
developed in Mathematical Foundations of Thermodynamics1 (hereafter
referred to as MFT). At the expense of some sacrifice in rigour, mathematical
sophistication has been avoided and explanations of physical concepts
have been largely replaced by illustrative examples. (For reasons of space,
however, the number of examples in the present account has had to be
severely limited.)

2. SYSTEMS AND STATES
Space limitations preclude any proper discussion of these concepts. We

denote systems by capital letters A, B, ... and states of A by A1, A2 One
example must suffice for illustration. Let L denote a (particular) solid metal
cube. Let L1, L2 and L3 denote the states of L in which its temperature
is uniform and 0°C, 50°C and 100°C respectively. Let L4 denote the steady
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state attained by L when two opposite faces are maintained at 0°C and 100°C
respectively. Thus in L4 there is a uniform temperature gradient across the
block. Clearly L4 is 'different' from the other states: if L is isolated the state
L4 will change, the temperature gradually becoming more uniform until
eventually L2 will result. (This unusual behaviour of L4 is, of course, due to
the fact that it is not an 'equilibrium state'. Since we make no restriction to
equilibrium states, however, we do not need to give a formal explanation
of the term at this stage.)

Two systems A and B may be thought of as together comprising a single
system which we call their union and denote A + B. To form the union is a
purely conceptual process: it is not necessary that the systems interact or
even be in contact. However, in practice there is little point in considering
A + B unless some, possibly indirect, interaction between A and B is con-
templated. Occasionally we will use such an expression as 2A. This is short-
hand for A + A and denotes the union of A with a replica of itself. Finally,
A1 + B1 will denote that state of A + B in which the systems A and B are
separated (i.e. not in interaction) and in states A1 and B1.

3. PROCESSES

If the state of a system changes a process is said to have occurred. We name
the process by giving the initial and final states: for example, (L4, L2) denotes
the process (mentioned above) of settling down which occurs in L if it is
isolated and initially in the state L4. That this notation for processes—
involving only the naming of the initial and final states—is justifiable depends
on the following circumstance: classical thermodynamics is concerned
primarily with those properties of processes which depend only on the
initial and final states, being independent of the particular manner by which
the change of state took place. Thus if two processes have these features
in common they need not be distinguished and will be called equivalent.
As an important example, any process for which the initial and final states
coincide is equivalent to the trivial process in which no change whatever
takes place; this trivial process we call the zero process.

(L4, L2) is an example of a process which can occur in isolation: i.e. while
the system concerned, namely L, is isolated. It is called a natural process
and we write L4 —÷ L2. On the other hand it is not reversible for its reverse
(L2, L4) cannot occur in isolation. (Of course we can by external action
compel the process (L2, L4) to occur—for instance by enclosing L, initially
in the state L2, between two heat reservoirs.) We shall call (L2, L4) anti-
natural (against nature) since its reverse is natural. We have thus L4 —*L
but L2 -a-' L4.

The process (L1, L2) is another example of a process which cannot occur
in isolation, although it can of course be compelled to occur by bringing L
into contact with a suitable heat reservoir. Exactly the same applies to its
reverse (L2, L1). (Isolation implies, in particular, perfect thermal insulation
so that cooling, just as much as heating, is impossible.)

Now suppose we have two copies of the block L in the states L1 and L3.
By bringing the two blocks together, waiting until no further change takes
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place, and then separating them again we obtain the final state L2 + L2.
Thus (L1 + L3, L2 + L2) is a natural process. Let us denote this process
by cx. The process cx has involved two systems, each a replica of the block L,
which have experienced the processes (L1, L2) and (L3, L2) respectivey.
Denoting these processes by 13 and y we might say that CL consists in the
'simultaneous occurrence' of 13and y. We express this by writing cx = 13 + y:
i.e. (L1 + L3, L2 + L2) = (L1, L2) + (L3, L2). Notice that neitier 13 nor y
is natural, although their sum cx is.

The sum of any two processes is defined in the same way: the sum of the
processes (A1, A2) and (B1, B2) of the systems A and B respectively, is the
process (A1 + B1, A2 + B2) of the system A + B. Observe that the sum of
a process and its reverse is (equivalent to) the zero process:

(A1, A2)+(A2, A1) = (A1 + A2,A2 + A1) = 0

since A1 + A2 and A2 + are really the same state. Hence we may call
the reverse of a process cx the negative of cx and denote it —cx.

We have agreed to write A1 —*A2 and to describe the process (A1, A2)
as natural not only when the process (A1, A2) can occur in isolation but
also when it can be caused to occur by an arbitrarily small external inter-
ference. We now make a further relaxation of these conditions. Suppose that
we can envisage some apparatus K which can be used to cause A to undergo
the process (A1, A2) and suppose, moreover, that this can be done in such
a way that the final state of the apparatus coincides with its initial state,
K0 say. In this case the apparatus has in no sense been 'used up' in the process
(we shall say it is not involved in the process)—indeed it is at once ready to
be employed in the same way again. We agree to allow this sort of use of
auxiliary apparatus:

3.1. Definition
We write A1 —+ A2 and call the process (A1, A2) natural whenever there

exists some system K and some state K0 of K such that the process (A1 + K0,
A2 + K1) can occur while the system A + K is isolated, the state K, being
equal to (or at least differing arbitrarily little from) K0.

Sometimes the system K takes the form of an engine which works in
cycles-—if a whole number of cycles has been performed the initial and final
states will coincide.

Using this definition we can establish two results that we shall need later:

3.2. Theorem
Let A and B be any systems, A1 and A2 states of A, B0 a state of B. Then:
(a) If A1 -* A2 then A1 + B0 -* A2 + B0
(b) If A1 + B0 —+ A2 + B0 then A1 -* A2.

Proof.
(a) By hypothesis there is an engine' K which, starting and finishing in

It is true that some external agency has been used to move the blocks, so the system 2L has
not been strictly isolated. However, we still regard the process as natural since——there being no
limit on the time required—the external interference can be arbitrarily slight.

505



R. GILES

some state K0, can take A1 into A2. We need now merely retain B in the
state B0 during this process, and observe what has happened to A + Bt.

(b) If K, with initial and final state K0,can implement (A1 + B0, A2 + B0)
—i.e. ii' (A1 + B0 + K0, A2 + B0 + K0) can occur in isolation—then
B + K, with initial and final states B0 + K0, implements the process
(A1, A2).
The proof of the following theorem is similar:

3.3 Theorem
If A1 —A2 and A2 —÷ A3 then A1 —+ A3.
Using these results it is now easy to prove:

3.4 Theorem
If and 13 are natural processes then so is ci + 13.

4. IRREVERSIBILITY
We now introduce the basic postulate of our formulation:

4.1. Postulate
Let A1, A2, A3 be any states of any system A. If A1 — A2 and A1 —* A3

then either A2 —* A3 or A3 —* A2 (or possibly both).
On this postulate depends the construction of an entropy function and

thus the whole structure of thermodynamics. From it we deduce:

4.2. Theorem
Given any two natural processes ci and J3, one of them is able to drive

the other backwards': i.e. either ci — f3 or 13 — ci is natural (possibly both).
The proof is simple (see MFT, p 34). This the6rem makes it possible to

measure quantitatively the irreversibility of a natural irreversible process.
Indeed, we are going to assign to each possibl4 process ci a scalar quantity
I(ci), the irreversibility of cc, in such a way that:

I I(cx) > 0 if ci is natural irreversible,
(i) 1(c'x) = 0 if ci is reversible,

I(ci) < 0 if ci is antinatural irreversible;
(ii) I is additive: i.e. 1(cc + 13) I(cL) + 1(13), for all possible processes ci and f3.
We measui the irreversibility of a natural process ci by comparing it with

that of a standard irreversible process y, the irreversibility 1(y) of ''being
assigned arbitrarily. We say ci is at least (most) r times as irreversible as y if

t It is necessary to assume that any state can be 'frozen', i.e. kept unchanged, when required.
This may require some cunning. To freeze the state L1. for instance, we may imagine that the
block L is built out of a large number of thin square metal plates and that these are instantly
separated from each other; on reassembly, the state L4 is restored.

'Possible' means 'natural or antinatural or both'.
§ Any such process y may be used [or, if there is none, we simply set I(cL) = 0 for all ci].

However, to get the customary scales of entropy and temperature we may take for y a natural
process of the form y = (M1 + R1, M2 + R2) where M is a mechanical system (see § 5) with M1
exceeding M2 in energy by 1 erg, and R is a sealed container enclosing only a mixture of ice,
water and water vapour (R is thus a 'heat reservoir' at the triple point of water); and set 1(y) =
(1/273.16) erg,deg, inventing the new unit erg/deg to measure the new fundamental quantity,
irreversibility.
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qcz — p'y is natural (antinatural) for positive integers p and q with r = p/q.
A straightforward argument (MET, p 43) based on theorems 3.4 and 4.2
shows that there is a unique real number r0 such that, for any smaller (larger)
rational number r, is at least (most) r times as irreversible as 'y. (Moreover,
the principle mentioned in definition 3.1—that arbitrarily small changes in
the environment are permissible— allows us to conclude that if r0 is rational
it belongs to both these classes.) We set I(cL) = r01(y). It follows from the
construction that the function I so defined has the property (i) above. That,
for any natural processes c and , I(CL + 3) = I(cx) + I(fi) follows from the
easily established fact (MFT, p 45) that if CL and J3 are at least (most) r times
and s times as irreversible as y respectively, then c + 3 is at least (most)
r + s times as irreversible as y.

With trivial changes the above definition of I(CL) can be extended to every
possible (i.e. natural or antinatural) process CL.

5. ENTROPY
We now introduce the notion of a mechanical system: i.e. one of those

idealized systems dealt with in elementary mechanics, from which dissipative
forces (friction, viscosity, etc.) are absent. We assume as characteristic of
mechanical systems that (a) the union of two mechanical systems is a
mechanical system, and (b) any natural process involving only a mechanical
system is reversible; thus, if CL is such a process, I(CL) =0. We define an
adiabatic process of a system A to be a process of A + M where M is any
mechanical system: i.e. a process which involves', apart from A, only a
mechanical system. Thus a natural adiabatic process of A means a natural
process of A + M, and so on. Lastly, we assume (cf. Pippard2 p 15) that any
two states of a closed system can be connected, in at least one direction, by
an adiabatic process. We can now prove:

5.1. Theorem
The irreversibility of a natural adiabatic process depends only on the

system's initial and final states: i.e. if ci and J3 are two natural adiabatic
processes of A, both leading from A1 to A2, then I(ci) =1Q3).

Proof
Let ci = (A1 + M1, A2 + M2) and J3 = (A1 + N1, A2 + N2), where M

and N are mechanical systems. Since ci and are natural either ci — 13 or
f3 —cLisnatural,sayci— 13. Butcz.— 13=(A1 +M1 + A2 + N2,A2 + M2
+ A1 + N1) = (M1 + N2, M2 + N1) is a process involving only the
mechanical system M + N. Being natural, it is also reversible. Thus 0 =
I(ci —

13) = I(ci) —
1(13).

5.2. Theorem
If ci and 13 are natural adiabatic processes of systems A and B, leading

from A1 to A2 and from B1 to B2 respectively, then ci + (3 is a natural
adiabatic process of A + B leading from A1 + B1 to A2 + B2, and I(ci + 1)
= I(cz) + (13).
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Proof.
The first statement follows immediately from the definitions and the

second is just property (ii) of §4.
An inspection of these theorems shows that natural' may be replaced

by possible' without affecting the proofs.
We can now define an entropy function S. For each system A first choose

arbitrarilyt a reference state A0 and assign it zero entropy: S(A0) = 0. Let
A1 be any other state. By assumption there exists a natural adiabatic process
connecting A0 and A1. If it leads from A0 to A1 call it cz; if it leads from A1
to A0 call its reverse c. In either case define S(A1) = I(ct).

With this definition the entropy of every state of every mechanical system
is automatically zero. The following theorem can now be easily proved.

5.3. Theorem
(a) For any states A1 and B1 of systems A and B, S(A1 + B1) = S(A1) +

S(B1).
(b) Let be a natural adiabatic process of a system A leading from to

A2. Then I(c) = S(A2) — S(A1).

Now, any natural process (A1, A2) involving only a system A can be
regarded as a special case of a natural adiabatic process of A [by writing it
in the form (A1 + M1, A2 + M1)]. Applying this to the case when A is the
union of several other systems, we have, in view of the additivity of entropy:

5.4 Corollary
In any natural process the total entropy of all the systems involved never

decreases, and it remains constant only if the process is reversible.

6. EQUILIBRIUM STATES AND TEMPERATURE
The introduction of entropy in §5 involved no reference to temperature.

This is not surprising since most states—e.g. L4 or L1 + L3—do not have'
a temperature at all. However, we now define an equilibrium state in such a
way that every equilibrium state has a temperature. The usual meaning of
'equilibrium' is somewhat vague and involves reference to the internal
structure of the state; ours is quite specific, involving only the concepts that
we have already introduced. Roughly speaking, an equilibrium state is a
state of 'maximum settled-down-ness':

6.1. Definition
A1 is an equilibrium state of a system A if there is no state A2 such that

(A1, A2) is natural irreversible process.
It is easy to deduce from this definition that A1 + B1 can be an equi-

librium state only ifA1 and B1 are equilibrium states. However, this condition
is not sufficient: for instance L1 + L3 is not an equilibrium state (see §3).

To introduce temperature we must first construct an internal energy
function E. Our route is the usual one2, differing only in certain details. We
assume that every state of a mechanical system has a definite energy and

t Except that if A0 and B0 are the reference states for A and B then the reference state chosen
for A + B must be A9 + B0.
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that for mechanical systems energy is additive and always conserved (i.e. in
any natural process 'involving' only a mechanical system the initial and
final energies are equal). We define the work W done on A in an adiabatic
process to be the decrease in energy of the mechanical system involved. We
can then prove1 the first law of thermodynamics in its usual form2 .

The introduction of temperature is most simply described in the case of a
simple fluid, or chemical system in the sense of Zemansky3. In the present
context such a system is best defined as one with the following two properties:

(a) every state of the system has a definite volume V,
(b) if two states A1 and A2 have the same energy and the same volume

then either A1 —* A2 or A2 —+ A1 (or both).
It follows that two equilibrium states of the same energy and volume

must have the same entropy. The equilibrium states of a simple fluid thus
lie on an equilibrium surface S = S(E, V) in a space' with coordinates
E, V. S. If we assume, as is customary in physics, that this surface is sufficiently
smooth we can now define the temperature T of any equilibrium state by
the equation l/T = S/E. At the same time the pressure P may he defined
by the equation P/T = — 3S/'5V.

It is a simple matter to show that T and P have the qualitative and quanti-
tative properties associated with the terms absolute temperature and
pressure.
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That this is possible is due to the strength of the assumption stated in the previous paren-
thesis. The proof is practically that of theorem 5.1, withW replacing 1.
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